PALEOBIOLOGY and INTERRELATIONSHIPS of PERMIAN–TRIASSIC ACTINOPTERYGIANS Dissertation Zur Erlangung Der Naturwissenschaftliche

Total Page:16

File Type:pdf, Size:1020Kb

PALEOBIOLOGY and INTERRELATIONSHIPS of PERMIAN–TRIASSIC ACTINOPTERYGIANS Dissertation Zur Erlangung Der Naturwissenschaftliche Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Paleobiology and Interrelationships of Permian-Triassic actinopterygians Argyriou, Thodoris Abstract: Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Thodoris Argyriou aus Griechenland Promotionskommission Prof. Dr. Marcelo R. Sánchez-Villagra (Vorsitz und Leitung der Dissertation) PD Dr. Torsten Scheyer Prof. Dr. Marcus Clauss Prof. Dr. Olga Otero Zürich, 2018 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-169660 Dissertation Published Version Originally published at: Argyriou, Thodoris. Paleobiology and Interrelationships of Permian-Triassic actinopterygians. 2018, University of Zurich, Faculty of Science. PALEOBIOLOGY AND INTERRELATIONSHIPS OF PERMIAN–TRIASSIC ACTINOPTERYGIANS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Thodoris Argyriou aus Griechenland Promotionskommission Prof. Dr. Marcelo R. Sánchez-Villagra (Vorsitz und Leitung der Dissertation) PD Dr. Torsten Scheyer Prof. Dr. Marcus Clauss Prof. Dr. Olga Otero Zürich, 2018 “There’s no easy way out, there’s no shortcut home...” Robert Tepper, 1985 ABSTRACT .....................................................................................................................................................2 ZUSAMMENFASSUNG .......................................................................................................................................4 CONTRIBUTION OF EACH COLLABORATOR ........................................................................................................6 INTRODUCTION ...............................................................................................................................................7 CHAPTER I Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes .........................................................................................21 CHAPTER II Re-evaluation of the ontogeny and reproductive biology of the Triassic fishSaurichthys (Actinopterygii, Saurichthyidae) .................................................................................41 CHAPTER III Internal cranial anatomy of Early Triassic species of †Saurichthys (Actinopterygii: †Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms........................................................................................................59 CHAPTER IV The endoskeleton of †Brachydegma caelatum (Cisuralian) implies earlier evolution of the sophisticated neopterygian jaw suspension ....................................169 CONCLUSIONS AND FUTURE DIRECTIONS ......................................................................................................217 APPENDIX Appendix A A new early Miocene (Aquitanian) Elasmobranchii assemblege from the La Guajira Peninsula, Colombia .................................................................................................223 Appendix B The oldest record of gnathostome fossils from Greece: Chondrichthyes from the Lopingian of Hydra Island ........................................................................................249 ACKNOWLEDGEMENTS ................................................................................................................................259 CURRICULUM VITAE ..................................................................................................................................260 Abstract Actinopterygians (ray-finned fishes) were not as severely affected by the ‘End Permian Mass Extinction’ event as were many groups of marine organisms, and diversified subsequently during the Triassic, establishing themselves as the most successful and species-rich clade of vertebrate animals. Despite a growing number of taxonomic works for Permian–Triassic forms, their paleobiology and interrelationships remain poorly understood. This Ph.D. thesis is aimed at documenting and analyzing novel anatomical information from exceptionally preserved actinopterygians from this time interval, in order to paint a more vivid picture of the biology of these long extinct animals, while tying them to a broader evolutionary context. Many of the contained works focus on the latest Permian–Middle Jurassic †saurichthyiforms. Their salient representative, †Saurichthys, is a particularly important component of many early Mesozoic assemblages across the globe, and its rich fossil record helps establish it as an important model for comparison between fossil and recent ray-fins. Exceptionally preserved fossils from the Middle Triassic of Switzerland preserve casts of the gastrointestinal tract (GIT) ofSaurichthys † , fossilized in situ. These faithfully depict the surrounding soft tissues, allowing for a deep-time perspective into the evolution of the GIT of fishes. The GIT ofSaurichthys † shows differences from that of extant actinopterygians. The most conspicuous one lies in the well-developed spiral intestine, the high turn count of which resembles that of some modern sharks. Anatomical comparisons and a phylogenetically informed statistical analysis of the distribution of spiral valve turn counts across fishes were performed. The high number of turns in the gutSaurichthys of † and some recent chondrichthyans reflect both energetically demanding lifestyles and the evolutionary histories of these groups. Middle Triassic deposits from Switzerland have produced almost complete ontogenetic series of two viviparous species of †Saurichthys, ranging from embryos to juveniles and adults. The study of these fossils adds to our understanding of the reproductive biology and early life history of those fishes. Topological criteria are established to distinguish embryos from cannibalized prey. Small juveniles exhibit well-formed crania and dentitions, suggesting they were born capable of exogenous feeding. However, a series of osteological criteria, such as the delayed ossifications of the parietals, the presence of open sensory grooves on the dermatocranium , and the delayed formation of the mid-lateral scale row, allow for distinguishing juveniles from adults. Viviparity and internal fertilization appear as specializations of Middle Triassic †Saurichthys. Despite previous works, the phylogenetic position of †saurichthyiforms remained contested, and needed to be revisited in light of new data. An µCT investigation of some of the earliest representatives of the clade, preserved in three dimensions, resulted in the discovery of several anatomical features. These were either undetected or misidentified by previous workers. Key amongst them is the presence of nasobasal canals in the rostrum, a fused dermohyal on the hyomandibula, and the reconsideration of the homology of the opercular series of †saurichthyiforms. New anatomical information was incorporated in a large-scale morphological phylogeny of Osteichthyes. The recovered phylogenetic hypothesis does not support the historical affiliation of †saurichthyiforms with chondrosteans, but recovers them, along with †Birgeria, 2 Abstract as the immediate sister group to crown actinopterygians. Yet the recovered topology is weakly supported, highlighting the need for similar studies to those conducted here in other extinct taxa. The early Permian actinopterygian †Brachydegma caelatum has had a central role in recent discussions on actinopterygian systematics, being often considered as an early neopterygian. However, previous phylogenies relied on interpretations of its external anatomy. The last chapter explores, for the first time, the endoskeletal anatomy of this key taxon, as revealed by µCT. †Brachydegma exhibits a mosaic of endoskeletal characters, such as the presence of only four gill arches, or the presence of a double jaw-joint that involves a true symplectic. These are nowadays encountered in distantly related actinopterygian lineages. New data from this and other actinopterygians suggest that the symplectic is not a neopterygian neomorph, and its involvement in the jaw joint is primitive for crown actinopterygians, or osteichthyans. The new phylogenetical hypothesis provided herein suggests that †Brachydegma is an early member of the actinopterygian crown group, the membership of which is now slightly expanded. 3 Zusammenfassung Actinopterygii (Strahlenflosser) wurden weniger schwer als viele andere Gruppen von marinen Organismen vom Massenaussterben an der Perm-Trias Grenze betroffen und konnten sich anschliessend in der Trias diversifizieren, was sie als erfolgreichste und artenreichste Gruppe innerhalb der Vertebraten etablierte. Abgesehen von der wachsenden Anzahl taxonomischer Arbeiten über die Perm und Trias Formen, bleiben ihre Paläobiologie und ihre Verwandtschaftsverhältnisse nur wenig verstanden. Diese Dissertation hat sich zum Ziel gesetzt neuartige anatomische Informationen von aussergewöhnlich gut erhaltenen Actinopterygiern aus dieser Zeit zu dokumentieren und zu analysieren, um ein lebhafteres Bild der Biologie dieser lang ausgestorbenen Lebewesen zu erschaffen. Die Ergebnisse werden in einem übergreifenden evolutionsbiologischen Kontext diskutiert. Viele der enthaltenen Arbeiten fokussieren sich auf die späten permischen
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • BONY FISHES 602 Bony Fishes
    click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves.
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Vertebrate Proteins Predicted from Genomic Sequences
    Vertebrate proteins predicted from genomic sequences VWD C8 TIL PTS Mucin2_WxxW F5_F8_type_C FCGBP_N VWC Lethenteron_camtschaticum Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Lethenteron Lethenteron_camtschaticum.0.pep1 Petromyzon_marinus Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Petromyzon Petromyzon_marinus.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep2 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep1 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep2 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.1.pep1 TILa Cynoglossus_semilaevis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cynoglossus_semilaevis.1.pep1
    [Show full text]
  • Middle Triassic Gastropods from the Besano Formation of Monte San Giorgio, Switzerland Vittorio Pieroni1 and Heinz Furrer2*
    Pieroni and Furrer Swiss J Palaeontol (2020) 139:2 https://doi.org/10.1186/s13358-019-00201-8 Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access Middle Triassic gastropods from the Besano Formation of Monte San Giorgio, Switzerland Vittorio Pieroni1 and Heinz Furrer2* Abstract For the frst time gastropods from the Besano Formation (Anisian/Ladinian boundary) are documented. The material was collected from three diferent outcrops at Monte San Giorgio (Southern Alps, Ticino, Switzerland). The taxa here described are Worthenia (Humiliworthenia)? af. microstriata, Frederikella cf. cancellata, ?Trachynerita sp., ?Omphalopty- cha sp. 1 and ?Omphaloptycha sp. 2. They represent the best preserved specimens of a larger collection and docu- ment the presence in this formation of the clades Vetigastropoda, Neritimorpha and Caenogastropoda that were widespread on the Alpine Triassic carbonate platforms. True benthic molluscs are very rarely documented in the Besano Formation, which is interpreted as intra-platform basin sediments deposited in usually anoxic condition. Small and juvenile gastropods could have been lived as pseudoplankton attached to foating algae or as free-swimming veliger planktotrophic larval stages. Accumulations of larval specimens suggest unfavorable living conditions with prevailing disturbance in the planktic realm or mass mortality events. However, larger gastropods more probably were washed in with sediments disturbed by slumping and turbidite currents along the basin edge or storm activity across the platform of the time equivalent Middle San Salvatore Dolomite. Keywords: Gastropods, Middle Triassic, Environment, Besano Formation, Southern Alps, Switzerland Introduction environment characterized by anoxic condition in bottom Te Middle Triassic Besano Formation (formerly called waters of an intraplatform basin (Bernasconi 1991; Schatz “Grenzbitumenzone” in most publications) is exposed 2005a).
    [Show full text]
  • 35-51 New Data on Pleuropholis Decastroi (Teleostei, Pleuropholidae)
    Geo-Eco-Trop., 2019, 43, 1 : 35-51 New data on Pleuropholis decastroi (Teleostei, Pleuropholidae), a “pholidophoriform” fish from the Lower Cretaceous of the Eurafrican Mesogea Nouvelles données sur Pleuropholis decastroi (Teleostei, Pleuropholidae), un poisson “pholidophoriforme” du Crétacé inférieur de la Mésogée eurafricaine Louis TAVERNE 1 & Luigi CAPASSO 2 Résumé: Le crâne et le corps de Pleuropholis decastroi, un poisson fossile de l’Albien (Crétacé inférieur) du sud de l’Italie, sont redécrits en détails. P. decastroi diffère des autres espèces du genre par ses deux nasaux en contact médian et qui séparent complètement le dermethmoïde ( = rostral) des frontaux. Avec son maxillaire extrêmement élargi qui couvre la mâchoire inférieure et son supramaxillaire fortement réduit, P. decastroi semble plus nettement apparenté avec Pleuropholis cisnerosorum, du Jurassique supérieur du Mexique, qu’avec les autres espèces du genre. Par ses mâchoires raccourcies et ses nombreux os orbitaires, Pleuropholis apparaît également comme le genre le plus spécialisé de la famille. La position systématique des Pleuropholidae au sein du groupe des « pholidophoriformes » est discutée. Mots-clés: Pleuropholis decastroi, Albien, Italie du sud, Pleuropholis, Pleuropholidae, “Pholidophoriformes”, ostéologie, position systématique. Abstract: The skull and the body of Pleuropholis decastroi, a fossil fish from the marine Albian (Lower Cretaceous) of southern Italy, are re-described in details. P. decastroi differs from the other species of the genus by their two nasals that are in contact along the mid-line, completely separating the dermethmoid (= rostral) from the frontals. With its extremely broadened maxilla that covers the lower jaw and its strongly reduced supramaxilla, P. decastroi seems more closely related to Pleuropholis cisnerosorum, from the Upper Jurassic of Mexico, than to the other species of the genus.
    [Show full text]
  • The Middle Triassic Vossenveld Formation in Winterswijk
    NEDERLANDSE GEOLOGISCHE VERENIGING & WERKGROEP MUSCHELKALK WINTERSWIJK GRONDBOOR & HAMER NR. 5/6 - JAARGANG 73, 2019 EDITIE STARINGIA 16 Inhoudsopgave – Table of contents P.143 WEERKOMM’ DE KALKSTEENGROEVE IN WINTERSWIJK ........................................................................................... 2 P.147 THE VOSSENVELD FORMATION AND BIOTIC RECOVERY FROM THE END-PERMIAN EXTINCTION ......................................... 2 P.153 HOE HET BEGON: ONTDEKKING EN EERSTE GEBRUIK VAN DE KALKSTEEN ...................................................................... 5 P.156 ACADEMIC EXCAVATIONS .................................................................................................................................. 6 P.161 LIEFHEBBERS VAN DE STEENGROEVE; 25 JAAR GEZAMENLIJK DOOR DE MUSCHELKALK .................................................... 6 P.165 THE WINTERSWIJK TRIASSIC WINDOW AND ITS SETTING - A HELICOPTER VIEW.............................................................. 7 P.167 STRATIGRAPHY AND GEOCHEMISTRY OF THE VOSSENVELD FORMATION ...................................................................... 7 P.178 HET IS NIET AL GOUD WAT BLINKT .....................................................................................................................11 P.185 NON-ARTHROPOD INVERTEBRATES FROM THE MIDDLE TRIASSIC MUSCHELKALK OF WINTERSWIJK .................................11 P.191 MARINE ARTHROPODS FROM THE MIDDLE TRIASSIC OF WINTERSWIJK .....................................................................14
    [Show full text]
  • Table S1.Xlsx
    Bone type Bone type Taxonomy Order/series Family Valid binomial Outdated binomial Notes Reference(s) (skeletal bone) (scales) Actinopterygii Incertae sedis Incertae sedis Incertae sedis †Birgeria stensioei cellular this study †Birgeria groenlandica cellular Ørvig, 1978 †Eurynotus crenatus cellular Goodrich, 1907; Schultze, 2016 †Mimipiscis toombsi †Mimia toombsi cellular Richter & Smith, 1995 †Moythomasia sp. cellular cellular Sire et al., 2009; Schultze, 2016 †Cheirolepidiformes †Cheirolepididae †Cheirolepis canadensis cellular cellular Goodrich, 1907; Sire et al., 2009; Zylberberg et al., 2016; Meunier et al. 2018a; this study Cladistia Polypteriformes Polypteridae †Bawitius sp. cellular Meunier et al., 2016 †Dajetella sudamericana cellular cellular Gayet & Meunier, 1992 Erpetoichthys calabaricus Calamoichthys sp. cellular Moss, 1961a; this study †Pollia suarezi cellular cellular Meunier & Gayet, 1996 Polypterus bichir cellular cellular Kölliker, 1859; Stéphan, 1900; Goodrich, 1907; Ørvig, 1978 Polypterus delhezi cellular this study Polypterus ornatipinnis cellular Totland et al., 2011 Polypterus senegalus cellular Sire et al., 2009 Polypterus sp. cellular Moss, 1961a †Scanilepis sp. cellular Sire et al., 2009 †Scanilepis dubia cellular cellular Ørvig, 1978 †Saurichthyiformes †Saurichthyidae †Saurichthys sp. cellular Scheyer et al., 2014 Chondrostei †Chondrosteiformes †Chondrosteidae †Chondrosteus acipenseroides cellular this study Acipenseriformes Acipenseridae Acipenser baerii cellular Leprévost et al., 2017 Acipenser gueldenstaedtii
    [Show full text]
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • The Early Triassic Jurong Fish Fauna, South China Age, Anatomy, Taphonomy, and Global Correlation
    Global and Planetary Change 180 (2019) 33–50 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Research article The Early Triassic Jurong fish fauna, South China: Age, anatomy, T taphonomy, and global correlation ⁎ Xincheng Qiua, Yaling Xua, Zhong-Qiang Chena, , Michael J. Bentonb, Wen Wenc, Yuangeng Huanga, Siqi Wua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, BS8 1QU, UK c Chengdu Center of China Geological Survey, Chengdu 610081, China ARTICLE INFO ABSTRACT Keywords: As the higher trophic guilds in marine food chains, top predators such as larger fishes and reptiles are important Lower Triassic indicators that a marine ecosystem has recovered following a crisis. Early Triassic marine fishes and reptiles Fish nodule therefore are key proxies in reconstructing the ecosystem recovery process after the end-Permian mass extinc- Redox condition tion. In South China, the Early Triassic Jurong fish fauna is the earliest marine vertebrate assemblage inthe Ecosystem recovery period. It is constrained as mid-late Smithian in age based on both conodont biostratigraphy and carbon Taphonomy isotopic correlations. The Jurong fishes are all preserved in calcareous nodules embedded in black shaleofthe Lower Triassic Lower Qinglong Formation, and the fauna comprises at least three genera of Paraseminotidae and Perleididae. The phosphatic fish bodies often show exceptionally preserved interior structures, including net- work structures of possible organ walls and cartilages. Microanalysis reveals the well-preserved micro-structures (i.e. collagen layers) of teleost scales and fish fins.
    [Show full text]
  • Ambush Predator’ Guild – Are There Developmental Rules Underlying Body Shape Evolution in Ray-Finned Fishes? Erin E Maxwell1* and Laura AB Wilson2
    Maxwell and Wilson BMC Evolutionary Biology 2013, 13:265 http://www.biomedcentral.com/1471-2148/13/265 RESEARCH ARTICLE Open Access Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? Erin E Maxwell1* and Laura AB Wilson2 Abstract Background: A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results: We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae.
    [Show full text]