Sequences Signature and Genome Rearrangements in Mitogenomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp. -
Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy . -
Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]). -
Lake Expansion Elevates Equilibrium Diversity Via Increasing Colonization Hauffe, Torsten; Delicado, Diana; Etienne, Rampal S.; Valente, Luis
University of Groningen Lake expansion elevates equilibrium diversity via increasing colonization Hauffe, Torsten; Delicado, Diana; Etienne, Rampal S.; Valente, Luis Published in: Journal of Biogeography DOI: 10.1111/jbi.13914 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hauffe, T., Delicado, D., Etienne, R. S., & Valente, L. (2020). Lake expansion elevates equilibrium diversity via increasing colonization. Journal of Biogeography, 47(9), 1849-1860. https://doi.org/10.1111/jbi.13914 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-12-2020 Received: 18 September 2019 | Revised: 8 May 2020 | Accepted: 12 May 2020 DOI: 10.1111/jbi.13914 RESEARCH PAPER Lake expansion elevates equilibrium diversity via increasing colonization Torsten Hauffe1 | Diana Delicado1 | Rampal S. -
Cusk Eels, Brotulas [=Cherublemma Trotter [E
FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al. -
Beta Diversity Patterns of Fish and Conservation Implications in The
A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains. -
Chanodichthys Flavipinnis) Ecological Risk Screening Summary
Yellowfin Culter (Chanodichthys flavipinnis) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, March 2019 Web Version, 10/17/2019 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J. Freyhof pers. com. 2010 [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin]).” Status in the United States Chanodichthys flavipinnis has not been documented in trade or in the wild in the United States. Means of Introductions in the United States Chanodichthys flavipinnis has not been documented in the wild in the United States. 1 Remarks Both the current valid name, Chanodichthys flavipinnis and the previous valid name Culter flavipinnis were used to conduct research. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2019): “Current status: Valid as Chanodichthys flavipinnis (Tirant 1883).” From ITIS (2019): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Chanodichthys Species Chanodichthys flavipinnis (Tirant, 1883)” Size, Weight, and Age Range No information was found on size, weight or age for Chanodichthys flavipinnis. Environment From Froese and Pauly (2019): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2019): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J. -
Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput -
Review of the Indo-West Pacific Ophidiid Genera Sirembo and Spottobrotula (Ophidiiformes, Ophidiidae), with Description of Three New Species
Review of the Indo-West Pacific ophidiid genera Sirembo and Spottobrotula (Ophidiiformes, Ophidiidae), with description of three new species Nielsen, Jørgen; Schwarzhans, Werner; Uiblein, Franz Published in: Marine Biology Research DOI: 10.1080/17451000.2014.904885 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Document license: Other Citation for published version (APA): Nielsen, J., Schwarzhans, W., & Uiblein, F. (2015). Review of the Indo-West Pacific ophidiid genera Sirembo and Spottobrotula (Ophidiiformes, Ophidiidae), with description of three new species. Marine Biology Research, 11(2), 113-134. https://doi.org/10.1080/17451000.2014.904885 Download date: 26. sep.. 2021 Marine Biology Research ISSN: 1745-1000 (Print) 1745-1019 (Online) Journal homepage: http://www.tandfonline.com/loi/smar20 Review of the Indo-West Pacific ophidiid genera Sirembo and Spottobrotula (Ophidiiformes, Ophidiidae), with description of three new species Jørgen G. Nielsen, Werner Schwarzhans & Franz Uiblein To cite this article: Jørgen G. Nielsen, Werner Schwarzhans & Franz Uiblein (2015) Review of the Indo-West Pacific ophidiid genera Sirembo and Spottobrotula (Ophidiiformes, Ophidiidae), with description of three new species, Marine Biology Research, 11:2, 113-134, DOI: 10.1080/17451000.2014.904885 To link to this article: http://dx.doi.org/10.1080/17451000.2014.904885 © 2014 The Author(s). Published by Taylor & Francis. Published online: 08 Oct 2014. Submit your article to this journal Article views: 511 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=smar20 Download by: [Copenhagen University Library] Date: 08 February 2016, At: 02:34 Marine Biology Research, 2015 Vol. -
BMC Evolutionary Biology Biomed Central
BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate Lukas Rüber*1, Maurice Kottelat2, Heok Hui Tan3, Peter KL Ng3 and Ralf Britz1 Address: 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK, 2Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland (permanent address) and Raffles Museum of Biodiversity Research, National University of Singapore, Kent Ridge, Singapore 119260 and 3Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260 Email: Lukas Rüber* - [email protected]; Maurice Kottelat - [email protected]; Heok Hui Tan - [email protected]; Peter KL Ng - [email protected]; Ralf Britz - [email protected] * Corresponding author Published: 13 March 2007 Received: 23 October 2006 Accepted: 13 March 2007 BMC Evolutionary Biology 2007, 7:38 doi:10.1186/1471-2148-7-38 This article is available from: http://www.biomedcentral.com/1471-2148/7/38 © 2007 Rüber et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Paedocypris, a highly developmentally truncated fish from peat swamp forests in Southeast Asia, comprises the world's smallest vertebrate. Although clearly a cyprinid fish, a hypothesis about its phylogenetic position among the subfamilies of this largest teleost family, with over 2400 species, does not exist. -
THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER of SCIENCE of Rhodes University
THE KARYOLOGY AND TAXONOMY OF THE SOUTHERN AFRICAN YELLOWFISH (PISCES: CYPRINIDAE) THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by LAWRENCE KEITH OELLERMANN December, 1988 ABSTRACT The southern African yellowfish (Barbus aeneus, ~ capensls, .!L. kimberleyensis, .!L. natalensis and ~ polylepis) are very similar, which limits the utility of traditional taxonomic methods. For this reason yellowfish similarities were explored using multivariate analysis and karyology. Meristic, morphometric and Truss (body shape) data were examined using multiple discriminant, principal component and cluster analyses. The morphological study disclosed that although the species were very similar two distinct groups occurred; .!L. aeneus-~ kimberleyensis and ~ capensis-~ polylepis-~ natalensis. Karyology showed that the yellowfish were hexaploid, ~ aeneus and IL... kimberleyensis having 148 chromosomes while the other three species had 150 chromosomes. Because the karyotypes of the species were variable the fundamental number for each species was taken as the median value for ten spreads. Median fundamental numbers were ~ aeneus ; 196, .!L. natalensis ; 200, ~ kimberleyensis ; 204, ~ polylepis ; 206 and ~ capensis ; 208. The lower chromosome number and higher fundamental number was considered the more apomorphic state for these species. Silver-staining of nucleoli showed that the yellowfish are probably undergoing the process of diploidization. Southern African Barbus and closely related species used for outgroup comparisons showed three levels of ploidy. The diploid species karyotyped were ~ anoplus (2N;48), IL... argenteus (2N;52), ~ trimaculatus (2N;42- 48), Labeo capensis (2N;48) and k umbratus (2N;48); the tetraploid species were B . serra (2N;102), ~ trevelyani (2N;±96), Pseudobarbus ~ (2N;96) and ~ burgi (2N;96); and the hexaploid species were ~ marequensis (2N;130-150) and Varicorhinus nelspruitensis (2N;130-148).