Phylogenetic Relationships Among the Rangeomorpha: the Importance of Outgroup Selection and Implications for Their Diversification

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships Among the Rangeomorpha: the Importance of Outgroup Selection and Implications for Their Diversification Canadian Journal of Earth Sciences Phylogenetic relationships among the Rangeomorpha: The Importance of outgroup selection and implications for their diversification. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0022.R2 Manuscript Type: Article Date Submitted by the Author: 01-Jul-2018 Complete List of Authors: Dececchi, Thomas; University of Pittsburgh Johnstown, Biology Greentree, Carolyn; Monash University, School of Earth, Atmosphere and EnvironmentDraft Laflamme, Marc; University of Toronto - Mississauga, Chemical and Physical Sciences Narbonne, Guy; Queen's University, Geological Sciences and Geological Engineering Keyword: Ediacaran, Phylogenetics, Rangeomorpha, Evolution Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 48 Canadian Journal of Earth Sciences Phylogenetic relationships among the Rangeomorpha: The importance of outgroup selection and implications for their diversification. Dececchi, T.A. 1*, Narbonne G.M.2, Greentree, C.3, and Laflamme, M.4 1- Queen's University, Department of Geological Sciences and Geological Engineering, Bruce Wing/Miller Hall, Kingston, ON, CAN * Current affiliation: Biology Department, Natural Sciences Division, University of Pittsburgh Johnstown, Johnstown, Pennsylvania, 15904, U.S.A. [email protected] Draft 2- Queen's University, Department of Geological Sciences and Geological Engineering, Bruce Wing/Miller Hall, Kingston, ON, CAN. [email protected] 3- Monash University, School of Earth, Atmosphere and Environment, Clayton, VIC, AUS. [email protected] 4- University of Toronto Mississauga, Department of Chemical & Physical Sciences, Mississauga, ON, CAN. [email protected] 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 48 1 Abstract 2 The Rangeomorpha are the oldest, most diverse, and most disparate clade of 3 Ediacaran macrofossils. Easily identifiable by their self-similar branching pattern, 4 they occupied epibenthic niche space ranging from the lowest tiered and recumbent 5 taxa up to meter-long upright fronds. A phylogenetic analysis using the largest and 6 most complete character set known for this group scored for 14 separate taxa was 7 undertaken to resolve their internal relationships and test previous hypotheses of 8 their evolutionary and ecological history. Owing to the lack of consensus on the 9 relationship amongst Ediacaran clades, several permutations with different 10 potential outgroup taxa were performed. Across these analyses, there is a strong 11 signal for an upright frondose ancestralDraft state for this clade, likely displaying 12 primary branches that were double sided, non-rotated, with the lower tiered and 13 recumbent forms being derived members of a single subclade. This has implications 14 on the life history reconstruction as well as taxonomic implications for this clade 15 and the origins of large multicellular life in the late Ediacaran. 16 17 KEYWORDS: Ediacaran, Phylogenetics, Rangeomorpha, Evolution 18 19 20 21 22 23 2 https://mc06.manuscriptcentral.com/cjes-pubs Page 3 of 48 Canadian Journal of Earth Sciences 24 Introduction 25 The Rangeomorpha represent the most diverse Ediacaran clade (Dececchi et al. 2017). 26 They are characterized by a modular and self-similar “fractal” branching pattern that 27 spans at least 4 orders of subdivisions, ranging from primary branches that are several 28 centimeters in size all the way down to fourth order, sub millimetre branching (Narbonne 29 2004; Liu et al. 2016; Kenchington and Wilby 2017). These modular elements are 30 combined into a diverse array of forms, from flat-lying mats to erect fronds, and range in 31 size from a few centimetres to well over a meter in length. Rangeomorpha occupied a 32 range of ecological niches (Clapham et al. 2003, Ghisalberti et al. 2014, Liu et al. 2015,) 33 time slices (Xiao and Laflamme 2008; Laflamme et al. 2013) and water depths (Boag et 34 al. 2016), suggesting they representedDraft a successful group prior to their demise in the 35 latest Ediacaran. They are particularly abundant and diverse in the post-Gaskiers 36 Conception and St. John’s groups in Newfoundland (Hofmann et al. 2008; Narbonne et 37 al. 2009; Liu and Matthews 2017), age-equivalent sections in Charnwood Forest in 38 England (Wilby et al. 2011), but are also found in northwestern Canada (Narbonne et al. 39 2014), and younger occurrences in the Flinders Ranges in South Australia (Gehling and 40 Droser 2013), Siberia (Grazhdankin et al. 2008), southern Namibia (Vickers-Rich et al. 41 2013), and central China (Chen et al 2014) . This ubiquity has led to the Rangeomorpha 42 being one of the most well studied members of the Ediacaran paleocommunity, with 43 research focusing on aspects of their architecture (Narbonne 2004; Narbonne et al. 2009: 44 Brasier and Antcliffe 2009; Brasier et al. 2012), growth (Gehling and Narbonne 2007; 45 Antcliffe and Brasier 2007, 2008; Flude and Narbonne 2008; Bamforth et al. 2008; Hoyal 46 Cuthill and Conway Morris 2014; Dunn et al. 2017), ecology (Clapham et al. 2003; Liu et 3 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 4 of 48 47 al. 2015; Boag et al. 2016), population structure (Darroch et al. 2013) and even potential 48 reproductive mode (Mitchell et al. 2015). Despite these studies, evolutionary 49 relationships amongst the Rangeomorpha remain contentious (Brasier et al. 2012; Liu et 50 al. 2016; Dececchi et al. 2017). 51 Phlylogenetic approaches have previously been employed to explore the natural history 52 of the Rangeomorpha (Brasier and Antcliffe 2009; Dececchi et al. 2017). The present 53 paper expands on these studies to explore the effects that character definition, selection, 54 and variation have on Rangeomorpha alpha taxonomy, including testing previous 55 proposals for defining higher-order rankings (i.e. genus and above). Furthermore, a series 56 of standards for character construction and taxonomic classification within this clade is 57 proposed and applied to investigate Draftthe relationships among the Rangeomorpha. 58 Establishing a cladistic-based hypothesis for the internal relationships among 59 Rangeomorpha will help guide the understanding of the diversity of life prior to the 60 Cambrian explosion of complex metazoans (Erwin et al. 2011; Schiffbauer et al. 2016). 61 62 Methods 63 In order to create a well-supported phylogenetic hypothesis with a well-resolved 64 topology, it is recommended to incorporate characters derived from multiple axes of 65 information (development, growth, branch architecture, gross structural morphology, 66 etc.). In accordance with this proposal, and following the methodology of Dececchi et al. 67 (2017) in constructing a matrix of 19 distinct characters (Tables S1, S2) that fully 68 describe all morphological regions of known Rangeomorpha, and includes previously 69 proposed criteria for taxonomic differentiation (Brasier and Antcliffe 2009; Narbonne et 4 https://mc06.manuscriptcentral.com/cjes-pubs Page 5 of 48 Canadian Journal of Earth Sciences 70 al. 2009; Brasier et al. 2012).While this dataset is small compared to analysis of non- 71 Ediacaran taxa, it represents the most granular possible character resolution for these taxa 72 based on the available morphology. One major difference between this analysis and the 73 source data (Dececchi et al. 2017), beyond the addition of new taxa, is the modification 74 of several characters including changes in how growth polarity was previously defined by 75 Brasier et al. (2012) and expanding how growth is characterized and scored to reflect the 76 growth dynamics within the range of Rangeomorpha. The present paper uses the term 77 “polarity” as opposed to “terminal” from Dunn et al. (2017) due to the formers greater 78 prevalence in the literature, ease of use and the fact that the two do not differ in terms of 79 how one classifies the morphology of the taxa examined here. All characters were 80 unordered and unweighted in order toDraft reduce potential user bias. All phylogenetic 81 investigations were done in PAUP v. 4.0 (Swafford 2003) using the heuristic search 82 under default settings. Both the strict and majority rules consensus trees are presented to 83 illustrate both the most conservative topological reconstruction as well as one that are 84 found in the majority of trees, but due to the nature of the dataset with some taxa missing 85 data and the small number of OTU’s, may not be in 100% of reconstructions. This paper 86 uses parsimony over Bayesian approaches it may more accurately reflect how 87 morphological, as opposed to molecular data, functions (Goloboff et al. 2017, 2018). 88 All named taxa known from multiple specimens (5 or more) as well as several rare taxa 89 whose morphology may be informative for increasing topological resolution were 90 investigated and included in the analysis (Table S2). An expansive view of operational 91 taxonomic units (OTUs), including 14 named and 2 referred species as ingroup OTUs, 92 were included in the phylogenetic analysis in order to investigate recent proposals for 5 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 6 of 48 93 synonymy/splitting in alpha taxonomy. The genus Fractofusus into F. misrai and F. 94 andersoni were differentiated based on the criteria identified by Gehling and Narbonne 95 (2007) as they show distinct branching architecture
Recommended publications
  • Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
    OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al.
    [Show full text]
  • RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
    1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints.
    [Show full text]
  • A Rich Ediacaran Assemblage from Eastern Avalonia: Evidence of Early
    Publisher: GSA Journal: GEOL: Geology Article ID: G31890 1 A rich Ediacaran assemblage from eastern Avalonia: 2 Evidence of early widespread diversity in the deep ocean 3 [[SU: ok? need a noun]] 4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe 5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 6 ABSTRACT 7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 INTRODUCTION 20 The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) 21 preserves the oldest evidence of diverse macroorganisms and is key to elucidating the 22 early radiation of macroscopic life and the assembly of benthic marine communities Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G31890 23 (Clapham et al., 2003; Van Kranendonk et al., 2008).
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]
  • SI Appendix Specimen Analysis for L-System Parameter Coding
    SI Appendix Specimen analysis for L-system parameter coding Avalofractus abaculus Alternate, self-similar branching is visible in exceptionally preserved, three- dimensional specimens from Spaniard’s Bay, Newfoundland, described by Narbonne et al. (4). Measurements taken from Fig. 3.1 of Narbonne et al. (4) were used to code y-axis branching angles for the 1st order branches (n=16 measurements gave a mean of 38°) and 2nd order branches (mean=47°, n=24). Preservation and photographic image resolution are not sufficient to allow measurement of branching angles for branches of order greater than 2. In the absence of evidence to the contrary, branches of order ≥ 3 were coded as having y-axis branching angles self-similar to those of 2nd order branches. An x-axis rotation of 15° was used to model pivoting (4) of the branches relative to their axis. The frond shape is ovate (4), with width approximately 47% of height (excluding basal stem and holdfast). Specimens preserve between four and eight imbricate primary (1st order) branches on left and right sides of the main stem (4). These interrelated morphological features were modeled using a moderate lateral branching delay and a moderate increase in lateral branch elongation rate, relative to the stem (see Table S1 for parameter values). The imprint of a bulbous holdfast (modeled as a sphere) is visible in one specimen (Fig. S1D; Fig. 3.4 of (4)). Holdfast diameter measured from this specimen is approximately 38% of maximum frond width. 1 Fig. S1. Avalofractus abaculus. (A) Specimen from Spaniard’s Bay, Newfoundland. Image reproduced with permission from Narbonne et al.
    [Show full text]
  • Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland Alexander G
    Document generated on 10/01/2021 8:20 a.m. Geoscience Canada Journal of the Geological Association of Canada Journal de l’Association Géologique du Canada Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland Alexander G. Liu and Jack J. Matthews Volume 44, Number 2, 2017 Article abstract Mistaken Point Ecological Reserve (MPER) World Heritage Site, on the URI: https://id.erudit.org/iderudit/1040786ar southeastern coast of Newfoundland, Canada, is one of the foremost global Ediacaran fossil localities. MPER contains some of the oldest known See table of contents assemblages of the softbodied Ediacaran macrobiota, and its fossils have contributed significantly to Ediacaran paleobiological research since their initial discovery in 1967. Preservation of multiple in situ benthic Publisher(s) paleocommunities, some comprising thousands of specimens, has enabled research into Ediacaran paleoecology, ontogeny, taphonomy, taxonomy and The Geological Association of Canada morphology, offering insights into the possible phylogenetic positions of Ediacaran taxa within the tree of life. Meanwhile, a thick and continuous ISSN geological record enables the fossils to be placed within a wellresolved temporal and paleoenvironmental context spanning an interval of at least 10 0315-0941 (print) million years. This article reviews the history of paleontological research at 1911-4850 (digital) MPER, and highlights key discoveries that have shaped global thinking on the Ediacaran macrobiota. Explore this journal Cite this article Liu, A. G. & Matthews, J. J. (2017). Great Canadian Lagerstätten 6. Mistaken Point Ecological Reserve, Southeast Newfoundland. Geoscience Canada, 44(2), 63–76. All Rights Reserved © The Geological Association of Canada, 2017 This document is protected by copyright law.
    [Show full text]
  • PERSATUAN GEOLOGI MALAYSIA WARTA GEOLOGI NEWSLETTER of the GEOLOGICAL SOCIETY of MALAYSIA
    PERSATUAN GEOLOGI MALAYSIA WARTA GEOLOGI NEWSLETTER of the GEOLOGICAL SOCIETY OF MALAYSIA 50TH ANNIVERSARY SPECIAL ISSUE Jilid 43 OCTOBER – DECEMBER Volume 43 No. 4 2017 No. 4 ISSN 0126 - 5539 PP2509/07/2013(032786) Warta Geologi Newsletter of the Geological Society of Malaysia PERSATUAN GEOLOGI MALAYSIA Editor Geological Society of Malaysia Wan Hasiah Abdullah (University of Malaya) Council 2017/2018 Editorial Board President : Mr. Abd. Rasid Jaapar Chow Weng Sum Vice President : Dr. Che Aziz Ali Universiti Teknologi Petronas, Malaysia Secretary : Mr. Lim Choun Sian Azman A. Ghani Assistant Secretary : Mr. Askury Abd Kadir University of Malaya, Malaysia Treasurer : Mr. Ahmad Nizam Hasan Harry Doust Editor : Prof. Dr. Wan Hasiah Abdullah The Netherlands & Vrije Universiteit, Immediate Past President : Dr. Mazlan Madon Amsterdam Councillors : Ms. Marelyn Telun Daniel Robert Hall Dr. Meor Hakif Amir Hassan University of London, UK Mr. Muhammad Ashahadi Dzulkafli Dr. Norbet Simon Howard Johnson Imperial College London, UK Mr. Nicholas Jacob Dr. Nur Iskandar Taib Ibrahim Komoo Mr. Tan Boon Kong Universiti Kebangsaan Malaysia, Malaysia Dato’ Yunus Abdul Razak Alfredo Lagmay University of the Philippine, Philippine Lee Chai Peng University of Malaya, Malaysia The Geological Society of Malaysia was founded in Mohd Shafeea Leman 1967 with the aim of promoting the advancement of Universiti Kebangsaan Malaysia, Malaysia geoscience, particularly in Malaysia and Southeast Asia. The Society has a membership of about 600 Ian Metcalfe local and international geoscientists. University of New England, Australia Ng Tham Fatt Warta Geologi (Newsletter of the Geological University of Malaya, Malaysia Society of Malaysia) is published quarterly by the Society. Warta Geologi covers short geological Peter R.
    [Show full text]
  • Ordination Methods and the Evaluation of Ediacaran Communities
    Chapter 1 Ordination Methods and the Evaluation of Ediacaran Communities Matthew E. Clapham Contents 1.1 Introduction...................................................................................................................... 000 1.2 Dataset Summary............................................................................................................. 000 1.3 Data Standardization........................................................................................................ 000 1.4 Ordination Methods......................................................................................................... 000 1.4.1 Principal Components Analysis (PCA)................................................................ 000 1.4.2 Correspondence and Detrended Correspondence Analysis (CA/DCA)............................................................................................. 000 1.4.3 Non-Metric Multidimensional Scaling (NMDS)................................................. 000 1.5 Comparison and Interpretation of Results....................................................................... 000 1.6 Conclusion....................................................................................................................... 000 References................................................................................................................................. 000 Abstract Analysis of paleocommunity data poses a challenge because of its multivariate nature, containing counts of many species in many samples.
    [Show full text]
  • Deconstructing an Ediacaran Frond: Three-Dimensional Preservation of Arborea from Ediacara, South Australia
    Journal of Paleontology, 92(3), 2018, p. 323–335 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.128 Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia Marc Laflamme,1 James G. Gehling,2 and Mary L. Droser3 1Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 〈marc.lafl[email protected]〉 2South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 〈[email protected]〉 3Department of Earth Sciences, University of California, Riverside, California 92521, USA 〈[email protected]〉 Abstract.—Exquisitely preserved three-dimensional examples of the classic Ediacaran (late Neoproterozoic; 570–541 Ma) frond Charniodiscus arboreus Jenkins and Gehling, 1978 (herein referred to as Arborea arborea Glaessner in Glaessner and Daily, 1959) are reported from the Ediacara Member, Rawnsley Quartzite of South Australia, and allow for a detailed reinterpretation of its functional morphology and taxonomy. New specimens cast in three dimensions within sandy event beds showcase detailed branching morphology that highlights possible internal features that are strikingly different from rangeomorph and erniettomorph fronds. Combined with dozens of well-preserved two-dimensional impressions from the Flinders Ranges of South Australia, morphological variations within the traditional Arborea morphotype are interpreted as representing various stages of external molding. In rare cases, taphomorphs (morphological variants attributable to preservation) represent composite molding of internal features consisting of structural supports or anchoring sites for branching structures.
    [Show full text]
  • New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
    OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3.
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • First Non-Destructive Internal Imaging of Rangea, an Icon of Complex Ediacaran Life
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318552352 First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life Article in Precambrian Research · July 2017 DOI: 10.1016/j.precamres.2017.07.023 CITATIONS READS 0 65 4 authors: Alana C Sharp Alistair R Evans University College London Monash University (Australia) 11 PUBLICATIONS 18 CITATIONS 85 PUBLICATIONS 1,660 CITATIONS SEE PROFILE SEE PROFILE Siobhan A Wilson Patricia Vickers Rich Monash University (Australia) Monash University (Australia) 68 PUBLICATIONS 858 CITATIONS 127 PUBLICATIONS 2,237 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Evolution of underwater feeding in aquatic mammals View project Body size over space and time View project All content following this page was uploaded by Siobhan A Wilson on 13 August 2017. The user has requested enhancement of the downloaded file. Precambrian Research 299 (2017) 303–308 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres First non-destructive internal imaging of Rangea, an icon of complex MARK Ediacaran life ⁎ Alana C. Sharpa,b, , Alistair R. Evansc,d, Siobhan A. Wilsona, Patricia Vickers-Richa,e,f a School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia b School of Science and Technology, University of New England, NSW 2351, Australia c School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia d Geosciences, Museums Victoria, Melbourne, VIC 3001, Australia e Faculty of Science, Engineering and Technology, Swinburne University, VIC, Australia f School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia ARTICLE INFO ABSTRACT Keywords: The origins of multicellular life have remained enigmatic due to the paucity of high-quality, three-dimensionally Ediacaran preserved fossils.
    [Show full text]