Summary Conservation Action Plans for Mongolian Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Key Sites for Key Sites for Conservation
Directory of Important Bird Areas in Mongolia: KEY SITES FOR CONSERVATION A project of In collaboration with With the support of Printing sponsored by Field surveys supported by Directory of Important Bird Areas in Mongolia: KEY SITES FOR CONSERVATION Editors: Batbayar Nyambayar and Natsagdorj Tseveenmyadag Major contributors: Ayurzana Bold Schagdarsuren Boldbaatar Axel Bräunlich Simba Chan Richard F. A. Grimmett and Andrew W. Tordoff This document is an output of the World Bank study Strengthening the Safeguard of Important Areas of Natural Habitat in North-East Asia,fi nanced by consultant trust funds from the government of Japan Ulaanbaatar, January 2009 An output of: The World Bank study Strengthening the Safeguard of Important Areas of Natural Habitat in North-East Asia,fi nanced by consultant trust funds from the government of Japan Implemented by: BirdLife International, the Wildlife Science and Conservation Center and the Institute of Biology of the Mongolian Academy of Sciences In collaboration with: Ministry of Nature, Environment and Tourism Supporting organisations: WWF Mongolia, WCS Mongolia Program and the National University of Mongolia Editors: Batbayar Nyambayar and Natsagdorj Tseveenmyadag Major contributors: Ayurzana Bold, Schagdarsuren Boldbaatar, Axel Bräunlich, Simba Chan, Richard F. A. Grimmett and Andrew W. Tordoff Maps: Dolgorjav Sanjmyatav, WWF Mongolia Cover illustrations: White-naped Crane Grus vipio, Dalmatian Pelican Pelecanus crispus, Whooper Swans Cygnus cygnus and hunters with Golden Eagles Aquila chrysaetos (Batbayar Nyambayar); Siberian Cranes Grus leucogeranus (Natsagdorj Tseveenmyadag); Saker Falcons Falco cherrug and Yellow-headed Wagtail Motacilla citreola (Gabor Papp). ISBN: 978-99929-0-752-5 Copyright: © BirdLife International 2009. All rights reserved. The use and reproduction of any part of this publication is welcomed for non-commercial purposes only, provided that the source is acknowledged Suggested citation: Nyambayar, B. -
Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]). -
Analysis of Genetic Diversity of Leuciscus Leuciscus Baicalensis Using Novel Microsatellite Markers with Cross-Species Transferability
Analysis of genetic diversity of Leuciscus leuciscus baicalensis using novel microsatellite markers with cross-species transferability D.J. Lei1, G. Zhao1, P. Xie1, Y. Li1, H. Yuan1, M. Zou1, J.G. Niu2 and X.F. Ma1 1College of Fisheries, Huazhong Agricultural University, Wuhan, China 2Xinjiang Fisheries Research Institute, Urumqi, China Corresponding author: X.F. Ma E-mail: [email protected] Genet. Mol. Res. 16 (2): gmr16029376 Received September 23, 2016 Accepted March 8, 2017 Published May 4, 2017 DOI http://dx.doi.org/10.4238/gmr16029376 Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. We used next-generation sequencing technology to characterize 19 genomic simple sequence repeat (SSR) markers and 11 expressed sequence tag (EST) SSR markers from Leuciscus leuciscus baicalensis, a small freshwater fish that is widely distributed in Xinjiang, China. Primers were used to test for polymorphisms in three L. leuciscus baicalensis populations in Xinjiang. There were 4-27 (average 11.3) alleles (NA), the expected heterozygosity (HE) was 0.36-0.94 (average 0.75 ± 0.14), the observed heterozygosity (HO) was 0.37-1.00 (average 0.68 ± 0.18), and the polymorphism information content (PIC) was 0.31-0.93 (average 0.71). The averages of HE and PIC for the EST-SSR markers were slightly lower than for the genomic SSR markers. Genetic analysis of the three populations showed similar results for PIC, HE, and NA. Amplifications were performed in nine other species; the top three transferability values were for Rutilus lacustris (80%), Leuciscus idus (76.7%), and Phoxinus ujmonensis (63.3%), with the following average values: PIC (0.56, 4.46, and 0.52); NA (0.40, 3.00, and 0.32); and HO (0.44, 2.74, and 0.22), respectively. -
Beta Diversity Patterns of Fish and Conservation Implications in The
A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains. -
Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus Waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights Into Stress Adaptation
Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline- Saline Lake Reveals Insights into Stress Adaptation Jian Xu1, Peifeng Ji1, Baosen Wang1,2, Lan Zhao1, Jian Wang1, Zixia Zhao1, Yan Zhang1, Jiongtang Li1, Peng Xu1*, Xiaowen Sun1* 1 Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China, 2 College of Life Sciences, Tianjin Normal University, Tianjin, China Abstract Background: Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the genetics of stress tolerance. The objective of the study is to sequence the transcriptome and obtain a well-assembled transcriptome of Amur ide. Results: The transcriptome of Amur ide was sequenced using the Illumina platform and assembled into 53,632 cDNA contigs, with an average length of 647 bp and a N50 length of 1,094 bp. A total of 19,338 unique proteins were identified, and gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses classified all contigs into functional categories. Open Reading Frames (ORFs) were detected from 34,888 (65.1%) of contigs with an average length of 577 bp, while 9,638 full-length cDNAs were identified. Comparative analyses revealed that 31,790 (59.3%) contigs have a significant similarity to zebrafish proteins, and 27,096 (50.5%), 27,524 (51.3%) and 27,996 (52.2%) to teraodon, medaka and three- spined stickleback proteins, respectively. -
Genomic Signature of Highland Adaptation in Fish: a Case Study in Tibetan Schizothoracinae Species Chao Tong1,2,3* , Fei Tian1 and Kai Zhao1*
Tong et al. BMC Genomics (2017) 18:948 DOI 10.1186/s12864-017-4352-8 RESEARCH ARTICLE Open Access Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species Chao Tong1,2,3* , Fei Tian1 and Kai Zhao1* Abstract Background: Genome-wide studies on highland adaptation mechanism in terrestrial animal have been widely reported with few available for aquatic animals. Tibetan Schizothoracinae species are ideal model systems to study speciation and adaptation of fish. The Schizothoracine fish, Gymnocypris przewalskii ganzihonensis had underwent the ecological niche shift from salt water to freshwater, and also experienced a recent split from Gymnocypris przewalskii przewalskii.In addition, G. p. ganzihonensis inhabited harsh aquatic environment including low temperature and hypoxia as well as other Schizothoracinae species, its genetic mechanism of highland adaptation have yet to be determined. Results: Our study used comparative genomic analysis based on the transcriptomic data of G. p. ganzihonensis and other four fish genome datasets to investigate the genetic basis of highland adaptation in Schizothoracine fish. We found that Schizothoracine fish lineage on the terminal branch had an elevated dN/ dS ratio than its ancestral branch. A total of 202 gene ontology (GO) categories involved into transport, energy metabolism and immune response had accelerated evolutionary rates than zebrafish. Interestingly, we also identified 162 genes showing signature of positive selection (PSG) involved into energy metabolism, transport and immune response in G. p. ganzihonesis. While, we failed to find any PSG related to hypoxia response as previous studies. Conclusions: Comparative genomic analysis based on G. p. ganzihonensis transcriptome data revealed significant genomic signature of accelerated evolution ongoing within Tibetan Schizothoracinae species lineage. -
Chanodichthys Flavipinnis) Ecological Risk Screening Summary
Yellowfin Culter (Chanodichthys flavipinnis) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, March 2019 Web Version, 10/17/2019 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J. Freyhof pers. com. 2010 [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin]).” Status in the United States Chanodichthys flavipinnis has not been documented in trade or in the wild in the United States. Means of Introductions in the United States Chanodichthys flavipinnis has not been documented in the wild in the United States. 1 Remarks Both the current valid name, Chanodichthys flavipinnis and the previous valid name Culter flavipinnis were used to conduct research. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2019): “Current status: Valid as Chanodichthys flavipinnis (Tirant 1883).” From ITIS (2019): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Chanodichthys Species Chanodichthys flavipinnis (Tirant, 1883)” Size, Weight, and Age Range No information was found on size, weight or age for Chanodichthys flavipinnis. Environment From Froese and Pauly (2019): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2019): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J. -
Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput -
Larvae of Gryporhynchid Cestodes (Cyclophyllidea) from Fish: a Review
FOLIA PARASITOLOGICA 51: 131–152, 2004 REVIEW ARTICLE Larvae of gryporhynchid cestodes (Cyclophyllidea) from fish: a review Tomáš Scholz1,2, Rodney A. Bray3, Roman Kuchta1,2, Radmila Řepová1 1Institute of Parasitology, Academy of Sciences of the Czech Republic and 2Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; 3Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Key words: Gryporhynchidae, Dilepididae, metacestodes, fish, species composition, host spectrum, distribution, review Abstract. Larvae (metacestodes) of tapeworms of the cyclophyllidean family Gryporhynchidae (previously included in the Dilepididae) occur in different internal organs of fresh- and brackish water fish (110 fish species of 27 families in 12 orders reported), which serve as the second intermediate hosts. The species composition, spectrum of fish hosts, sites of infection, and geographical distribution of gryporhynchids recorded from fish are reviewed here on the basis of literary data and examination of extensive material from helminthological collections. Metacestodes of the following genera have been found in fish: Amirthalingamia Bray, 1974 (1 species), Ascodilepis Guildal, 1960 (1), Cyclustera Fuhrmann, 1901 (4), Dendrouterina Fuhrmann, 1912 (1), Glossocercus Chandler, 1935 (3), Neogryporhynchus Baer et Bona, 1960 (1), Paradilepis Hsü, 1935 (5), Parvitaenia Burt, 1940 (2), and Valipora Linton, 1927 (3). However, most published records concern only three species, namely Neogryporhynchus cheilancristrotus (Wedl, 1855) from the intestinal lumen, Paradilepis scolecina (Rudolphi, 1819) from the liver and mesenteries, and Valipora campylancristrota (Wedl, 1855) from the gall bladder of cyprinids and other fish in the Palaearctic Region. Data on other species as well as reports from other regions are very scarce and almost no information is available from Australia, tropical Asia and South America. -
Cottoidei: Cottidae) Necessitates Generic Realignment
G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me. -
Gene Expression Changes Leading Extreme Alkaline Tolerance in Amur Ide (Leuciscus Waleckii) Inhabiting Soda Lake
Xu et al. BMC Genomics 2013, 14:682 http://www.biomedcentral.com/1471-2164/14/682 RESEARCH ARTICLE Open Access Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake Jian Xu1†, Qiang Li1†, Liming Xu1, Shaolin Wang2, Yanliang Jiang1, Zixia Zhao1, Yan Zhang1, Jiongtang Li1, Chuanju Dong1,3, Peng Xu1* and Xiaowen Sun1 Abstract Background: Amur ide (Leuciscus waleckii) is an economically and ecologically important cyprinid species in Northern Asia. The Dali Nor population living in the soda lake Dali Nor can adapt the extremely high alkalinity, providing us a valuable material to understand the adaptation mechanism against extreme environmental stress in teleost. Results: In this study, we generated high-throughput RNA-Seq data from three tissues gill, liver and kidney of L. waleckii living in the soda lake Dali Nor and the fresh water lake Ganggeng Nor, then performed parallel comparisons of three tissues. Our results showed that out of assembled 64,603 transcript contigs, 28,391 contigs had been assigned with a known function, corresponding to 20,371 unique protein accessions. We found 477, 2,761 and 3,376 differentially expressed genes (DEGs) in the gill, kidney, and liver, respectively, of Dali Nor population compared to Ganggeng Nor population with FDR ≤ 0.01and fold-change ≥ 2. Further analysis revealed that well-known functional categories of genes and signaling pathway, which are associated with stress response and extreme environment adaptation, have been significantly enriched, including the functional categories of “response to stimulus”, “transferase activity”, “transporter activity” and “oxidoreductase activity”, and signaling pathways of “mTOR signaling”, “EIF2 signaling”, “superpathway of cholesterol biosynthesis”. -
CBD Fifth National Report
CONVENTION ON CONVENTION ON BIOLOGICAL DIVERSITY BIOLOGICAL DIVERSITY THE 5TH NATIONAL REPORT OF MONGOLIA biolohJA JJa folea YeehcO beiide& oa KnWWn}A. T HE CONVENTION ON BIOLOGI 5 T H N A T IO N AL R EPO RT C AL DIVERSITY OF M O N GOLIA MINISTRY OF ENVIRONMENT AND GREEN DEVELOPMENT STEPPE FORWARD PROGRAMME, Government building II, BIOLOGY DEPARTMENT, United Nation’s street 5/2, NATIONAL UNIVERSITY OF MONGOLIA TH Chingeltei District, Ulaanbaatar 15160, NUM, Building-2, Ulaanbaatar, Mongolia THE 5 NATIONAL REPORT OF Mongolia P.O.Box 537, Ulaanbaatar 210646A, Tel: 976-51-266197 Ulaanbaatar, Mongolia E-mail: [email protected] Tel: 976-99180148; 976-88305909; 976-88083058 MONGOLIA E-mail: [email protected]; [email protected]; [email protected] Designed by Mongolica Publishing 2014 Ulaanbaatar, Mongolia. 2014 CONVENTION ON BIOLOGICAL DIVERSITY CONVENTION ON BIOLOGICAL DIVERSITY FINANCED BY: MINISTRY OF ENVIRONMENT AND GREEN DEVELOPMENT CONVENTION ON BIOLOGICAL DIVERSITY-MONGOLIA GLOBAL ENVIRONMENT FACILITY UNITED NATIONS ENVIRONMENTAL PROGRAM CONVENTION ON BIOLOGICAL DIVERSITY THE 5TH NATIONAL REPORT OF MONGOLIA REPORT COMPILERS: COMPILED BY: S. GOMBOBAATAR STEPPE FORWARD PROGRAMME, NUM S. MYAGMARSUREN N. CONABOY М. Мunkhjargal TAXON COMPILERS: PLANT: B. OYUNTSETSEG, M. URGAMAL INVERTEBRATE: S. GANTIGMAA Fish, aMphibian, reptile: kh. Тerbish BIRD: S. GOMBOBAATAR MAMMAL: S. SHAR CONTRIBUTIONS FROM: EDITORS: NATIONAL UNIVERSITY OF MONGOLIA INSTITUTE OF BIOLOGY, MONGOLIAN ACADEMY OF SCIENCES D. BATBOLD MONGOLIAN ORNITHOLOGICAL SOCIETY