Research Paper GEOSPHERE Evolution of the early Mesozoic Cordilleran arc: The detrital zircon record of back-arc basin deposits, Triassic Buckskin Formation, GEOSPHERE, v. 16, no. 4 western Arizona and southeastern California, USA https://doi.org/10.1130/GES02193.1 N.R. Riggs1, T.B. Sanchez1,*, and S.J. Reynolds2 1Division of Geosciences, School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA 8 figures; 1 table; 1 set of external supplemental 2School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, USA files (hosted by EarthChem Library) During deposition of the lower and quartzite members, the Cordilleran arc CORRESPONDENCE:
[email protected] ABSTRACT was offshore and likely dominantly marine. Sedimentation patterns were CITATION: Riggs, N.R., Sanchez, T.B., and Reynolds, A shift in the depositional systems and tectonic regime along the western most strongly influenced by the Sonoma orogeny in northern Nevada and S.J., 2020, Evolution of the early Mesozoic Cordilleran margin of Laurentia marked the end of the Paleozoic Era. The record of this Utah (USA). The Tr-3 unconformity corresponds to both a lull in magmatism arc: The detrital zircon record of back-arc basin depos- transition and the inception and tectonic development of the Permo-Trias- and the “shoaling” of the arc. The phyllite and upper members were deposited its, Triassic Buckskin Formation, western Arizona and southeastern California, USA: Geosphere, v. 16, no. 4, sic Cordilleran magmatic arc is preserved in plutonic rocks in southwestern in a sedimentary system that was still influenced by a strong contribution of p.