Oxygen, Facies, and Secular Controls on the Appearance of Cryogenian and Ediacaran Body and Trace Fossils in the Mackenzie Mountains of Northwestern Canada

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen, Facies, and Secular Controls on the Appearance of Cryogenian and Ediacaran Body and Trace Fossils in the Mackenzie Mountains of Northwestern Canada Neoproterozoic fossils and oxygenation, NW Canada Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada Erik A. Sperling1,†, Calla Carbone2, Justin V. Strauss1, David T. Johnston1, Guy M. Narbonne2,§, and Francis A. Macdonald1,§ 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA 2Department of Geological Sciences and Geological Engineering, Queens University, Kingston, Ontario K7L 3N6, Canada ABSTRACT need not apply to all areas of a heterogeneous recent years, particularly the temporal relation- Ediacaran ocean, and stably oxygenated ship between oxygenation of the oceans and the The causes behind the appearance of conditions on geological time scales were not first appearances of these fossils. In an extensive abundant macroscopic body and trace fos- required for the appearance of these Avalon- sedimentary geochemistry study of fossilifer- sils at the end of the Neoproterozoic Era re- assemblage Ediacaran organisms. At least in ous strata of the Conception Group of eastern main debated. Iron geochemical data from the Mackenzie Mountains, the appropriate Newfoundland, Canfield et al. (2007) used iron fossiliferous Ediacaran successions in New- facies for fossil preservation appears to be speciation data to demonstrate that the Mall foundland suggested that the first appear- the strongest control on the stratigraphic dis- Bay Formation was deposited under generally ances correlated with an oxygenation event. tribution of macrofossils. anoxic and ferruginous conditions, with more A similar relationship was claimed to exist in robust evidence for anoxia present near the the Mackenzie Mountains, Canada, although INTRODUCTION onset of the ca. 580 Ma Gaskiers glaciation. later stratigraphic studies indicated that the Anoxic conditions persisted through the deposi- sections analyzed for geochemistry were in- The first abundant macroscopic organisms in tion of glacial strata and then abruptly changed correctly correlated with those hosting the the fossil record make their appearance toward to oxygenated conditions immediately follow- fossils. To directly connect fossil occurrences the end of the Neoproterozoic Era. Ediacara- ing the glaciation. This redox change coincides with geochemistry in the Mackenzie Moun- type impressions, preceded by the appearance with the first appearance—both in the Concep- tains, we conducted a multiproxy iron, car- of the microscopic remains of multiple eukary- tion Group and globally—of macroscopic fos- bon, sulfur, and trace-element geochemical otic groups in the Tonian and early Cryogenian sils common to the Ediacara biota (Narbonne analysis of stratigraphic sections hosting both Periods (Knoll, 2014), were followed by the and Gehling, 2003). This was then taken as the Cryogenian “Twitya discs” at Bluefish first evidence for bilaterian burrows in the late potentially pointing to a causal link between an Creek as well as Ediacaran fossils and simple Ediacaran and ultimately the flowering of ani- oxygenation event (local or global) and diversi- bilaterian traces at Sekwi Brook. There is no mal life during the Cambrian radiation (Droser fication. Following from that work, other work- clear oxygenation event correlated with the et al., 1999; Maloof et al., 2010; Erwin et al., ers have claimed that an oxygenation event in appearance of macroscopic body fossils or 2011; Erwin and Valentine, 2013; Carbone and the Sheepbed Formation at the Shale Lake simple bilaterian burrows; however, some Narbonne, 2014). Although the phylogenetic locality in the Mackenzie Mountains of north- change in environment—a potential partial affinities of the Ediacara biota are contentious, western Canada (Fig. 1) correlates with the first oxygenation—is correlated with increasing the organisms are increasingly being viewed appearance of Ediacaran fossils at Sekwi Brook burrow width higher in the Blueflower For- as containing members of several disparate ~135 km farther south (Shen et al., 2008). mation. Data from Sekwi Brook suggest that eukaryotic groups, united by time and tapho- The first step in distinguishing coincidence these organisms were periodically colonizing nomic mode, rather than representing a single from correlation is determining whether tem- a predominantly anoxic and ferruginous ba- monophyletic clade (reviewed recently by Xiao poral linkages represent a global pattern, regional sin. This seemingly incongruent observation and Laflamme, 2009; Grazhdankin, 2014). The events, or simply the unrelated appearance is accommodated through accounting for dif- size and abundance of the Ediacara biota fossils, of organisms during a time interval charac- fering time scales between the characteristic which are conspicuously absent from tapho- terized by broadly increasing oxygen levels. response time of sedimentary redox proxies nomically similar strata of older age, herald an Neo protero zoic oxygenation, if present, is versus that for ecological change. Thus, hy- important change in eukaryotic life on the eve of increasingly being recognized as regionally potheses directly connecting ocean oxygen- the Cambrian explosion. hetero geneous (Kah and Bartley, 2011). This is ation with the appearance of macrofossils This begs the question of why these organisms reflected in iron speciation data from the south- arose at this point in Earth’s history. The answer ern Canadian Cordillera showing an increased †Current address: Department of Geological Sci- need not require a single causal factor—a com- prevalence of anoxic conditions during the mid- ences, Stanford University, Stanford, California Ediacaran (Canfield et al., 2008), in contrast 94305, USA. bination of ecological, genomic, and environ- §E-mails: narbonne@ queensu .ca; fmacdon@ fas mental factors was likely at play. Environmen- to the Newfoundland data, and data from the .harvard .edu. tal factors have received considerable study in Wernecke Mountains of northwestern Canada, GSA Bulletin; Month/Month 2015; v. 1xx; no. X/X; p. 1–18; doi: 10.1130/B31329.1; 8 figures; 3 tables; Data Repository item 2015326.; published online XX Month 2015. For permission to copy, contact [email protected] Geological Society of America Bulletin, v. 1XX, no. XX/XX 1 © 2015 Geological Society of America Sperling et al. AB129° W 128° W C 65° N Franklin Mountain/ Sekwi formations n r ve Backbone Ranges/ aleozoic Ingta/Vampire tain Ri Cambria n P formations 1 Norman Mou Wells SL Risky 0.5 p GT. 0 June beds km Ediacaran Sheepbed upper grou RT. 632.3±6.3 Ma ver Keele/Ice Brook Twitya Ri 500 km Twitya 662.4±3.9 Ma BFC Hay Crk. 64° N Shezal Neoproterozoic (Cryogenian-Ediacaran) Twitya, Keele, Ice Brook, Sheepbed, June Sayunei n beds, Gametrail and Blueower Formations. Mt. Berg Rapitan Gp Neoproterozoic Latest Neoproterozoic and Early Cambrian . Backbone Ranges, Vampire, and Coppercap 716.5±0.25 Ma Sekwi Formations; also equivalent map units Windermere Supergroup ryogenia 732.2±3.9 Ma Proterozoic and Phanerozoic units undivided C June Redstone Lake River r Rivers ve e Ri oates Lake Gp SBN C Thundercloud Keel Canol Heritage Trail Little Dal Basalt 777.7 +2.5/–1.8 Ma SL Shale Lake Conglomerate Evaporite BFC Bluesh Creek Sandstone Diamictite SBN Sekwi Brook North Shale/Siltstone Basalt 050 Carbonate Iron Formation km 63° N Re-Os ORR Age U-Pb Igneous Age Figure 1. Locality map of investigated Cryogenian and Ediacaran strata in NW Canada. (A) Outline of study region in the Northwest Terri- tories of NW Canada. (B) Distribution of Neoproterozoic–Cambrian strata in the Mackenzie Mountains, Northwest Territories. Sampling localities in this study are Bluefish Creek (BFC) and Sekwi Brook North (SBN). The sedimentary geochemistry of the Ediacaran Sheepbed Formation was sampled at Shale Lake (SL) by Shen et al. (2008) and Canfield et al. (2008). The Ediacaran succession analyzed by Johnston et al. (2013) at the Goz A locality is located ~170 km northwest of Shale Lake (off map) in the Wernecke Mountains, Yukon. Map is modified from MacNaughton et al. (2008). (C) Generalized stratigraphic column of the Windermere Supergroup, Mackenzie Mountains, Northwest Territories. Stratigraphic thicknesses are schematic and vary widely. Italics indicate informally named units. Column is modified from Narbonne and Aitken (1995); Martel et al. (2011); Macdonald et al. (2013); Rooney et al. (2014, 2015). U-Pb age on Little Dal Basalt is from Jefferson and Parish (1989), U-Pb ages from base of Rapitan Group are from Macdonald et al. (2010), and Re-Os ages are from Rooney et al. (2014, 2015). RT.—Ravensthroat, GT.—Gametrail Formation, ORR—organic-rich rock, N.W.T.—Northwest Territories. which show no change at all (Johnston et al., of such a change to much less than is normally sections of the Sheepbed Formation at the Shale 2013). Other regions such as Namibia also show depicted (e.g., Holland, 2006). Lake locality (Fig. 1). These data were corre- hetero geneous but generally anoxic and ferru- Poor age constraints further complicate the lated with the appearance of Ediacaran fossils ginous conditions through the late Ediacaran integration of geochemical and ecological at Sekwi Brook, in strata that were originally (Wood et al., 2015). Analyzed collectively and patterns, and thus, in many sedimentary suc- assigned to the Sheepbed Formation (Aitken, statistically, a global database of Proterozoic and cessions, inferring the relationship between 1989).
Recommended publications
  • Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
    CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • During Neoproterozoic Glaciations with Evolutionary Implications
    Geosciences 2012, 2, 90-108; doi:10.3390/geosciences2020090 OPEN ACCESS geosciences ISSN 2076-3263 www.mdpi.com/journal/geosciences Review The Location and Styles of Ice-Free “Oases” during Neoproterozoic Glaciations with Evolutionary Implications Daniel Paul Le Heron Department of Earth Sciences, Royal Holloway University of London, Queen’s Building, Egham TW200EX, UK; E-Mail: [email protected]; Tel.: +0044-1784-443615; Fax: +0044-1784-471780 Received: 13 March 2012; in revised form: 10 April 2012 / Accepted: 17 May 2012 / Published: 29 May 2012 Abstract: Evidence based on molecular clocks, together with molecular evidence/biomarkers and putative body fossils, points to major evolutionary events prior to and during the intense Cryogenian and Ediacaran glaciations. The glaciations themselves were of global extent. Sedimentological evidence, including hummocky cross-stratification (representing ice-free seas affected by intra-glacial storms), dropstone textures, microbial mat-bearing ironstones, ladderback ripples, and wave ripples, militates against a “hard” Snowball Earth event. Each piece of sedimentological evidence potentially allows insight into the shape and location, with respect to the shoreline, of ice-free areas (“oases”) that may be viewed as potential refugia. The location of such oases must be seen in the context of global paleogeography, and it is emphasized that continental reconstructions at 600 Ma (about 35 millions years after the “Marinoan” ice age) are non-unique solutions. Specifically, whether continents such as greater India, Australia/East Antarctica, Kalahari, South and North China, and Siberia, were welded to a southern supercontinent or not, has implications for island speciation, faunal exchange, and the development of endemism.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse).
    [Show full text]
  • Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland
    Sedimentary Geology 294 (2013) 219–232 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Invited review Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Zheng-Xiang Li a,b,⁎, David A.D. Evans b, Galen P. Halverson c,d a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA c Earth & Planetary Sciences/GEOTOP, McGill University, 3450 University St., Montreal, Quebec H3A0E8, Canada d Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia article info abstract Article history: This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using Received 6 January 2013 the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. Received in revised form 24 May 2013 These maps form the basis for an examination of the relationships between known glacial deposits, Accepted 28 May 2013 palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events Available online 5 June 2013 such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental ’ Editor: J. Knight palaeogeographic features that will help inform and constrain models for Earth s climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high Keywords: latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), al- Neoproterozoic though the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global Rodinia lithostratigraphic correlations.
    [Show full text]
  • Cretaceous Paleoceanography
    GEOLOGIC A CARPATH1CA, 46, 5, BRATISLAVA, OCTOBER 1995 257 - 266 CRETACEOUS PALEOCEANOGRAPHY A v Z XI06ER WILLIAM W. HAY BORE* CRETACEOUS GEOMAR, Wischhofstr. 1-3, D-24148 Kiel, Germany Department of Geological Sciences and Cooperative Institute for Research in Environmental Sciences, Campus Box 250, University of Colorado, Boulder, CO 80309, USA (Manuscript received January 17, 1995; accepted in revised form June 14, 1995) Abstract: The modem ocean is comprised of four units: an equatorial belt shared by the two hemispheres, tropical-subtropi­ cal anticyclonic gyres, mid-latitude belts of water with steep meridional temperature gradients, and polar oceans characterized by cyclonic gyres. These units are separated by lines of convergence, or fronts: subequatorial, subtropical, and polar. Con­ vergence and divergence of the ocean waters are forced beneath zonal (latitude-parallel) winds. The Early Cretaceous ocean closely resembled the modem ocean. The developing Atlantic was analogous to the modem Mediterranean and served as an Intermediate Water source for the Pacific. Because sea-ice formed seasonally in the Early Cretaceous polar seas, deep water formation probably took place largely in the polar region. In the Late Cretaceous, the high latitudes were warm and deep waters moved from the equatorial region toward the poles, enhancing the ocean’s capacity to transport heat poleward. The contrast between surface gyre waters and intermediate waters was less, making them easier to upwell, but be­ cause their residence time in the oxygen minimum was less and they contained less nutrients. By analogy to the modem ocean, ’’Tethyan” refers to the oceans between the subtropical convergences and ’’Boreal” refers to the ocean poleward of the subtropical convergences.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
    OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al.
    [Show full text]
  • Carbonate-Hosted Zn-Pb Mineralization in the Lower
    Carbonate-hosted Zn-Pb mineralization in the Lower Cambrian Sekwi Formation, Mackenzie Mountains, NWT: Stratigraphic, structural, and lithologic controls, and constraints on ore fluid characteristics by Beth J. Fischer Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Geology School of Graduate Studies Laurentian University Sudbury, Ontario © Beth Fischer, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87713-5 Our file Notre reference ISBN: 978-0-494-87713-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Preliminary Bedrock Geology for NTS 95D/6 (Otter Creek Area), Southeast Yukon L
    Preliminary bedrock geology for NTS 95D/6 (Otter Creek area), southeast Yukon L. Pigage Preliminary bedrock geology for NTS 95D/6 (Otter Creek area), southeast Yukon Lee C. Pigage1 Yukon Geological Survey Pigage, L.C., 2008. Preliminary bedrock geology for NTS 95D/6 (Otter Creek area), southeast Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 237-255. ABSTRACT The Otter Creek area contains sedimentary and volcanic strata of the ancient North American miogeocline: Neoproterozoic to Lower Cambrian shale (Narchilla Formation) and siltstone (Vampire Formation); Late Cambrian to Middle Ordovician argillaceous to massive limestone (Rabbitkettle Formation) and dolostone (Sunblood Formation); Cambrian to Ordovician basalt and associated diabase; Silurian to Devonian MacDonald carbonate platform strata (unit SDc-south) and Selwyn basin shale (Road River Group-north); and thinly bedded silty shale likely of the Devonian to Carboniferous Besa River Formation. The rocks are deformed by six mappable north-trending, east-verging, asymmetric, macroscopic folds with amplitudes of 500-2000 m. Argillaceous and silty units contain a pervasive, axial-planar slaty cleavage. Shortening caused by the folding is about 25%. The Narchilla Formation is structurally emplaced upon Upper Cambrian-Devonian sedimentary rocks on the western margin of the map area, along an east-verging thrust fault with unknown displacement. Late northeast-striking normal faults preserve younger stratigraphic units to the south. Deformation is poorly constrained to the Mesozoic-Cenozoic Cordilleran orogeny. Four epigenetic(?), stratabound zinc±lead±barite deposits and showings occur at the stratigraphic contact between massive limestone and argillaceous limestone within the Rabbitkettle Formation.
    [Show full text]
  • A Rich Ediacaran Assemblage from Eastern Avalonia: Evidence of Early
    Publisher: GSA Journal: GEOL: Geology Article ID: G31890 1 A rich Ediacaran assemblage from eastern Avalonia: 2 Evidence of early widespread diversity in the deep ocean 3 [[SU: ok? need a noun]] 4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe 5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 6 ABSTRACT 7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 INTRODUCTION 20 The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) 21 preserves the oldest evidence of diverse macroorganisms and is key to elucidating the 22 early radiation of macroscopic life and the assembly of benthic marine communities Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G31890 23 (Clapham et al., 2003; Van Kranendonk et al., 2008).
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]