GSA TODAY • Forests As Carbon Sinks, P

Total Page:16

File Type:pdf, Size:1020Kb

GSA TODAY • Forests As Carbon Sinks, P Vol. 8, No. 2 February 1998 INSIDE • G. K. Gilbert, p. 16 GSA TODAY • Forests as Carbon Sinks, p. 22 • Rocky Mountain A Publication of the Geological Society of America Section Meeting, p. 27 The Ediacara Biota: A Terminal Neoproterozoic Experiment in the Evolution of Life Guy M. Narbonne Department of Geological Sciences, A B Queen’s University, Kingston, ON K7L 3N6, Canada, [email protected] ABSTRACT The Ediacara biota is a distinctive assemblage of large, soft-bodied organisms that characterizes terminal Neoproterozoic (latest Precambrian) strata worldwide. Some Ediacaran organisms apparently were the root- stock for the Phanerozoic evolution of animals; other bizarre forms may rep- resent a failed experiment in Precam- brian evolution. The Ediacara biota and its nonactualistic preservation and ecosystem characterized the final 20 m.y. of the Proterozoic, and disap- peared near the beginning of the Cambrian “explosion” of shelly and burrowing animals. Figure 1. Photograph and artist’s reconstruction of the holotype of Swart- puntia germsi from Namibia. For simplic- INTRODUCTION ity, only three petaloids are shown. Met- The terminal Neoproterozoic was a ric scale. After Narbonne et al. (1997, Figs. 6 and 8). period of fundamental change in Earth history. Major changes included the breakup of the supercontinent Rodinia and the subsequent collision of some of the fragments that were to form Gond- wana (Hoffman, 1992; Unrug, 1997), a stone beds (Fig. 1). The Ediacara biota con- Phanerozoic systems (cf. Sepkoski, 1981). succession of at least four global glacia- tains a few forms that might be familiar to Prior to the appearance of the Ediacara tions, and some of the largest known a modern beachcomber, alongside bizarre biota, Mesoproterozoic to mid-Neopro- changes in the oceans and atmosphere taxa whose place in the evolution of mod- terozoic (1600–600 Ma) benthic communi- (Knoll and Walter, 1992). It is against this ern life is uncertain. A few “Ediacaran sur- ties had been dominated by prokaryotic backdrop that we see the appearance of vivors” have been reported from the Cam- microbes along with some sheetlike and abundant, large organisms, including the brian, but most of the archetypical forms ribbonlike algae (Knoll, 1992). Evidence first definite fossil animals in Earth his- disappeared abruptly near the Cambrian from molecular phylogeny suggests that tory, the Ediacara biota. “explosion” (Grotzinger et al., 1995). microscopic animals could have evolved The Ediacara biota typifies terminal The unique biology, ecology, and preser- sometime prior to the appearance of the Neoproterozoic rocks worldwide (Glaess- vational mode of the Ediacara biota effec- Ediacara biota, but the exact timing ner, 1984; Fedonkin, 1992; Jenkins, 1992; tively marks the end of the Proterozoic remains debatable (Wray et al., 1996; Runnegar and Fedonkin, 1992). It was Eon, and may herald the beginning of Conway Morris, 1996). The oldest known first described from Newfoundland and the Phanerozoic. megascopic Ediacara-type remains occur Namibia, but the name is derived from the in the Twitya Formation of northwestern superb assemblages of these fossils discov- EVOLUTIONARY HISTORY Canada (see Fig. 3, locality 22) immedi- ered at Ediacara in the Flinders Ranges of ately below tillites correlated with the The Ediacara biota occupies a pivotal South Australia by Sprigg (1947). In con- Marinoan-Varanger glaciation and position in the evolution of life on Earth, trast with the shelly fossils that character- believed to be about 600 m.y. old (Hof- between the largely microbial (especially ize the Phanerozoic, the Ediacara biota mann et al., 1990). The structures consist stromatolitic) communities that charac- consists almost exclusively of the remains of centimeter-scale rings and discs that are terize the classic “Precambrian” and the of soft-bodied organisms, which are typi- shelly biotas of the Cambrian and younger cally preserved as impressions on sand- Ediacara Biota continued on p. 2 IN THIS ISSUE GSA TODAY February Vol. 8, No. 2 1998 The Ediacara Biota: A Terminal Rock Stars—G. K. Gilbert ............... 16 Neoproterozoic Experiment in the GSAF Update .......................... 18 GSA TODAY (ISSN 1052-5173) is published monthly Evolution of Life ..................... 1 Washington Report .................... 20 by The Geological Society of America, Inc., with offices at 3300 In Memoriam .......................... 2 Penrose Place, Boulder, Colorado. Mailing address: P.O. Box Forests as Carbon Sinks ................ 22 9140, Boulder, CO 80301-9140, U.S.A. Periodicals postage Memorial Preprints ..................... 2 Penrose Conference Reports paid at Boulder, Colorado, and at additional mailing offices. Sarewitz Leaves IEE Post ................ 8 Postmaster: Send address changes to GSA Today, Member- Tectonics of Interiors ................. 23 ship Services, P.O. Box 9140, Boulder, CO 80301-9140. GSA Summer Internships ............... 8 Faults and Subsurface Flow ........... 25 Copyright © 1998, The Geological Society of America, Inc. SAGE Remarks ......................... 9 Rocky Mountain Section Meeting ....... 27 (GSA). All rights reserved. Copyright not claimed on content Call for Nominations—Biggs Award .... 12 Calendar .............................. 32 prepared wholly by U.S. Government employees within the scope of their employment. Permission is granted to individ- Letters ................................ 13 GSA Meetings ......................... 33 uals to photocopy freely all items other than the science arti- Bulletin and Geology Contents .......... 34 cles to further science and education. Individual scientists are GSA on the Web ....................... 14 hereby granted permission, without royalties or further 1998 Division Officers .................. 15 Classifieds ............................. 35 requests, to make unlimited photocopies of the science arti- cles for use in classrooms to further education and science, About People .......................... 15 1998 GeoVentures ..................... 36 and to make up to five copies for distribution to associates in Award Nominations .................... 15 the furtherance of science; permission is granted to make more than five photocopies for other noncommercial, non- profit purposes furthering science and education upon pay- ment of a fee ($0.25 per page-copy) directly to the Copy- right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA, phone (508) 750-8400; when paying, reference In Memoriam GSA Today, ISSN 1052-5173. Written permission is required from GSA for all other forms of capture, reproduction, Rudolph W. Edmund James G. Osborne, Jr. and/or distribution of any item in this publication by any Cockeysville, Maryland Lander, Wyoming means, including posting on authors’ or organizational Web sites, except that permission is granted to authors to post November 20, 1997 September 20, 1997 the abstracts only of their science articles on their own or their organization’s Web site providing the posting includes Frank A. Exum Cleone M. Rotan this reference: “The full paper was published in the Geologi- Denver, Colorado West Columbia, South Carolina cal Society of America’s newsmagazine, GSA Today, [include August 26, 1997 April 2, 1997 year, month, and page number if known, where article appears or will appear].” GSA provides this and other forums Jacob E. Gair Norman R. Tilford for the presentation of diverse opinions and positions by sci- entists worldwide, regardless of their race, citizenship, gen- Kensington, Maryland College Station, Texas der, religion, or political viewpoint. Opinions presented in January 1, 1998 November 13, 1997 this publication do not reflect official positions of the Society. Robert C. Lafferty SUBSCRIPTIONS for 1998 calendar year: Society Eau Gallie, Florida Members: GSA Today is provided as part of membership dues. Contact Membership Services at (800) 472-1988, December 1997 (303) 447-2020 or [email protected] for member- ship information. Nonmembers & Institutions: Free with paid subscription to both GSA Bulletin and Geology, otherwise $50 for U.S., Canada, and Mexico; $60 else- where. Contact Subscription Services. Single copies may Memorial Preprints be requested from Publication Sales. Also available on an annual CD-ROM, (together with GSA Bulletin, Geology, GSA Data Repository, and an Electronic Retrospective Index to The following memorial preprints are now available, free of charge, by writing journal articles from 1972); $89 to GSA Members, others call GSA Subscription Services for prices and details. Claims: to GSA, P.O. Box 9140, Boulder, CO 80301. For nonreceipt or for damaged copies, members contact Membership Services; all others contact Subscription Ser- Robert E. Bergstrom John “Benny” Joseph DeBenedetti vices. Claims are honored for one year; please allow suffi- Morris W. Leighton with contributions George B. Pichel cient delivery time for overseas copies, up to six months. from Margaret (Carlson) Bergstrom and George Edmund Peter Eastwood Jack A. Simon STAFF: Prepared from contributions from the GSA staff Neil Church and membership. James Robert Butler Executive Director: Donald M. Davidson, Jr. Dorothy Jung Echols Science Editors: Suzanne M. Kay, Department of Daniel A. Textoris Geological Sciences, Cornell University, Ithaca, NY 14853; L. Greer Price Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Robert J. Cordell Gus H. Goudarzi University, Nashville, TN 37235. Lewis S. Pittman and James Gibbs
Recommended publications
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
    Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic.
    [Show full text]
  • RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
    1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints.
    [Show full text]
  • Back Matter (PDF)
    Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]
  • Deconstructing an Ediacaran Frond: Three-Dimensional Preservation of Arborea from Ediacara, South Australia
    Journal of Paleontology, 92(3), 2018, p. 323–335 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.128 Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia Marc Laflamme,1 James G. Gehling,2 and Mary L. Droser3 1Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 〈marc.lafl[email protected]〉 2South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 〈[email protected]〉 3Department of Earth Sciences, University of California, Riverside, California 92521, USA 〈[email protected]〉 Abstract.—Exquisitely preserved three-dimensional examples of the classic Ediacaran (late Neoproterozoic; 570–541 Ma) frond Charniodiscus arboreus Jenkins and Gehling, 1978 (herein referred to as Arborea arborea Glaessner in Glaessner and Daily, 1959) are reported from the Ediacara Member, Rawnsley Quartzite of South Australia, and allow for a detailed reinterpretation of its functional morphology and taxonomy. New specimens cast in three dimensions within sandy event beds showcase detailed branching morphology that highlights possible internal features that are strikingly different from rangeomorph and erniettomorph fronds. Combined with dozens of well-preserved two-dimensional impressions from the Flinders Ranges of South Australia, morphological variations within the traditional Arborea morphotype are interpreted as representing various stages of external molding. In rare cases, taphomorphs (morphological variants attributable to preservation) represent composite molding of internal features consisting of structural supports or anchoring sites for branching structures.
    [Show full text]
  • New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
    OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3.
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • Ediacara Biota’
    Accepted Manuscript There is no such thing as the ‘Ediacara Biota’ Breandán Anraoi MacGabhann PII: S1674-9871(13)00109-6 DOI: 10.1016/j.gsf.2013.08.001 Reference: GSF 237 To appear in: Geoscience Frontiers Received Date: 26 June 2013 Revised Date: 8 August 2013 Accepted Date: 14 August 2013 Please cite this article as: MacGabhann, B.A., There is no such thing as the ‘Ediacara Biota’, Geoscience Frontiers (2013), doi: 10.1016/j.gsf.2013.08.001. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT Sandstone mould + casts ACCEPTED Burgess Shale-style ACCEPTED MANUSCRIPT Research Highlights • The term ‘Ediacara Biota’ is commonly used to refer to early megascopic fossils • This term is inconsistent, arbitrarily excludes certain fossils, and cannot be defined • Studies of early metazoan evolution must consider all fossils of Ediacaran age MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 There is no such thing as the ‘Ediacara Biota’ 2 Breandán Anraoi MacGabhann 3 School of GeoSciences, University of Edinburgh, King's Buildings, West Mains Road, 4 Edinburgh EH9 3JW, UK. Tel: +44 131 6 508543 5 Email address: [email protected] 6 7 Abstract: The term ‘Ediacara Biota’ (or many variants thereof) is commonly used to refer to 8 certain megascopic fossils of Precambrian and early Palaeozoic age – but what does the term 9 actually mean? What differentiates a non-Ediacaran ‘Ediacaran’ and an Ediacaran 10 ‘Ediacaran’ from an Ediacaran non-‘Ediacaran’? Historically, the term has been used in 11 either a geographic, stratigraphic, taphonomic, or biologic sense.
    [Show full text]
  • Ediacaria and Hiemalora - Disc-Like Attachments
    Ediacaria and Hiemalora - Disc-like Attachments of Benthic Organisms from the White Sea and Arctic Siberia (Russia) E. A. Serezhnikova Paleontological Institute, Russian Academy of Sciences, 123 Profsoyuznaya, Moscow, 117868, Russia Localities of Vendian soft-bodied metazoans from Arctic Siberia and Zimnii Bereg along the White Sea coast are well known, just as they are in the classic Australian sequences. Fossils occur on the Olenek Uplift in dark gray, thin-bedded limestones of the Khatyspyt Formation in the Khorbusuonka Group, which crops out in the Olenek River Basin, along the Horbusuonka and Anabyl rivers. The Khorbusuonka Group can be correlated with Yudomian sediments using stromatolites, microphytolites and is dated radiometrically (Sokolov and Fedonkin, 1985). Fossils in the White Sea section are found primarily in fine-grained sandstones, siltstones and greenish clays that interfinger with cross-bedded siltstones and lenticular, cross-bedded sandstones. These strata have been dated as 553.3 +/- 0.3 Ma (Martin, et al., 2000), and they represent the Redkino Stage of the Vendian. Material from recently discovered new localities and well-preserved new specimens are significantly increasing the understanding of some Ediacaran taxa and changing views on their reconstructions. The best revisions of older reconstructions are made when the sample size for any one taxon is large and especially when that taxon is from one fossiliferous bed. T. M. Harris (1932) pioneered the use of this method of analysis based on his paleobotanic studies. This paper discusses new data on a number of taxa. Genus Hiemalora Fedonkin, 1982. Material of this genus consists of low-relief imprints of an organism with a rounded central disc and straight or smoothly curved, rod-like radial elements.
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • Rangeomorph Classification Schemes and Intra-Specific Variation: Are All
    Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Rangeomorph classification schemes and intra-specific variation: are all characters created equal? CHARLOTTE G. KENCHINGTON1,2* & PHILIP R. WILBY3 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK 2Present address: Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 3British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK *Correspondence: [email protected] Abstract: Rangeomorphs from the Ediacaran of Avalonia are among the oldest known complex macrofossils and our understanding of their ecology, ontogeny and phylogenetic relationships relies on accurate and consistent classification. There are a number of disparate classification schemes for this group, which dominantly rely on a combination of their branching characters and shape metrics. Using multivariate statistical analyses and the diverse stemmed, multifoliate rangeomorphs in Charnwood Forest (UK), we assess the taxonomic usefulness of the suite of char- acters currently in use. These techniques allow us to successfully discriminate taxonomic groupings without a priori assumptions or weighting of characters and to document a hitherto unrecognized level of variation within single taxonomic groups. Variation within the currently defined genus Pri- mocandelabrum is too great to be realistically assigned to different species and may instead reflect primary character diversity, ontogenetic changes in character state or ecophenotypic variability. Its recognition cautions against generic-level diagnoses based on single differences in character state and will be crucial in understanding the mode of growth of these enigmatic organisms. Supplementary material: Data tables, definition of the characters used in the analyses, and detailed descriptions and breakdowns of methods and results are available at https://doi.org/10.
    [Show full text]