DNA Metabarcoding Potentially Reveals Multi-Assemblage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Tale of Two Herichthys
MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 209(1): 1-18 LIVE COLOR PATTERNS DIAGNOSE SPECIES: A TALE OF TWO HERICHTHYS By RONALD G. OLDFIELD1,2, ABHINAV KAKUTURU1, 2 3 4 WILLIAM I. LUTTERSCHMIDT , O. TOM LORENZ , ADAM E. COHEN , AND DEAN A. HENDRICKSON4 Department of Ecology and Evolutionary Biology and Museum of Zoology University of Michigan Ann Arbor, Michigan 48109–1079, USA Ann Arbor, April 27, 2021 ISSN 0076-8406 JOHN LUNDBERG1, EDITOR GERALD SMITH2, EDITOR MACKENZIE SCHONDELMAYER2, COMPOSITOR 1Department of Ichthyology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103 2Museum of Zoology, University of Michigan, Ann Arbor, MI 48197 LIVE COLOR PATTERNS DIAGNOSE SPECIES: A TALE OF TWO HERICHTHYS By RONALD G. OLDFIELD1,2, ABHINAV KAKUTURU1, WILLIAM I. LUTTERSCHMIDT2, O. TOM LORENZ3, ADAM E. COHEN4, AND DEAN A. HENDRICKSON4 ABSTRACT The Rio Grande Cichlid, Herichthys cyanoguttatus, is native to the drainages of the Gulf Coast of northern Mexico and southern Texas and has been introduced at several sites in the US. Previous observations have suggested that non-native populations in Louisiana that are currently recognized as H. cyanoguttatus resemble another species, the Lowland Cichlid, H. carpintis. Traditional morphological and genetic techniques have been insufficient to differentiate these species, but H. carpintis has been reported to differ fromH. cyanoguttatus in color pattern, so we turned to novel electronic photo archives to determine the identity of the species introduced in Louisiana. First, we used the public databases Nonindigenous Aquatic Species Database and Fishes of Texas to infer the historical distributions of these species in the US. -
9 a New Record of Burrowing Mayfly, Anthopotamus Neglectus Neglectus
Ohio Biological Survey Notes 10: 9–12, 2021. © Ohio Biological Survey, Inc. A New Record of Burrowing Mayfly, Anthopotamus neglectus neglectus (Traver, 1935) (Ephemeroptera: Potamanthidae), from Ohio, USA DONALD H. DEAN1 1Departments of Entomology and Chemistry & Biochemistry, 484 W. 12th Ave., The Ohio State University, Columbus, OH USA 43214. E-mail: [email protected] Abstract: A new state record for a mayfly (Ephemeroptera) was collected on the Olentangy River, Delaware County, Ohio, USA. Anthopotamus neglectus Traver (1935) were collected as nymphs and subsequently reared to adults. Keywords: Olentangy River, Delaware County, Ohio Introduction The neglected hackle-gilled burrowing mayfly, or the golden (or yellow) drake to fly fishers, Anthopotamus neglectus was first described by Traver (1935) as Potomanthus neglectus. Bae and McCafferty (1991) reorganized the family Potomanthidae and placed the taxon in a new genus, Anthopotamus McCafferty and Bae (1990). They further divided the species into two subspecies, A. neglectus neglectus and A. neglectus disjunctus. The geographic range of the former species was originally given as a small circle centered in New York. The latter species was centered in the south-central United States. More recently, A. neglectus neglectus has been reported in eastern North America including Ontario, Alabama, Arkansas, Maryland, Missouri, Mississippi, New York, Oklahoma, Tennessee, Virginia, and West Virginia (Randolph, 2002). The online database NatureServe Explorer (2019) lists the range of A. neglectus neglectus as previously stated, with the addition of Georgia and Pennsylvania (but it includes the caveat “Distribution data for U.S. states and Canadian provinces is known to be incomplete or has not been reviewed for this taxon”). -
Variation of the Spotted Sunfish, Lepomis Punctatus Complex
Variation of the Spotted Sunfish, Lepomis punctatus Complex (Centrarehidae): Meristies, Morphometries, Pigmentation and Species Limits BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY The scientific publication of the Alabama Museum of Natural History. Richard L. Mayden, Editor, John C. Hall, Managing Editor. BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY is published by the Alabama Museum of Natural History, a unit of The University of Alabama. The BULLETIN succeeds its predecessor, the MUSEUM PAPERS, which was terminated in 1961 upon the transfer of the Museum to the University from its parent organization, the Geological Survey of Alabama. The BULLETIN is devoted primarily to scholarship and research concerning the natural history of Alabama and the midsouth. It appears irregularly in consecutively numbered issues. Communication concerning manuscripts, style, and editorial policy should be addressed to: Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, The University of Alabama, Box 870340, Tuscaloosa, AL 35487-0340; Telephone (205) 348-7550. Prospective authors should examine the Notice to Authors inside the back cover. Orders and requests for general information should be addressed to Managing Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, at the above address. Numbers may be purchased individually; standing orders are accepted. Remittances should accompany orders for individual numbers and be payable to The University of Alabama. The BULLETIN will invoice standing orders. Library exchanges may be handled through: Exchange Librarian, The University of Alabama, Box 870266, Tuscaloosa, AL 35487-0340. When citing this publication, authors are requested to use the following abbreviation: Bull. Alabama Mus. Nat. Hist. ISSN: 0196-1039 Copyright 1991 by The Alabama Museum of Natural History Price this number: $6.00 })Il{ -w-~ '{(iI1 .....~" _--. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Cottoidei: Cottidae) Necessitates Generic Realignment
G C A T T A C G G C A T genes Article Genetic Evidence for a Mixed Composition of the Genus Myoxocephalus (Cottoidei: Cottidae) Necessitates Generic Realignment Evgeniy S. Balakirev 1,2,*, Alexandra Yu. Kravchenko 1,3 and Alexander A. Semenchenko 3 1 A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; [email protected] 2 School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russia 3 Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] * Correspondence: [email protected] Received: 7 July 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 0.12%) with Megalocottus platycephalus ± and, at the same time, a significantly higher divergence (7.89 0.16%) with the species of the genus ± Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me. -
New Desmid Records from High Mountain Lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey
Turkish Journal of Botany Turk J Bot (2019) 43: 570-583 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1810-71 New desmid records from high mountain lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey 1, 2 Bülent ŞAHİN *, Bülent AKAR 1 Department of Biology Education, Fatih Education Faculty, Trabzon University, Trabzon, Turkey 2 Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey Received: 30.10.2018 Accepted/Published Online: 15.04.2019 Final Version: 08.07.2019 Abstract: The algal flora of 17 lakes and 1 pond in the Artabel Lakes Nature Park were investigated during two summer seasons (2013 and 2016). In total, 26 desmid taxa were found and identified as new records for the desmid flora of Turkey based on their morphotaxonomic characteristics and ecological preferences. The taxa identified belong to the genera Actinotaenium (1), Closterium (1), Cosmarium (15), Micrasterias (1), Spondylosium (1), Staurastrum (5), Teilingia (1), and Tetmemorus (1). Morphotaxonomy, ecology, and distribution of each species were discussed in detail. Key words: Desmids, new records, high mountain lakes, Artabel Lakes Nature Park, Turkey 1. Introduction Desmids are an integral part of benthic habitats of Desmid habitats are exclusively freshwater (Coesel and high mountain lakes; in particular, those of the Northern Meesters, 2007; Kouwets, 2008). Desmids usually prefer Hemisphere (Medvedeva, 2001; Sterlyagova, 2008). In acidic or pH-circumneutral, nutrient-poor, and clear the period from 1998 to 2014, 43 new records of desmid waters (Lenzenweger, 1996; Coesel and Meesters, 2007). species from high mountain lakes in the eastern Black It is well known that members of order Desmidiales Sea Region were identified and published (Şahin, 1998, exhibit great diversity in their external morphology and 2000, 2002, 2007, 2008, 2009; Şahin and Akar, 2007; Akar also have remarkably complex cell symmetry (Lee, 2015). -
Lepomis Spp. Technical Note Prepared by IUCN for the European Commission
Information on measures and related costs in relation to species considered for inclusion on the Union list This technical note has been drafted by a team of experts under the supervision of IUCN within the framework of the contract No 07.0202/2016/739524/SER/ENV.D.2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. This document shall be cited as: Zogaris, S.2017. Information on measures and related costs in relation to species considered for inclusion on the Union list: Lepomis spp. Technical note prepared by IUCN for the European Commission. This technical note provides information on the effectiveness of measures, alongside the required effort and resources, used to prevent the introduction, and to undertake early detection, rapid eradication, and management for the invasive alien species under review. Each table represents a separate measure. Date of completion: 04/12/2017 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected] Species (scientific name) Genus: Lepomis (Rafinesque, -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Microvegetation on the Top of Mt. Roraima, Venezuela
Fottea 11(1): 171–186, 2011 171 Microvegetation on the top of Mt. Roraima, Venezuela Jan KA š T O V S K Ý 1*, Karolina Fu č í k o v á 2, Tomáš HAUER 1,3 & Markéta Bo h u n i c k á 1 1Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic; *e–mail: [email protected] 2University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269–3043, U.S.A. 3Institute of Botany of the Academy of Sciences, Czech Republic, Dukelská 135, Třeboň 37982, Czech Republic. Abstract: Venezuelan Table Mountains (tepuis) are among world’s most unique ecological systems and have been shown to have high incidence of endemics. The top of Roraima, the highest Venezuelan tepui, represents an isolated enclave of species without any contact with the surrounding landscape. Daily precipitation enables algae and cyanobacteria to cover the otherwise bare substrate surfaces on the summit in form of a black biofilm. In the present study, 139 samples collected over 4 years from various biotopes (vertical and horizontal moist rock walls, small rock pools, peat bogs, and small streams and waterfalls) were collected and examined for algal diversity and species composition. A very diverse algal flora was recognized in the habitats of the top of Mt. Roraima; 96 Bacillariophyceae, 44 Cyanobacteria including two species new to science, 37 Desmidiales, 5 Zygnematales, 6 Chlorophyta, 1 Klebsormidiales, 1 Rhodophyta, 1 Dinophyta, and 1 Euglenophyta were identified. Crucial part of the total biomass consisted of Cyanobacteria; other significantly represented groups were Zygnematales and Desmidiales. -
Filter-Feeding Habits of the Larvae of Anthopotamus \(Ephemeroptera
Annls Limnol. 28 (1) 1992 : 27-34 Filter-feeding habits of the larvae of Anthopotamus (Ephemeroptera : Potamanthidae) W.P. McCaffertyl Y.J. Bae1 Keywords : Ephemeroptera, Potamanthidae, Anthopotamus, filter feeding, behavior, morphology, detritus. A field and laboratory investigation of the food and feeding behavior of larvae of the potamanthid mayfly Anthopo tamus verticis (Say) was conducted from 1989 to 1991 on a population from the Tippecanoe River, Indiana (USA). Gut content analyses indicated that all size classes of larvae are detritivores, with over 95 % of food consisting of fine detrital particles. Videomacroscopy indicated that all size classes of larvae are filter feeders, able to utilize both active deposit filter feeding and passive seston filter feeding cycles in their interstitial microhabitat. Deposit filter feeding initially incor porates the removal of loosely deposited detritus with the forelegs. Seston filter feeding initially incorporates filtering by long setae on the forelegs and palps. Mandibular tusks are used to help remove detritus from the foreleg setae. A SEM examination of filtering setae indicated they are hairlike and bipectinate, being equipped with lateral rows of setu- les. The results show that previous assumptions that potamanthid larvae were collector/gatherers are erroneous. The results are applicable to congeners, and all potamanthids, including Palearctic and Oriental elements, are hypothesized to be filter feeders, differing only in some details of behavior. Le régime trophique de type filtreur des larves d'Anthopotamus (Ephemeroptera : Potamanthidae) Mots clés : Ephemeroptera, Potamanthidae, Anthopotamus, type trophique filtreur, comportement, morphologie, débris particulates. Une investigation sur le régime alimentaire et le comportement trophique des larves de l'Ephémère Potamanthidae Anthopotamus verticis (Say) a été menée à la fois sur le terrain et expérimentalement au laboratoire de 1989 à 1991, sur une population de la rivière Tippecanoe, Indiana (USA). -
Биота И Среда Заповедников Дальнего Востока *** Biodiversity and Environment of Far East Reserves
ISSN 2227-149X ФАНО России Российская академия наук Дальневосточное отделение Дальневосточный морской заповедник БИОТА И СРЕДА ЗАПОВЕДНИКОВ ДАЛЬНЕГО ВОСТОКА *** BIODIVERSITY AND ENVIRONMENT OF FAR EAST RESERVES 2016 № 1 Владивосток № 1 (8). 2016 СОДЕРЖАНИЕ – № 1 – CONTENTS Стр. Национальный парк "Бикин". 3 В. Н. Бочарников, Ю. Н. Глущенко, К. Е. Михайлов, Е. Г. Егидарев Bocharnikov V. N., Gluschenko Yu. N., Mikhailov K. E., Egidarev E. G. Bikin Nature Park. Abstract 24 Краткий обзор фауны круглоротых и рыб национального 25 парка «Бикин». А. Ю. Семенченко, С. Ф. Золотухин Semenchenko A.Yu., Zolotukhin S. F. Brief Review of Fish Fauna of the Bikin Nature Park 43 (Ussuri River, Amur River Basin). Abstract Земноводные и пресмыкающиеся национального парка 44 "Бикин" (Приморский край). И. В. Маслова, И. В. Серёдкин Maslova I. V., Seryodkin I. V. Amphibians and Reptiles of the Bikin National Park (Primorsky Krai). Abstract 58 Краткий обзор фауны птиц национального парка "Бикин" 59 Ю. Н. Глущенко, Ю. Б. Шибнев, К. Е. Михайлов, Е. А. Коблик, В. Н. Бочарников Gluschenko Yu. N., Shibnev Yu. B., Mikhailov K. E., Koblik E. A., Bocharnikov V. N. Brief of Ornithological Fauna of the Bikin Nature Park. Abstract 139 Первая инвентаризация териофауны национального парка "Бикин" 140 И. В. Серёдкин, Д. Г. Пикунов, А. М. Паничев, В. Н. Бочарников, Ю. К. Петруненко Seryodkin I. V., Pikunov D. G., Panichev A. M., Bocharnikov V. N., Petrunenko Y. K. The First Theriofauna Inventory of Bikin National Park. Abstract 172 Ретроспективный анализ изменчивости ландшафтов бассейна 173 реки Бикин (среднее течение) Н. Г. Разжигаева, Л. А. Ганзей, А. М. Паничев, Х. А. Арсланов, Л. -
1 New Ohio and Indiana Records of Aquatic Insects (Ephemeroptera
Ohio Biological Survey Notes 9: 1–15, 2019. © Ohio Biological Survey, Inc. New Ohio and Indiana Records of Aquatic Insects (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera: Elmidae, Diptera: Chironomidae) MICHAEL J. BOLTON1, SARAH K. MACY2, R. EDWARD DEWALT3, AND LUKE M. JACOBUS4 1Ohio Environmental Protection Agency, Division of Surface Water, 4675 Homer Ohio Lane, Groveport, OH 43125, Michael.Bolton@epa. ohio.gov; 2Formerly with the Ohio Environmental Protection Agency; current e-mail: [email protected]; 3University of Illinois, Illinois Natural History Survey, 1816 S Oak St., Champaign, IL 61820, [email protected]; 4Indiana University–Purdue University Columbus, 4601 Central Avenue, Columbus, IN 47203, [email protected]. Abstract: New state records and additional locations for rarely collected species are reported for Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), Coleoptera: Elmidae (riffle beetles), and Diptera: Chironomidae (chironomids, non-biting midges, midges). These specimen records result primarily from Ohio Environmental Protection Agency biomonitoring of Ohio streams and from records found in the Purdue University Entomological Research Collection and the Illinois Natural History Survey Insect Collection; a few records were derived from material housed in two other collections. New state records for Ohio consist of the mayflies Acentrella rallatoma Burian & Myers, Acerpenna pygmaea (Hagen), Anafroptilum album (McDunnough), Anafroptilum minor group species 1, Anafroptilum