The Ediacaran Fossils of Charnwood Forest: Shining New Light on a Major Biological
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ediacaran Developmental Biology
Dunn, F., Liu, A., & Donoghue, P. (2017). Ediacaran developmental biology. Biological Reviews. https://doi.org/10.1111/brv.12379 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/brv.12379 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12379 Ediacaran developmental biology Frances S. Dunn1,2,∗, Alexander G. Liu1,† and Philip C. J. Donoghue1 1School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K. 2British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, U.K. ABSTRACT Rocks of the Ediacaran System (635–541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher-order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. -
Heritage 226 Q2 2017
No. 226 1 April - 30 June 2017 Editorial Panel: Helen Ikin, Steve Woodward, Jim Graham. Honorary Secretary: Sue Graham, 5 Lychgate Close, Cropston, Leics. LE7 7HU (0116-2366474) LOUGHBOROUGH IN BLOOM The civic gardeners and park keepers do a great job in Loughborough (Queen’s Park looked fantastic this summer) but this article is about the effort to record the ‘wild’ plants in our town. Local botanists are working hard to update the distribution of plants for a new national atlas – a project promoted by the Botanical Society of Britain and Ireland (BSBI). The emphasis is on wild plants, but all species that have found their way into ‘wild’ places are within the scope of the survey. Three LNC members have been particularly active in the Loughborough area: Steve Woodward, Helen Ikin and Hazel Graves. The recording unit is the tetrad, a grid square measuring 2x2 km, and the objective is to make a complete list of vascular plants (flowers, trees, IN THIS EDITION grasses, ferns, etc.) for each one. The town is spread across nine tetrads, centred on SK51J. Steve and Helen have made a point of visiting all of them CLASSIFIED RECORDS (see map), though none has been covered thoroughly. Hazel, accompanied by Sara Botterell, Ÿ Mammals Page 3 has concentrated on a couple of adjacent squares Ÿ Birds Page 4 (SK52L Stanford and SK52R Hoton). Of course, any unusual plants are recorded with better precision, Ÿ Reptiles and Amphibians Page 9 typically a 100 m grid square. Details of all records go the BSBI via the Vice-county Recorder. -
Reptile Checklist for Leicestershire and Rutland
Reptile Checklist for Leicestershire and Rutland Compiled in 2016 by Andrew Heaton, County Recorder for Amphibians and Reptiles in Vice-County 55 (Leicestershire & Rutland) R1. Slow-worm Anguis fragilis Native. Uncommon, with few scattered records in Charnwood, West Leicestershire and Rutland (the main concentration, if any, being Charnwood Forest). This legless lizard, being rather elusive, may possibly be under- recorded rather than rare – elsewhere around the Midlands, it is frequently found in urban areas (gardens and allotments). There may have been a decline since recording began. RDB species. Slow-worm (Anguis fragilis) Viviparous Lizard (Lacerta vivipara) 5 5 4 4 3 3 2 2 1 1 SK TF SK TF 9 9 8 8 7 7 SP 2 3 4 5 6 7 8 9 TL 1 SP 2 3 4 5 6 7 8 9 TL 1 R2. Common Lizard Zootoca vivipara Native. Uncommon; records are concentrated in the heathy habitats of Charnwood Forest and the Moira area of North West Leicestershire, and in the drier habitats of East Rutland. Elsewhere, they are rather scarce, but, pleasingly, new sites seem to keep turning up. Confirmation of the presence of lizards outside Charnwood Forest was only made in comparatively recent years (since the 1960s). RDB species. R3 Sand Lizard Lacerta agilis Native to Britain (but probably not in Leicestershire). Native to heaths and sand dunes in south-central England. Reported in the Victoria County History of Leicestershire (1907), as formerly present, in the 1840s, (in Charnwood?), though rare. There is no firm evidence for this (and the VCH author appears sceptical). -
Environment Agency Midlands Region Wetland Sites Of
LA - M icllanAs <? X En v ir o n m e n t A g e n c y ENVIRONMENT AGENCY MIDLANDS REGION WETLAND SITES OF SPECIAL SCIENTIFIC INTEREST REGIONAL MONITORING STRATEGY John Davys Groundwater Resources Olton Court July 1999 E n v i r o n m e n t A g e n c y NATIONAL LIBRARY & INFORMATION SERVICE ANGLIAN REGION Kingfisher House. Goldhay Way. Orton Goldhay, Peterborough PE2 5ZR 1 INTRODUCTION................................................................................................................................... 3 1.) The Agency's Role in Wetland Conservation and Management....................................................3 1.2 Wetland SSSIs in the Midlands Region............................................................................................ 4 1.3 The Threat to Wetlands....................................................................................................................... 4 1.4 Monitoring & Management of Wetlands...........................................................................................4 1.5 Scope of the Report..............................................................................................................................4 1.6 Structure of the Report.......................................................................................................................5 2 SELECTION OF SITES....................................................................................................................... 7 2.1 Definition of a Wetland Site................................................................................................................7 -
Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al. -
A Building Stone Atlas of Leicestershire
Strategic Stone Study A Building Stone Atlas of Leicestershire First published by English Heritage April 2012 Rebranded by Historic England December 2017 Introduction Leicestershire contains a wide range of distinctive building This is particularly true for the less common stone types. In stone lithologies and their areas of use show a close spatial some parts of the county showing considerable geological link to the underlying bedrock geology. variability, especially around Charnwood and in the north- west, a wide range of lithologies may be found in a single Charnwood Forest, located to the north-west of Leicester, building. Even the cobbles strewn across the land by the includes the county’s most dramatic scenery, with its rugged Pleistocene rivers and glaciers have occasionally been used tors, steep-sided valleys and scattered woodlands. The as wall facings and for paving, and frequently for infill and landscape is formed principally of ancient volcanic rocks, repair work. which include some of the oldest rocks found in England. To the west of Charnwood Forest, rocks of the Pennine Coal The county has few freestones, and has always relied on the Measures crop out around Ashby-de-la-Zouch, representing importation of such stone from adjacent counties (notably for the eastern edge of the Derbyshire-Leicestershire Coalfield. To use in the construction of its more prestigious buildings). Major the north-west of Charnwood lie the isolated outcrops of freestone quarries are found in neighbouring Derbyshire Breedon-on-the-Hill and Castle Donington, which are formed, (working Millstone Grit), Rutland and Lincolnshire (both respectively, of Carboniferous Limestone and Triassic working Lincolnshire Limestone), and in Northamptonshire (Bromsgrove) Sandstone. -
Environmental Risk Assessment March 2021
Environmental Risk Assessment March 2021 Client: Iona Capital Limited Document Reference: HC1671-06 Black Brook CHP Limited REPORT SCHEDULE Operator: Black Brook CHP Limited Client: Iona Capital Limited Project Title: Black Brook CHP Limited MCP Facility Permit Application Document Title: Environmental Risk Assessment Document Reference: HC1671-06 Report Status: Final 2.0 Project Directors: Joanna Holland AUTHOR DATE Jo Chapman 28th January 2021 REVIEWER Joanna Holland 1st February 2021 REVISION HISTORY DATE COMMENTS APPROVED Final Version 1.0 1st February 2021 For Client Review Julia Safiullina Final Version 1.1 23rd February 2021 For Submission to EA Julia Safiullina Final Version 2.0 24th March 2021 For Client Review and Submission to EA Julia Safiullina DISCLAIMER This report has been prepared by H&C Consultancy Ltd with all reasonable skill, care and diligence. It has been prepared in accordance with instructions from the client and within the terms and conditions agreed with the client. The report is based on information provided by the Client and our professional judgment at the time this report was prepared. The report presents H&C Consultancy’s professional opinion and no warranty, expressed or implied, is made. This report is for the sole use of the Client and the Operator and H&C Consultancy Ltd shall not be held responsible for any user of the report or its content for any other purpose other than that which it was prepared and provided to the client. H&C Consultancy accepts no liability to third parties. HC1671-06 Environmental Risk Assessment H&C Consultancy Ltd Black Brook CHP Limited ENVIRONMENTAL RISK ASSESSMENT 1. -
Breakdown of COVID-19 Cases in Leicestershire
Weekly COVID-19 Surveillance Report in Leicestershire Cumulative data from 01/03/2020 - 10/03/2021 This report summarises the information from the surveillance system which is used to monitor the cases of the Coronavirus Disease 2019 (COVID-19) pandemic in Leicestershire. The report is based on daily data up to 10th March 2021. The maps presented in the report examine counts and rates of COVID-19 at Middle Super Output Area. Middle Layer Super Output Areas (MSOAs) are a census based geography used in the reporting of small area statistics in England and Wales. The minimum population is 5,000 and the average is 7,200. Disclosure control rules have been applied to all figures not currently in the public domain. Counts between 1 to 7 have been suppressed at MSOA level. An additional dashboard examining weekly counts of COVID-19 cases by Middle Super Output Area in Leicestershire, Leicester and Rutland can be accessed via the following link: https://public.tableau.com/profile/r.i.team.leicestershire.county.council#!/vizhome/COVID-19PHEWeeklyCases/WeeklyCOVID- 19byMSOA Data has been sourced from Public Health England. The report has been complied by Strategic Business Intelligence in Leicestershire County Council. Weekly COVID-19 Surveillance Report in Leicestershire Cumulative data from 01/03/2020 - 10/03/2021 Breakdown of testing by Pillars of the UK Government’s COVID-19 testing programme: Pillar 1 + 2 Pillar 1 Pillar 2 combined data from both Pillar 1 and Pillar 2 data from swab testing in PHE labs and NHS data from swab testing for the wider -
River Basin Management Plan Humber River Basin District Annex C
River Basin Management Plan Humber River Basin District Annex C: Actions to deliver objectives Contents C.1 Introduction 2 C. 2 Actions we can all take 8 C.3 All sectors 10 C.4 Agriculture and rural land management 16 C.5 Angling and conservation 39 C.6 Central government 50 C.7 Environment Agency 60 C.8 Industry, manufacturing and other business 83 C.9 Local and regional government 83 C.10 Mining and quarrying 98 C.11 Navigation 103 C.12 Urban and transport 110 C.13 Water industry 116 C.1 Introduction This annex sets out tables of the actions (the programmes of measures) that are proposed for each sector. Actions are the on the ground activities that will implemented to manage the pressures on the water environment and achieve the objectives of this plan. Further information relating to these actions and how they have been developed is given in: • Annex B Objectives for waters in the Humber River Basin District This gives information on the current status and environmental objectives that have been set and when it is planned to achieve these • Annex D Protected area objectives (including programmes for Natura 2000) This gives details of the location of protected areas, the monitoring networks for these, the environmental objectives and additional information on programmes of work for Natura 2000 sites. • Annex E Actions appraisal This gives information about how we have set the water body objectives for this plan and how we have selected the actions • Annex F Mechanisms for action This sets out the mechanisms - that is, the policy, legal, financial and voluntary arrangements - that allow actions to be put in place The actions are set out in tables for each sector. -
What Came Before the Cambrian Explosion
What Came Before the Cambrian? Advanced Reading The Cambrian Explosion was an era of significant evolution of animal life. What came before the Cambrian era that, in a sense, opened the door for the new body forms to evolve? The geologic era before the Cambrian was called the Ediacran, lasting from about 635 to 542 million years ago. Scientists often characterize this era as an “experimental” phase in the evolution of animals. By this time unicellular life had been around for millions of years and a mat of microbes covered parts of the seafloor. The first multicellular animals that evolved could have grazed on those microbes. The fossils from the Ediacran mostly show soft-bodied organisms. Some of these fossils look like fronds, discs and blobs, and aren’t easy to identify. Others seem to be related to Cnidarians or to be soft-bodied relatives of arthropods or perhaps Echinoderms. In addition, there are trace fossils, probably made by worm-like creatures. Many of the fossil animals remain mysterious and may represent lines of animals that no longer exist. But fossils are not the only evidence of animal life in the Ediacran. In fact the first evidence of sponges is not a body fossil but rather a biochemical fossil. When an animal dies, some of its molecules break down into a stable form that can last in rocks for millions of years just like body fossils. These are biochemical fossils. Scientists have found an Ediacran biochemical fossil of a fat molecule found today only in sponges. The name Ediacran comes from the Ediacra Hills of South Australia, the most famous location of these fossils. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.