Deconstructing an Ediacaran Frond: Three-Dimensional Preservation of Arborea from Ediacara, South Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic. -
RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints. -
SI Appendix Specimen Analysis for L-System Parameter Coding
SI Appendix Specimen analysis for L-system parameter coding Avalofractus abaculus Alternate, self-similar branching is visible in exceptionally preserved, three- dimensional specimens from Spaniard’s Bay, Newfoundland, described by Narbonne et al. (4). Measurements taken from Fig. 3.1 of Narbonne et al. (4) were used to code y-axis branching angles for the 1st order branches (n=16 measurements gave a mean of 38°) and 2nd order branches (mean=47°, n=24). Preservation and photographic image resolution are not sufficient to allow measurement of branching angles for branches of order greater than 2. In the absence of evidence to the contrary, branches of order ≥ 3 were coded as having y-axis branching angles self-similar to those of 2nd order branches. An x-axis rotation of 15° was used to model pivoting (4) of the branches relative to their axis. The frond shape is ovate (4), with width approximately 47% of height (excluding basal stem and holdfast). Specimens preserve between four and eight imbricate primary (1st order) branches on left and right sides of the main stem (4). These interrelated morphological features were modeled using a moderate lateral branching delay and a moderate increase in lateral branch elongation rate, relative to the stem (see Table S1 for parameter values). The imprint of a bulbous holdfast (modeled as a sphere) is visible in one specimen (Fig. S1D; Fig. 3.4 of (4)). Holdfast diameter measured from this specimen is approximately 38% of maximum frond width. 1 Fig. S1. Avalofractus abaculus. (A) Specimen from Spaniard’s Bay, Newfoundland. Image reproduced with permission from Narbonne et al. -
New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3. -
Of Time and Taphonomy: Preservation in the Ediacaran
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. -
First Non-Destructive Internal Imaging of Rangea, an Icon of Complex Ediacaran Life
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318552352 First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life Article in Precambrian Research · July 2017 DOI: 10.1016/j.precamres.2017.07.023 CITATIONS READS 0 65 4 authors: Alana C Sharp Alistair R Evans University College London Monash University (Australia) 11 PUBLICATIONS 18 CITATIONS 85 PUBLICATIONS 1,660 CITATIONS SEE PROFILE SEE PROFILE Siobhan A Wilson Patricia Vickers Rich Monash University (Australia) Monash University (Australia) 68 PUBLICATIONS 858 CITATIONS 127 PUBLICATIONS 2,237 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Evolution of underwater feeding in aquatic mammals View project Body size over space and time View project All content following this page was uploaded by Siobhan A Wilson on 13 August 2017. The user has requested enhancement of the downloaded file. Precambrian Research 299 (2017) 303–308 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres First non-destructive internal imaging of Rangea, an icon of complex MARK Ediacaran life ⁎ Alana C. Sharpa,b, , Alistair R. Evansc,d, Siobhan A. Wilsona, Patricia Vickers-Richa,e,f a School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia b School of Science and Technology, University of New England, NSW 2351, Australia c School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia d Geosciences, Museums Victoria, Melbourne, VIC 3001, Australia e Faculty of Science, Engineering and Technology, Swinburne University, VIC, Australia f School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia ARTICLE INFO ABSTRACT Keywords: The origins of multicellular life have remained enigmatic due to the paucity of high-quality, three-dimensionally Ediacaran preserved fossils. -
New Evidence on the Taphonomic Context of the Ediacaran Pteridinium
New evidence on the taphonomic context of the Ediacaran Pteridinium DAVID A. ELLIOTT, PATRICIA VICKERS−RICH, PETER TRUSLER, and MIKE HALL Elliott, D.A., Vickers−Rich, P., Trusler, P., and Hall, M. 2011. New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontologica Polonica 56 (3): 641–650. New material collected from the Kliphoek Member of the Nama Group (Kuibis Subgroup, Dabis Formation) on Farm Aar, southern Namibia, offers insights concerning the morphology of the Ediacaran organism Pteridinium. Pteridinium fossils previously described as being preserved in situ have been discovered in association with scour−and−fill structures indicative of transport. Additionally, two Pteridinium fossils have been found within sedimentary dish structures in the Kliphoek Member. A form of organic surface with a discrete membrane−like habit has also been recovered from Farm Aar, and specimens exist with both Pteridinium and membrane−like structures superimposed. The association between Pteridinium fossils and membrane−like structures suggests several possibilities. Pteridinium individuals may have been transported before burial along with fragments of microbial mat; alternately they may have been enclosed by an external membranous structure during life. Key words: Pteridinium, Petalonamae, Vendobionta, taphonomy, palaeoecology, Kliphoek Member, Nama Group, Ediacaran. David A. Elliott [[email protected]], Patricia Vickers−Rich [[email protected]], Peter Trusler [pe− [email protected]], and Mike Hall [[email protected]], School of Geosciences, Monash University, Vic− toria, Australia 3800. Received 27 May 2010, accepted 21 October 2010, available online 22 October 2010. Introduction up−section. The Kliphoek Member represents the sandstone phase of the second of these cycles (Gresse and Germs 1993; Members of the genus Pteridinium were first described as Saylor et al. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
Ediacaran Extinction and Cambrian Explosion
Opinion Ediacaran Extinction and Cambrian Explosion 1, 2 3 4 Simon A.F. Darroch, * Emily F. Smith, Marc Laflamme, and Douglas H. Erwin The Ediacaran–Cambrian (E–C) transition marks the most important geobio- Highlights logical revolution of the past billion years, including the Earth’s first crisis of We provide evidence for a two-phased biotic turnover event during the macroscopic eukaryotic life, and its most spectacular evolutionary diversifica- Ediacaran–Cambrian transition (about tion. Here, we describe competing models for late Ediacaran extinction, 550–539 Ma), which both comprises the Earth’s first major biotic crisis of summarize evidence for these models, and outline key questions which will macroscopic eukaryotic life (the disap- drive research on this interval. We argue that the paleontological data suggest pearance of the enigmatic ‘Ediacara – – two pulses of extinction one at the White Sea Nama transition, which ushers biota’) and immediately precedes the Cambrian explosion. in a recognizably metazoan fauna (the ‘Wormworld’), and a second pulse at the – E C boundary itself. We argue that this latest Ediacaran fauna has more in Wesummarizetwocompetingmodelsfor – common with the Cambrian than the earlier Ediacaran, and thus may represent the turnover pulses an abiotically driven model(catastrophe)analogoustothe‘Big the earliest phase of the Cambrian Explosion. 5’ Phanerozoic mass extinction events, and a biotically driven model (biotic repla- Evolutionary and Geobiological Revolution in the Ediacaran cement) suggesting that the evolution of The late Neoproterozoic Ediacara biota (about 570–539? Ma) are an enigmatic group of soft- bilaterian metazoans and ecosystem engineering were responsible. bodied organisms that represent the first radiation of large, structurally complex multicellular eukaryotes. -
The Palaeontology Newsletter
The Palaeontology Newsletter Contents100 Editorial 2 Association Business 3 Annual Meeting 2019 3 Awards and Prizes AGM 2018 12 PalAss YouTube Ambassador sought 24 Association Meetings 25 News 30 From our correspondents A Palaeontologist Abroad 40 Behind the Scenes: Yorkshire Museum 44 She married a dinosaur 47 Spotlight on Diversity 52 Future meetings of other bodies 55 Meeting Reports 62 Obituary: Ralph E. Chapman 67 Grant Reports 72 Book Reviews 104 Palaeontology vol. 62 parts 1 & 2 108–109 Papers in Palaeontology vol. 5 part 1 110 Reminder: The deadline for copy for Issue no. 101 is 3rd June 2019. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 100 2 Editorial This 100th issue continues to put the “new” in Newsletter. Jo Hellawell writes about our new President Charles Wellman, and new Publicity Officer Susannah Lydon gives us her first news column. New award winners are announced, including the first ever PalAss Exceptional Lecturer (Stephan Lautenschlager). (Get your bids for Stephan’s services in now; check out pages 34 and 107.) There are also adverts – courtesy of Lucy McCobb – looking for the face of the Association’s new YouTube channel as well as a call for postgraduate volunteers to join the Association’s outreach efforts. But of course palaeontology would not be the same without the old. Behind the Scenes at the Museum returns with Sarah King’s piece on The Yorkshire Museum (York, UK). Norman MacLeod provides a comprehensive obituary of Ralph Chapman, and this issue’s palaeontologists abroad (Rebecca Bennion, Nicolás Campione and Paige dePolo) give their accounts of life in Belgium, Australia and the UK, respectively. -
Experimental Fluid Mechanics of an Ediacaran Frond
Palaeontologia Electronica palaeo-electronica.org Experimental fluid mechanics of an Ediacaran frond Amy Singer, Roy Plotnick, and Marc Laflamme ABSTRACT Ediacaran fronds are iconic members of the soft-bodied Ediacara biota, character- ized by disparate morphologies and wide stratigraphic and environmental ranges. As is the case with nearly all Ediacaran forms, views of their phylogenetic position and ecol- ogy are equally diverse, with most frond species considered as sharing a similar eco- logical guild rather than life history. Experimental biomechanics can potentially constrain these interpretations and suggest new approaches to understanding frond life habits. We examined the behavior in flow of two well-know species of Charniodiscus from the Mistaken Point Formation of Newfoundland, Canada (Avalon assemblage): Charniodiscus spinosus and C. procerus. Models reflecting alternative interpretations of surface morphology and structural rigidity were subjected to qualitative and quantita- tive studies of flow behavior in a recirculating flow tank. At the same velocities and orientations, model C. procerus and C. spinosus expe- rienced similar drag forces; the drag coefficient of C. procerus was smaller, but it is taller and thus experiences higher ambient flow velocities. Reorientation to become parallel to flow dramatically reduces drag in both forms. Models further demonstrated that C. procerus (and to a lesser extent C. spinosus) behaved as self exciting oscilla- tors, which would have increased gas exchange rates at the surface of the fronds and is consistent with an osmotrophic life habit. Amy Singer. Geosciences Department, The University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296; [email protected] Roy Plotnick (correspondence author). -
A Cosmopolitan Late Ediacaran Biotic Assemblage: New Fossils From
Downloaded from http://rspb.royalsocietypublishing.org/ on October 18, 2017 A cosmopolitan late Ediacaran biotic rspb.royalsocietypublishing.org assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link Research E. F. Smith1,2, L. L. Nelson2,3, S. M. Tweedt1,4, H. Zeng1,5 and J. B. Workman6 Cite this article: Smith EF, Nelson LL, Tweedt SM, Zeng H, Workman JB. 2017 1Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013-7012, USA 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Olin Hall, A cosmopolitan late Ediacaran biotic Baltimore, MD 21218, USA assemblage: new fossils from Nevada and 3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA Namibia support a global biostratigraphic link. 4The Department of Geology and Geophysics, Yale University, 210 Whitney Ave, New Haven, CT 06511-8902, Proc. R. Soc. B 284: 20170934. USA 5State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, http://dx.doi.org/10.1098/rspb.2017.0934 Chinese Academy of Sciences, No. 39 East Beijing Road, Nanjing 210008, People’s Republic of China 6US Geological Survey, Geosciences and Environmental Change Science Center, Southwest Region PO Box 25046, MS 980, Denver, CO 80225-0046, USA EFS, 0000-0001-9260-9355; SMT, 0000-0003-2114-4997 Received: 6 May 2017 Accepted: 7 June 2017 Owing to the lackof temporally well-constrained Ediacaran fossil localities con- taining overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran (ca 550–541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases.