Биота И Среда Заповедников Дальнего Востока *** Biodiversity and Environment of Far East Reserves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cottoidei: Cottidae) Necessitates Generic Realignment
G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me. -
The First Two Complete Mitochondrial Genomes for the Family Triglidae
www.nature.com/scientificreports OPEN The first two complete mitochondrial genomes for the family Triglidae and implications Received: 20 January 2017 Accepted: 31 March 2017 for the higher phylogeny of Published: xx xx xxxx Scorpaeniformes Lei Cui1, Yuelei Dong1, Fenghua Liu1, Xingchen Gao2, Hua Zhang1, Li Li1, Jingyi Cen1 & Songhui Lu1 The mitochondrial genome (mitogenome) can provide useful information for analyzing phylogeny and molecular evolution. Scorpaeniformes is one of the most diverse teleostean orders and has great commercial importance. To develop mitogenome data for this important group, we determined the complete mitogenomes of two gurnards Chelidonichthys kumu and Lepidotrigla microptera of Triglidae within Scorpaeniformes for the first time. The mitogenomes are 16,495 bp long in C. kumu and 16,610 bp long in L. microptera. Both the mitogenomes contain 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and two non-coding regions. All PCGs are initiated by ATG codons, except for the cytochrome coxidase subunit 1 (cox1) gene. All of the tRNA genes could be folded into typical cloverleaf secondary structures, with the exception of tRNASer(AGN) lacks a dihydrouracil (DHU) stem. The control regions are both 838 bp and contain several features common to Scorpaeniformes. The phylogenetic relationships of 33 fish mitogenomes using Bayesian Inference (BI) and Maximum Likelihood (ML) based on nucleotide and amino acid sequences of 13 PCGs indicated that the mitogenome sequences could be useful in resolving higher-level relationship of Scorpaeniformes. The results may provide more insight into the mitogenome evolution of teleostean species. Generally, the fish mitogenome is a circular and double-stranded molecule ranging from 15 to 19 kilobases in length. -
Mongol Zagasnii Ulaan Dans English
Mongolian Red List of Fishes Edited by J. Ocock, G. Baasanjav, J. E. M. Baillie, M. Erdenebat, M. Kottelat, B. Mendsaikhan and K. Smith Foreword by M. Lovei and S. D. Meyanathan Preface by M. Erdenebat THE WORLD BANK This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) has contributed to the production of the Mongolian Red List of Fishes, providing technical support, staff time, and data. IUCN supports the production of the Mongolian Red List of Fishes, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006. All rights reserved. The use and reproduction of any part of this publication is welcomed for non-commercial purposes only, provided that the source is acknowledged. ISSN: 1751-0031 Citation: Ocock, J., Baasanjav, G., Baillie, J. -
Международный Журнал Прикладных И Фундаментальных Исследований International Journal of Applied and Fundamental Research
АКАДЕМИЯ ЕСТЕСТВОЗНАНИЯ «ACADEMY OF NATURAL HISTORY» МЕЖДУНАРОДНЫЙ INTERNATIONAL JOURNAL ЖУРНАЛ ПРИКЛАДНЫХ OF APPLIED AND И ФУНДАМЕНТАЛЬНЫХ FUNDAMENTAL RESEARCH ИССЛЕДОВАНИЙ Журнал основан в 2007 году Импакт фактор № 10 2017 The journal is based in 2007 РИНЦ – 0,731 Часть 1 ISSN 1996-3955 Научный журнал SCIENTIFIC JOURNAL Журнал International Journal of Applied and Fundamental Research (Между- народный журнал прикладных и фундаментальных исследований) зареги- стрирован Федеральной службой по надзору в сфере связи, информационных технологий, и массовых коммуникаций. Свидетельство ПИ № ФС 77-60735. Электронная версия размещается на сайте www.rae.ru The electronic version takes places on a site www.rae.ru ГЛАВНЫЙ РЕДАКТОР EDITOR к.м.н. Н.Ю. Стукова Natalia Stukova Ответственный секретарь Senior Director and Publisher к.м.н. М.Н. Бизенкова Maria Bizenkova РЕДАКЦИОННАЯ КОЛЛЕГИЯ д.б.н., проф. Абдуллаев А. (Душанбе); к.б.н. Алиева К.Г. (Махачкала); д.х.н., к.ф.-м.н., проф. Алоев В.З. (Чегем-2); д.б.н., проф. Андреева А.В. (Уфа); к.географ.н., доцент Аничкина Н.В. (Липецк); к.ф.-м.н. Барановский Н.В. (Томск); д.б.н., доцент Белых О.А. (Иркутск); д.т.н., проф. Бурмистрова О.Н. (Ухта); д.т.н., доцент Быстров В.А. (Новокузнецк); д.м.н., проф. Гарбуз И.Ф. (Тирасполь); д.ф.-м.н., проф. Геворкян Э.А. (Москва); д.х.н., проф. Гурбанов Г.Р. (Баку); д.ветеринар.н., доцент Ермолина С.А. (Киров); к.т.н. Есенаманова М.С. (Атырау); к.ф.-м.н., д.п.н., проф. Ефремова Н.Ф. (Ростов-на-Дону); д.м.н. Жураковский И.П. -
Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V. -
Diversity and Distribution of Mongolian Fish: Recent State, Trends and Studies Yuri Dgebuadze Severtsov Institute of Ecology and Evolution, RAS, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2012 Diversity and Distribution of Mongolian Fish: Recent State, Trends and Studies Yuri Dgebuadze Severtsov Institute of Ecology and Evolution, RAS, [email protected] Bud Mendsaikhan Institute of Geoecology MAS, [email protected] Ayurin Dulmaa Institute of Biology MAS, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Aquaculture and Fisheries Commons, Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Dgebuadze, Yuri; Mendsaikhan, Bud; and Dulmaa, Ayurin, "Diversity and Distribution of Mongolian Fish: Recent State, Trends and Studies" (2012). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 23. http://digitalcommons.unl.edu/biolmongol/23 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2012, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2012 (12): 219–230 Diversity and distribution of Mongolian fish: recent state, trends and studies Yu. Dgebuadze, B. Mendsaikhan & A. Dulmaa Abstract The studies in recent years (2000-2011) have allowed to make more precise the list and ranges of Mongolian fish. -
Mongolian Journal of Biological Sciences 2005 Vol
Mongolian Journal of Biological Sciences 2005 Vol. 3(2): 3-15 Proceedings of the Mongolian Biodiversity Databank Workshop: Assessing the Conservation Status of Mongolian Mammals and Fishes: I - Results and Outputs of the Workshop Emma L. Clark1, Joanne F. Ocock1, Sarah R. B. King2 and Jonathan E.M. Baillie1*, 1Zoological Society of London, Regent’s Park, London, NW1 4RY, England. 2Steppe Forward Pro- gramme, Biology Faculty, National University Mongolia, Ulaanbaatar 210646, Mongolia. E-mail: [email protected], [email protected], [email protected]. *Corresponding author: Jonathan. [email protected] Abstract The Mongolian Biodiversity Databank Workshop was held at the National University of Mongolia and Hustai National Park from 1st October to 4th November, 2005. Participants assessed the conserva- tion status of all Mongolian mammals and fishes using the IUCN Categories and Criteria, and also met the other main objectives of the workshop, including: creating a Biodiversity Databank, revising species lists and maps for Mongolian mammals and fishes, and developing Summary Conservation Action Plans for a number of threatened or commercially important species. This article includes information about the IUCN Categories and Criteria used to assess Mongolian mammals and fish and these outputs. The Biodiversity Databank holds baseline data on the ecology, distribution, threats, conservation measures, and conservation status for all Mongolian mammals and fishes. Revised species lists have been agreed upon for the Biodiversity Databank project including 128 native species of mammals and 64 native spe- cies of fish. Digital maps have been produced for all mammals and fish, where data exists. Results of the workshop should provide baseline information for conservation of Mongolian biodiversity and provide resources for researchers. -
Fishes of Mongolia a Check-List of the fi Shes Known to Occur in Mongolia with Comments on Systematics and Nomenclature
37797 Public Disclosure AuthorizedPublic Disclosure Authorized Environment and Social Development East Asia and Pacific Region THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, USA Telephone: 202 473 1000 Facsimile: 202 522 1666 E-mail: worldbank.org/eapenvironment worldbank.org/eapsocial Public Disclosure AuthorizedPublic Disclosure Authorized Public Disclosure AuthorizedPublic Disclosure Authorized Fishes of Mongolia A check-list of the fi shes known to occur in Mongolia with comments on systematics and nomenclature Public Disclosure AuthorizedPublic Disclosure Authorized MAURICE KOTTELAT Fishes of Mongolia A check-list of the fi shes known to occur in Mongolia with comments on systematics and nomenclature Maurice Kottelat September 2006 ©2006 Th e International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, NW Washington, DC 20433 USA September 2006 All rights reserved. Th is report has been funded by Th e World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform (NEMO). Some photographs were obtained during diff erent activities and the author retains all rights over all photographs included in this report. Environment and Social Development Unit East Asia and Pacifi c Region World Bank Washington D.C. Contact details for author: Maurice Kottelat Route de la Baroche 12, Case Postale 57, CH-2952 Cornol, Switzerland. Email: [email protected] Th is volume is a product of the staff of the International Bank for Reconstruction and Development/Th e World Bank. Th e fi ndings, interpretations, and conclusions expressed in this paper do not necessarily refl ect the views of the Executive Directors of Th e World Bank or the governments they represent. -
Mongolian Nature Environment and Environment Development Biological and Environment Tourism Facility Programme in Diversity Consortium of Mongolia Mongolia
MINISTRY OF NATURE, GLOBAL UNITED NATIONS CONVENTION ON MONGOLIAN NATURE ENVIRONMENT AND ENVIRONMENT DEVELOPMENT BIOLOGICAL AND ENVIRONMENT TOURISM FACILITY PROGRAMME IN DIVERSITY CONSORTIUM OF MONGOLIA MONGOLIA FOURTH NATIONAL REPORT ON IMPLEMENTATION OF CONVENTION OF BIOLOGICAL DIVERSITY Ulaanbaatar, 2009 FOREWORD Protecting biodiversity, ensuring sustainable utilization of natural resources and limiting the loss of habitat in the face of global climate change and negative anthropogenic impacts is a critical challenge for Mongolia, which has an environment with a harsh continental climate and fragile ecosystems. Today, it is globally recognized that a sustainable development strategy should be harmonized with the environment and in that respect the international community is creating international conventions and agreements that deal with environmental issues. In 1993, Mongolia joined the International Convention on Biological Diversity which was ratified by UN assembly. Mongolia subsequently approved a National Action Plan (NAP) on Biodiversity Conservation in 1996. Within the NAP implementation, measures like improving legal frameworks, strengthening biodiversity conservation management, increasing research activities on flora and fauna and its extinction, minimizing negative impacts toward biodiversity, restricting utilization, promoting public participation in environmental protection activities and expanding cooperation with the international community were carried out. It is my great pleasure to present the Fourth National Report on the implementation of the UN Convention on Biodiversity Conservation, developed in collaboration with the Mongolian Nature and Environment Consortium. This national report was produced following the set of guidelines developed by the CBD Secretariat. Invaluable contributions from relevant line Ministries, non-government organisations and scientists and researchers from various professional and research institutions played a fundamental role in generating this report. -
Complete Mitochondrial Genome of the Amur Sculpin Cottus Szanaga (Cottoidei: Cottidae)
Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: http://www.tandfonline.com/loi/tmdn20 Complete mitochondrial genome of the Amur sculpin Cottus szanaga (Cottoidei: Cottidae) Evgeniy S. Balakirev, Pavel A. Saveliev & Francisco J. Ayala To cite this article: Evgeniy S. Balakirev, Pavel A. Saveliev & Francisco J. Ayala (2016) Complete mitochondrial genome of the Amur sculpin Cottus szanaga (Cottoidei: Cottidae), Mitochondrial DNA Part B, 1:1, 737-738, DOI: 10.1080/23802359.2016.1233470 To link to this article: http://dx.doi.org/10.1080/23802359.2016.1233470 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 03 Oct 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 Download by: [The UC Irvine Libraries] Date: 03 October 2016, At: 11:39 MITOCHONDRIAL DNA PART B: RESOURCES, 2016 VOL. 1, NO. 1, 737–738 http://dx.doi.org/10.1080/23802359.2016.1233470 MITOGENOME ANNOUNCEMENT Complete mitochondrial genome of the Amur sculpin Cottus szanaga (Cottoidei: Cottidae)* Evgeniy S. Balakireva,b,c, Pavel A. Savelievb and Francisco J. Ayalaa aDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA; bA. V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Science, Vladivostok, Russia; cFar Eastern Federal University, School of Natural Sciences, Vladivostok, Russia ABSTRACT ARTICLE HISTORY The complete mitochondrial genome was sequenced in two individuals of the Amur sculpin Cottus sza- Received 2 September 2016 naga. -
Complete Mitochondrial Genomes of the Cherskii's Sculpin Cottus
EVB0010.1177/1176934317726783Evolutionary BioinformaticsBalakirev et al 726783research-article2017 Evolutionary Bioinformatics Complete Mitochondrial Genomes of the Cherskii’s Volume 13: 1–7 © The Author(s) 2017 Sculpin Cottus czerskii and Siberian Taimen Hucho Reprints and permissions: sagepub.co.uk/journalsPermissions.nav taimen Reveal GenBank Entry Errors: Incorrect DOI:https://doi.org/10.1177/1176934317726783 10.1177/1176934317726783 Species Identification and Recombinant Mitochondrial Genome Evgeniy S Balakirev1,2,3, Pavel A Saveliev2 and Francisco J Ayala1 1Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA. 2A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia. 3School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia. ABSTRACT: The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii’s sculpin Cottus czerskii. A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii. Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. -
DNA Metabarcoding Potentially Reveals Multi-Assemblage
bioRxiv preprint doi: https://doi.org/10.1101/186452; this version posted September 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 DNA metabarcoding potentially reveals multi-assemblage 2 eutrophication responses in an eastern North American river 3 4 Joseph M. Craine1, Matthew V. Cannon2, Andrew J. Elmore3, Steven M. Guinn3, Noah 5 Fierer1,4,5 6 1Jonah Ventures, Manhattan KS 66502, USA. 7 2 Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, MD 8 21201, USA 9 3 University of Maryland Center for Environmental Science, Appalachian Laboratory, 10 Frostburg, MD, 21532, USA. 4 11 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 12 80309, USA. 13 5Cooperative Institute for Research in Environmental Science, University of 14 Colorado, Boulder, CO 80309. 15 16 bioRxiv preprint doi: https://doi.org/10.1101/186452; this version posted September 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 Freshwater aquatic ecosystems provide a wide range of ecosystem services, yet provision 19 of these services is increasingly threatened by human activities. Directly quantifying 20 freshwater biotic assemblages has long been a proxy for assessing changing 21 environmental conditions, yet traditional aquatic biodiversity assessments are often time 22 consuming, expensive, and limited to only certain habitats and certain taxa.