A Unique View on the Evolution of Marine Life

Total Page:16

File Type:pdf, Size:1020Kb

A Unique View on the Evolution of Marine Life EXCEPTIONAL FOSSIL PRESERVATION: A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER COLUMBIA UNIVERSITY PRESS Bottjer_00FM 5/16/02 1:23 PM Page i EXCEPTIONAL FOSSIL PRESERVATION Critical Moments and Perspectives in Earth History and Paleobiology DAVID J. BOTTJER RICHARD K. BAMBACH Editors Bottjer_00FM 5/16/02 1:23 PM Page ii Critical Moments and Perspectives in Earth History and Paleobiology David J. Bottjer and Richard K. Bambach, Editors The Emergence of Animals: The Cambrian Breakthrough Mark A. S. McMenamin and Dianna L. S. McMenamin Phanerozoic Sea-Level Changes Anthony Hallam The Great Paleozoic Crisis: Life and Death in the Permian Douglas H. Erwin Tracing the History of Eukaryotic Cells: The Enigmatic Smile Betsey Dexter Dyer and Robert Alan Obar The Eocene-Oligocene Transition: Paradise Lost Donald R. Prothero The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis George R. McGhee Jr. Dinosaur Extinction and the End of an Era: What the Fossils Say J. David Archibald One Long Experiment: Scale and Process in Earth History Ronald E. Martin Interpreting Pre-Quaternary Climate from the Geologic Record Judith Totman Parrish Theoretical Morphology: The Concept and Its Applications George R. McGhee Jr. Principles of Paleoclimatology Thomas M. Cronin The Ecology of the Cambrian Radiation Andrey Yu. Zhuravlev and Robert Riding, Editors Plants Invade the Land: Evolutionary and Environmental Perspectives Patricia G. Gensel and Dianne Edwards, Editors Bottjer_00FM 5/16/02 1:23 PM Page iii EXCEPTIONAL FOSSIL PRESERVATION A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER, WALTER ETTER, JAMES W. HAGADORN, AND CAROL M. TANG COLUMBIA UNIVERSITY PRESS New York Bottjer_00FM 5/16/02 1:23 PM Page iv Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 2002 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data Exceptional fossil preservation: a unique view on the evolution of marine life / edited by David J. Bottjer . [et al.]. p. cm. — (Critical moments and perspectives in Earth history and paleobiology) Includes bibliographical references and index. ISBN 0-231-10254-2 (cloth : acid-free paper) ISBN 0-231-10255-0 (pbk. : acid-free paper) 1. Marine animals, Fossil. 2. Taphonomy. I. Bottjer, David J. II. Critical moments in earth history and paleobiology series. QE766.E93 2001 560Ј.457–dc21 2001042434 ∞ Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 Bottjer_00FM 5/16/02 1:23 PM Page v CONTENTS Foreword ix Acknowledgments xiii 1 FOSSIL-LAGERSTÄTTEN: JEWELS OF THE FOSSIL RECORD • 1 David J. Bottjer, Walter Etter, James W. Hagadorn, and Carol M. Tang 2 ENIGMATIC EDIACARA FOSSILS: ANCESTORS OR ALIENS? • 11 David J. Bottjer 3 CHENGJIANG: EARLY RECORD OF THE CAMBRIAN EXPLOSION • 35 James W. Hagadorn 4 BURGESS SHALE: CAMBRIAN EXPLOSION IN FULL BLOOM • 61 James W. Hagadorn 5 BURGESS SHALE–TYPE LOCALITIES: THE GLOBAL PICTURE • 91 James W. Hagadorn 6 ORSTEN DEPOSITS FROM SWEDEN: MINIATURE LATE CAMBRIAN ARTHROPODS • 117 Carol M. Tang Bottjer_00FM 5/16/02 1:23 PM Page vi vi • Contents 7 BEECHER’S TRILOBITE BED: ORDOVICIAN PYRITIZATION FOR THE OTHER HALF OF THE TRILOBITE • 131 Walter Etter 8 HUNSRÜCK SLATE: WIDESPREAD PYRITIZATION OF A DEVONIAN FAUNA • 143 Walter Etter 9 BEAR GULCH: AN EXCEPTIONAL UPPER CARBONIFEROUS PLATTENKALK • 167 James W. Hagadorn 10 MAZON CREEK: PRESERVATION IN LATE PALEOZOIC DELTAIC AND MARGINAL MARINE ENVIRONMENTS • 185 Stephen A. Schellenberg 11 GRÈS À VOLTZIA: PRESERVATION IN EARLY MESOZOIC DELTAIC AND MARGINAL MARINE ENVIRONMENTS • 205 Walter Etter 12 MONTE SAN GIORGIO: REMARKABLE TRIASSIC MARINE VERTEBRATES • 221 Walter Etter 13 BERLIN-ICHTHYOSAUR: PRESERVING SOME OF THE EARTH’S LARGEST MARINE VERTEBRATES • 243 David J. Bottjer 14 OSTENO: JURASSIC PRESERVATION TO THE CELLULAR LEVEL • 251 Carol M. Tang 15 POSIDONIA SHALE: GERMANY’S JURASSIC MARINE PARK • 265 Walter Etter and Carol M. Tang 16 LA VOULTE-SUR-RHÔNE: EXQUISITE CEPHALOPOD PRESERVATION • 293 Walter Etter Bottjer_00FM 5/16/02 1:23 PM Page vii Contents • vii 17 OXFORD CLAY: ENGLAND’S JURASSIC MARINE PARK • 307 Carol M. Tang 18 SOLNHOFEN: PLATTENKALK PRESERVATION WITH ARCHAEOPTERYX • 327 Walter Etter 19 SMOKY HILL CHALK: SPECTACULAR CRETACEOUS MARINE FAUNA • 353 David J. Bottjer 20 MONTE BOLCA: AN EOCENE FISHBOWL • 365 Carol M. Tang Contributors 379 Index 383 Bottjer_02 5/16/02 1:24 PM Page 11 2 Enigmatic Ediacara Fossils: Ancestors or Aliens? David J. Bottjer he ediacara fossils, of late precambrian (vendian) through Cambrian age, are among the most remarkable fossil bio- Ttas known from the stratigraphic record. This stems from the fact that this biota is thought to include fossils of some of the earliest larger organisms, whose nature has been much debated: Are they ancient rep- resentatives of still extant metazoan phyla, do they represent phyla or a kingdom now extinct on Earth, or could they even be colonial procary- otes or fossil lichens? Furthermore, when compared with younger de- posits, this biota is in general a taphonomic anomaly. The Ediacara fos- sils represent remains of completely soft-bodied organisms, and yet they are commonly preserved in coarser-grained siliciclastics deposited in rel- atively well oxygenated marine environments, a seemingly improbable phenomenon not known elsewhere from the marine fossil record. Be- cause Ediacara fossil preservation is commonly associated with some sort of event bed, varying from tidal sandstones to storm beds, to turbidites and subaqueous ash falls, their taphonomic context is best thought of as obrution deposits. Fossils we now recognize as Ediacara were discovered as early as the nineteenth century in England at the Charnwood Forest locality (Hill and Bonney 1877) and in the early twentieth century in Namibia (Gürich 1930). However, their importance was not internationally rec- ognized until the 1940s when R. C. Sprigg, an assistant government ge- ologist of South Australia, discovered fossils of late Precambrian soft- bodied organisms in the Ediacara Hills of the Flinders Range, 600 km north of Adelaide. Sprigg’s (1947, 1949) discoveries led to the extensive work of Glaessner (1961, 1969, 1983, 1984; Glaessner and Wade 1966) and Bottjer_02 5/16/02 1:24 PM Page 12 12 • Enigmatic Ediacara Fossils figure 2.1 Global location, marked by dots, of the Ediacara biota; see text for in- dicated sites. Wade (1972a, 1972b), who systematically documented this fauna and its preservation. This work in South Australia led to the appellation “Edi- acara fauna” and fostered recognition that these fossils of soft- bodied organisms correspond to those in Charnwood Forest and Namibia and have a worldwide distribution, with other occurrences in- cluding the United States (California, Nevada, North Carolina), Canada (British Columbia, Yukon, Northwest Territories, Newfoundland), South America, Wales, Ireland, Sardinia, Norway, Finnmark, Russia (White Sea area, Urals, Siberia), Ukraine, central Australia, and China (Liao-Dun Peninsula, Heilongjiang Province, Yangtze Gorges) (Fedonkin 1992; Waggoner 1999) (Figure 2.1). The entire Ediacara biota was once thought to have become extinct well before the beginning of the Cam- brian, but recent research indicates that at least portions of this biota survived into the Cambrian (Conway Morris 1993; Crimes, Insole, and Williams 1995; Grotzinger et al. 1995; Jensen, Gehling, and Droser 1998; Hagadorn, Fedo, and Waggoner 2000). Geological Context Among the numerous localities where Ediacara fossils are found, paleo- environmental reconstructions indicate that these organisms lived in a variety of shallow- to deep-marine environments (Conway Morris 1990; Narbonne and Aitken 1990; Runnegar 1992; Seilacher 1992; Crimes, In- Bottjer_02 5/16/02 1:24 PM Page 13 Ancestors or Aliens? • 13 sole, and Williams 1995; Narbonne 1998). Detailed accounts in this chap- ter will concentrate on two examples: the Flinders Ranges fauna, which is interpreted to have lived in nearshore to shallow shelf environments, and the fauna found on the Avalon Peninsula of Newfoundland, which has been interpreted as deep marine in origin (Gehling 1999; Narbonne, Dalrymple, and Gehling 2001; Wood et al. 2001). Folded and faulted outcrops of upper Proterozoic strata occur discontinuously in the Flinders Ranges (Figure 2.2). Ediacara fossils are found in the Ediacara Member of the Rawnsley Quartzite (Pound Subgroup), which occurs in a thick sequence of sedimentary rocks of late Proterozoic age (Figure 2.3). The Pound Subgroup is overlain by Cambrian strata with definite Cambrian trace fossils, although the exact figure 2.2 Generalized geologic map of the Flinders Ranges in South Australia il- lustrating the distribution of the upper Proterozoic Pound Subgroup (stippled). (Modified from Mount 1989) Bottjer_02 5/16/02 1:24 PM Page 14 14 • Enigmatic Ediacara Fossils relationships at the contact are of considerable controversy (Mount 1989, 1991; Nedin and Jenkins 1991). Upper Proterozoic rocks are a prominent component of the Avalon Peninsula in Newfoundland, and the Mistaken Point area represents a classic locality for Ediacara fossils (Figure 2.4). Ediacara fossils from the Avalon Peninsula are found in the upper part of the Conception Group (Briscal and Mistaken Point Formations) and the overlying lower part of the St. John’s Group (Trepassey and Fermeuse Formations)
Recommended publications
  • Ediacaran Developmental Biology
    Dunn, F., Liu, A., & Donoghue, P. (2017). Ediacaran developmental biology. Biological Reviews. https://doi.org/10.1111/brv.12379 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/brv.12379 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12379 Ediacaran developmental biology Frances S. Dunn1,2,∗, Alexander G. Liu1,† and Philip C. J. Donoghue1 1School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K. 2British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, U.K. ABSTRACT Rocks of the Ediacaran System (635–541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher-order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan.
    [Show full text]
  • Early Fossil Record of Euarthropoda and the Cambrian Explosion
    PERSPECTIVE Early fossil record of Euarthropoda and the Cambrian Explosion PERSPECTIVE Allison C. Daleya,b,c,1, Jonathan B. Antcliffea,b,c, Harriet B. Dragea,b,c, and Stephen Patesa,b Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved April 6, 2018 (received for review December 20, 2017) Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exo- skeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evi- dence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossilif- erous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Gehling-Ediacaran Publications 2015 Palaeo Down Under2
    Gehling-Ediacaran Publications 2015 1. Droser, M.L. and Gehling, J.G. 2015. The advent of animals: the view from the Ediacaran: Proceedings of the National Academy of Sciences 112, 4865-4870. 2. Evans, S.D., Droser, M.L. and Gehling, J.G. 2015. Dickinsonia lift off: Evidence of current derived morphologies. Palaeogeography Palaeoclimatology Palaeoecology ; DOI: 10.1016/j.palaeo.2015.02.006. 3. Hall, C.M.S., Droser, M.L., Gehling, J.G., Dzaugis. M.E. 2015. Paleoecology of the enigmatic Tribrachidium: New data from the Ediacaran of South Australia. Precambrian Research 269:183-194. 4. Gold, D. A., Runnegar, B., Gehling, J.G., and Jacobs, D.K. 2015. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evolution and Development 17 (6), 315–397. 5. Tarhan, L.G., Droser, M.L. and Gehling, J.G. 2015. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Research 257:124-136. 6. Tarhan, L.G., Droser, M.L. and Gehling, J.G. 2015. Depositional and preservational environments of the Ediacara Member, Rawnsley Quartzite (South Australia): Assessment of paleoenvironmental proxies and the timing of ‘ferruginization’. Palaeogeography, Palaeclimatology, Paleoecology in press. Palaeo Down Under2 — July 2016 Association of Australasian Palaeontologists (AAP) is organizing a Palaeo Down Under 2 conference at the University of Adelaide in South Australia from July 10-15. The conference is preceded by a Field Excursion to key Cambrian localities of Kangaroo Island, the Fleurieu Peninsula and the Cambrian and Ediacaran of the Flinders Ranges from July 3-9. Ediacara Research — South Australia 2015 Ediacara research in South Australia has continued with further excavations at the National Heritage Listed Ediacara Fossil Site at Nilpena, a new site in the northern Flinders Ranges of South Australia, and for the first time, at the historic discovery site in the Ediacara Conservation Park.
    [Show full text]
  • Geobiological Events in the Ediacaran Period
    Geobiological Events in the Ediacaran Period Shuhai Xiao Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA NSF; NASA; PRF; NSFC; Virginia Tech Geobiology Group; CAS; UNLV; UCR; ASU; UMD; Amherst; Subcommission of Neoproterozoic Stratigraphy; 1 Goals To review biological (e.g., acanthomorphic acritarchs; animals; rangeomorphs; biomineralizing animals), chemical (e.g., carbon and sulfur isotopes, oxygenation of deep oceans), and climatic (e.g., glaciations) events in the Ediacaran Period; To discuss integration and future directions in Ediacaran geobiology; 2 Knoll and Walter, 1992 • Acanthomorphic acritarchs in early and Ediacara fauna in late Ediacaran Period; • Strong carbon isotope variations; • Varanger-Laplandian glaciation; • What has happened since 1992? 3 Age Constraints: South China (538.2±1.5 Ma) 541 Ma Cambrian Dengying Ediacaran Sinian 551.1±0.7 Ma Doushantuo 632.5±0.5 Ma 635 Ma 635.2±0.6 Ma Nantuo (Tillite) 636 ± 5Ma Cryogenian Nanhuan 654 ± 4Ma Datangpo 663±4 Ma Neoproterozoic Neoproterozoic Jiangkou Group Banxi Group 725±10 Ma Tonian Qingbaikouan 1000 Ma • South China radiometric ages: Condon et al., 2005; Hoffmann et al., 2004; Zhou et al., 2004; Bowring et al., 2007; S. Zhang et al., 2008; Q. Zhang et al., 2008; • Additional ages from Nama Group (Namibia), Conception Group (Newfoundland), and Vendian (White Sea); 4 The Ediacaran Period Ediacara fossils Cambrian 545 Ma Nama assemblage 555 Ma White Sea assemblage 565 Ma Avalon assemblage 575 Ma 585 Ma Doushantuo biota 595 Ma 605 Ma Ediacaran Period 615 Ma
    [Show full text]
  • Back Matter (PDF)
    Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White
    [Show full text]
  • The Arrangement of Possible Muscle Fibres in the Ediacaran Taxon Haootia Quadriformis
    Liu, A. G. S. C., Matthews, J., Menon, L., McIlroy, D., & Brasier, M. (2015). The arrangement of possible muscle fibres in the Ediacaran taxon Haootia quadriformis. Proceedings of the Royal Society B: Biological Sciences, 282(1803). https://doi.org/10.1098/rspb.2014.2949 Peer reviewed version Link to published version (if available): 10.1098/rspb.2014.2949 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Submitted to Proceedings of the Royal Society B: For Review Only The arrangement of possible muscle fibres in the Ediacaran taxon Haootia quadriformis Journal: Proceedings B Manuscript ID: RSPB-2014-2949.R1 Article Type: Invited Reply Date Submitted by the Author: n/a Complete List of Authors: Liu, Alexander; University of Bristol, School of Earth Sciences Matthews, Jack; University of Oxford, Department of Earth Sciences Menon, Latha; University of Oxford, Department of Earth Sciences McIlroy, Duncan; Memorial University of Newfoundland, Department of Earth Sciences Brasier, Martin; University of Oxford, Department of Earth Sciences; Memorial University of Newfoundland, Earth Sciences Evolution < BIOLOGY, Developmental biology < BIOLOGY, Palaeontology < Subject: BIOLOGY Keywords: Ediacaran, Cnidarian, Muscle, Newfoundland Proceedings B category: Palaeontology http://mc.manuscriptcentral.com/prsb Page 1 of 7 Submitted to Proceedings of the Royal Society B: For Review Only 1 Title: The arrangement of possible muscle fibres in the 2 Ediacaran taxon Haootia quadriformis .
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]
  • Can Molecular Clocks and the Fossil Record Be Reconciled?
    Prospects & Overviews Review essays The origin of animals: Can molecular clocks and the fossil record be reconciled? John A. Cunningham1)2)Ã, Alexander G. Liu1)†, Stefan Bengtson2) and Philip C. J. Donoghue1) The evolutionary emergence of animals is one of the most Introduction significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that The apparent absence of a fossil record prior to the appearance of trilobites in the Cambrian famously troubled Darwin. He animals originated and began diversifying over 100 million wrote in On the origin of species that if his theory of evolution years before the first definitive metazoan fossil evidence in were true “it is indisputable that before the lowest [Cambrian] the Cambrian. However, closer inspection reveals that clock stratum was deposited ... the world swarmed with living estimates and the fossil record are less divergent than is creatures.” Furthermore, he could give “no satisfactory answer” often claimed. Modern clock analyses do not predict the as to why older fossiliferous deposits had not been found [1]. In the intervening century and a half, a record of Precambrian presence of the crown-representatives of most animal phyla fossils has been discovered extending back over three billion in the Neoproterozoic. Furthermore, despite challenges years (popularly summarized in [2]). Nevertheless, “Darwin’s provided by incomplete preservation, a paucity of phylo- dilemma” regarding the origin and early evolution of Metazoa genetically informative characters, and uncertain expecta- arguably persists, because incontrovertible fossil evidence for tions of the anatomy of early animals, a number of animals remains largely, or some might say completely, absent Neoproterozoic fossils can reasonably be interpreted as from Neoproterozoic rocks [3].
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • The Cambrian ''Explosion'
    Perspective The Cambrian ‘‘explosion’’: Slow-fuse or megatonnage? Simon Conway Morris* Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom Clearly, the fossil record from the Cambrian period is an invaluable tool for deciphering animal evolution. Less clear, however, is how to integrate the paleontological information with molecular phylogeny and developmental biology data. Equally challenging is answering why the Cambrian period provided such a rich interval for the redeployment of genes that led to more complex bodyplans. illiam Buckland knew about it, The First Metazoans. Ediacaran assem- 1). The overall framework of early meta- WCharles Darwin characteristically blages (2, 5) are presumably integral to zoan evolution comes from molecular agonized over it, and still we do not fully understanding the roots of the Cambrian data, but they cannot provide insights into understand it. ‘‘It,’’ of course, is the seem- ‘‘explosion,’’ and this approach assumes the anatomical changes and associated ingly abrupt appearance of animals in the that the fossil record is historically valid. It changes in ecology that accompanied the Cambrian ‘‘explosion.’’ The crux of this is markedly at odds, however, with an emergence of bodyplans during the Cam- evolutionary problem can be posed as a alternative view, based on molecular data. brian explosion. The fossil record series of interrelated questions. Is it a real These posit metazoan divergences hun- provides, therefore, a unique historical event or simply an artifact of changing dreds of millions of years earlier (6, 7). As perspective. fossilization potential? If the former, how such, the origination of animals would be Only those aspects of the Ediacaran rapidly did it happen and what are its more or less coincident with the postu- record relevant to the Cambrian diversi- consequences for understanding evolu- lated ‘‘Big Bang’’ of eukaryote diversifi- fication are noted here.
    [Show full text]