Processing and Marketing Recommendations

Total Page:16

File Type:pdf, Size:1020Kb

Processing and Marketing Recommendations WP T1 Activity A. T1.2 Implementation of VCA OUTPUT FOR DELIVERABLE D T1.2.1 PROCESSING AND MARKETING RECOMMENDATION Author: ENVIRONMENT PARK STRUCTURE OF THE ITALIAN SUPPLY CHAIN ............................................................................ 9 MARKET IN THE EUROPEAN ALPINE SPACE ............................................................................. 15 GERMANY ....................................................................................................................................... 16 AUSTRIA .......................................................................................................................................... 19 SLOVENIA ....................................................................................................................................... 19 FRANCE ........................................................................................................................................... 19 NEW TREND IN THE MARKET OF HERBS .................................................................................... 25 REFERENCES ...................................................................................................................................... 29 THE VALUE CHAIN OF HERBS IN EUROPE THE MARKET SITUATION IN ITALY The cultivation of herbs represents a niche for specialist, since the particular requirements and needs they have for growing. Moreover, it is very difficult to obtain exhaustive statistical data due to the niche economic sector, where the productions are traditionally represented by spontaneous species and characterized by low volumes. Furthermore, for these crops, which are not subject to the Common Market Organization (CMO) of the Common Agricultural Policy (CAP) in the European Union, there isn’t statistical monitoring at European level, as opposed to other crops. The aromatic plants are included in the definition of medicinal plants (medicinal, aromatic and perfume plants). The list of officinal plants cultivated in Italy was realized with the collaboration of the Italian Federation of Officinal Plants Producers (FIPPO), of Assoerbe (Italian Association representing the Growers, Collectors, Transformers, Importers, Exporters, Wholesalers and Representatives of Foreign Houses of Medicinal Plants, Herbs, Spices, Plant Extracts, Essential Oils and their derivatives) and SISTE (Italian Society Applied sciences to medicinal plants and products for health). The list contains 296 species, spontaneous and cultivated, used in Italy (therefore also imported). Around 48% of the species included in the list, are also cultivated or cultivable in other countries. As for the habitat, 32 species (11%) are cosmopolitan. The species that have a habitat in Europe are 89 (30%); also, there are 56 Eurasian species, 33 Mediterranean species and 6 alpine species (Achillea erba-rotta subsp. Moschata- common name simple leaved milfoil, Alchemilla alpina, Artemisia genepi and Peucedanum ostruthium). In the table below there is a list of species cultivated in Italy (as a result of FIPPO members interviews in 2012). The total cultivated surface in Italy is about 1,500 hectares and the main species, in terms of cultivated area, are mint, lavender, chamomile, fennel, sage, lemon balm, passionflower, coriander, etc . The table also shows the term "different species" that refers to species, like saffron, milk thistle, yarrow, rota grass, Artemisia genipi that are present in areas under 0.3 hectares (Istat 2011). Species Surface in ha Mint 253.54 Lavender 136.64 Chamomile 123.10 Fennel 78.21 Sage 68.45 Melissa 47.69 Roman 45.05 chamomile Passiflora 39.21 Coriander 37.00 Hybrid 32.13 lavender Oregano 24.25 Psillo 23.00 Helichrysum 22.44 Rosemary 20.97 Absinthe 18.62 Savory 17.37 Dandelion 17.10 Nattle 15.10 Hyssop 14.53 Mallow 12.86 Aloe vera and 12.08 arborescens Thyme 11.48 Echinacea 7.52 Sclarea 7.33 Blackcurrant 7.31 Burdock 6.80 Artichoke 5.20 Yarrow 4.38 Escolzia 2.50 Galega 2.26 Violet 2.25 Marigold 2.11 St. John’s wort 1.62 Tarragon 1.25 Marjoram 1.10 Myrtle 0.52 Lespedeza 0.50 Different 379.94 species Total 1503.38 Table 1 List of plant and relative hectars of cultivation in Italy (ISTAT 2010, FIPPO, 2012) REGIONAL SPECIFICATION Region Number of Surface (ha) Companies Piemonte1 248 869.18 Valle d’Aosta 32 10.73 Liguria 89 34.50 Lombardia 119 151.11 Trentino Alto 71 19.18 Adige Veneto 75 115.13 Friuli Venezia 37 50.67 Giulia Tab. 2 Companies and surface- regional specification (ISTAT Censimento, 2010) PRODUCTS AND PROCESSES The main market areas for herbs in Italy are represented by: 1. PRIMARY AGRICULTURAL ACTIVITY PROCESSES PRODUCTS Cultivation and harvesting Fresh plants wash 4- range products (ready-to- eat fresh-cut herbs) 2. AGRO-INDUSTRY PROCESSES PRODUCTS Cutting and selection Herbs for infusions, flavors Extraction Liquid and semi-liquid extract (maceration, industrial, semi- industrial Distillation Essential oils Rectification Drying Dried plants for tea Concentration , freeze drying Concentrated extracts Formulation, packaging Final products with herbs In Italy, a limited range of species that include peppermint, passiflora, wormwood, dandelion, echinacea, lemon balm, oregano, sage and chamomile, there is a well- established agronomic practice, which allows its production in an advanced and competitive context. For other species, lacks of technical and agronomic notions on all the phases of the cultivation process are still present. ITALIAN IMPORTS In 2011, Italian imports of officinalis plants and their derivates amounted to about 161 thousand tons with an outlay of 999 million euros. Compared to the total imports of agricultural and food products, the sector represents around 2.5%. Fig. 1 Pie chart for the percentage of imported officinal plants and their derivates (ISMEA 2013) % Import of officinalis plants Odoriferous substances for the food 30.5% industry Odoriferous substances for the no- 22.8% food industry Juices and plant extracts 11.6% The and mate 5.9% Essential oils 4.8% Spices and aromatic herbs 4.7% Officinalis and aromatic plants 5.5% Dyes 3.9% Extract for tanning 3.5% Pepper 2.4% Tires and resins 2.3% Table 3 Export in Italy- Others 1.5% percentage ITALIAN EXPORTS In 2011, total Italian exports of officinal plants and their derivatives amounted to about 82 thousand tons with revenues of 413 million euros. Compared to total exports of agricultural and food products, the sector represents around 1.4%. Fig. 2 Pie chart for the percentage of exported officinal plants and their derivates (ISMEA 2013) Export of officinalis plants % Odoriferous substances for the food 15.6% industry Odoriferous substances for the no- food 7.8% industry Juices and plant extracts 27.0% The and mate 3.4% Essential oil 19.3% Spices and aromatic herbs 5.6% Officinalis and aromatic plants 4.4% Dye 8.7% Extract for tanning 4.5% Pepper 2.4% Tires and resins 1.2% Others 0.5% Tab.4 Export of officinal plants – percentage STRUCTURE OF THE ITALIAN SUPPLY CHAIN The value chain of officinal plants in Italy is particularly complex. The main difficulties in defining a model that summarizes and expresses in a complete manner the structure of the supply chain and the relationships between the different actors that compose it, can be traced to the following points: - High number of cultivated, semi-finished and finished products that are generated in this chain; - Number of types of actors taking part in the supply chain (collectors, producers, processors, end users, etc.); - Different degree of vertical integration between actors of different stages of the supply chain. Fig. 3 Structure of Italian supply chains (ISMEA, 2013) THE CARACHERISTICS OF ACTORS IN THE VALUE CHAIN SPONTANEOUS COLLECTORS The manual harvesting of herbs is the less practiced but it is recognized by the legislation on organic farming, which assimilates it to cultivation. The buyer is generally a wholesaler, often located also far from the collection areas, which on the basis of relationships established over time, assures a certain purchase of raw materials, year after year. The volumes and values of this market are unknown, even if there are important products - such as helichrysum, gentian roots, birch, oregano, etc. - which still largely come from spontaneous harvesting carried out in the Apennines, in the Alps and in the islands. FARMS In Italy, the area used for the cultivation of aromatic, medicinal and seasoning plants is about 7,000 hectares. In detail, the area dedicated permanently to the cultivation (according to properly agronomic canons) of herbaceous and arboreal plants that are strictly definable as officinalis is between 2,000 and 2,500 hectares, with a production that can be estimated between 2,000 and 3 thousand tons of product per year (FIPPO; 2012). This type of farms is mainly located in historical production areas, such as the Po Valley, between the Cuneo area and the Turin area (Moretta, Pancalieri, Savigliano), in some areas of the Veneto region, in the Marches (Macerata, Ascoli) and in some areas between Puglia and Basilicata, and in Sicily. This type of farms - in practice the heart of the primary sector - according to FIPPO covers about one hundred structures; the cultivation of officinalis plants is practiced on surfaces between 5 and 30 hectares, whith 3 up to 10 different species. From a technical point of view, this cultivation is done by following "intensive" models, using the irrigation and fertilization practice. According to FIPPO assessments, in these pedoclimatic and
Recommended publications
  • UPDATED 18Th February 2013
    7th February 2015 Welcome to my new seed trade list for 2014-15. 12, 13 and 14 in brackets indicates the harvesting year for the seed. Concerning seed quantity: as I don't have many plants of each species, seed quantity is limited in most cases. Therefore, for some species you may only get a few seeds. Many species are harvested in my garden. Others are surplus from trade and purchase. OUT: Means out of stock. Sometimes I sell surplus seed (if time allows), although this is unlikely this season. NB! Cultivars do not always come true. I offer them anyway, but no guarantees to what you will get! Botanical Name (year of harvest) NB! Traditional vegetables are at the end of the list with (mostly) common English names first. Acanthopanax henryi (14) Achillea sibirica (13) Aconitum lamarckii (12) Achyranthes aspera (14, 13) Adenophora khasiana (13) Adenophora triphylla (13) Agastache anisata (14,13)N Agastache anisata alba (13)N Agastache rugosa (Ex-Japan) (13) (two varieties) Agrostemma githago (13)1 Alcea rosea “Nigra” (13) Allium albidum (13) Allium altissimum (Persian Shallot) (14) Allium atroviolaceum (13) Allium beesianum (14,12) Allium brevistylum (14) Allium caeruleum (14)E Allium carinatum ssp. pulchellum (14) Allium carinatum ssp. pulchellum album (14)E Allium carolinianum (13)N Allium cernuum mix (14) E/N Allium cernuum “Dark Scape” (14)E Allium cernuum ‘Dwarf White” (14)E Allium cernuum ‘Pink Giant’ (14)N Allium cernuum x stellatum (14)E (received as cernuum , but it looks like a hybrid with stellatum, from SSE, OR KA A) Allium cernuum x stellatum (14)E (received as cernuum from a local garden centre) Allium clathratum (13) Allium crenulatum (13) Wild coll.
    [Show full text]
  • Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
    Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil.
    [Show full text]
  • Show Activity
    A Cytochrome-P450-Inhibitor *Unless otherwise noted all references are to Duke, James A. 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FL. CRC Press. Plant # Chemicals Total PPM Acacia farnesiana Huisache; Cassie; Popinac; Sweet Acacia; Opopanax 2 Achillea millefolium Yarrow; Milfoil 1 Acorus calamus Flagroot; Sweetroot; Sweet Calamus; Myrtle Flag; Calamus; Sweetflag 1 384.0 Agastache rugosa 1 Ageratum conyzoides Mexican ageratum 1 Aloysia citrodora Lemon Verbena 1 Alpinia officinarum Lesser Galangal; Chinese Ginger 1 800.0 Alpinia galanga Siamese Ginger; Languas; Greater Galangal 1 24000.0 Ammi majus Bishop's Weed 2 16000.0 Anacardium occidentale Cashew 1 Anethum graveolens Garden Dill; Dill 1 Angelica dahurica Bai Zhi 2 Angelica archangelica Angelica; Wild Parsnip; Garden Angelica 2 5050.0 Apium graveolens Celery 3 Artemisia dracunculus Tarragon 2 141.0 Boronia megastigma Scented Boronia 1 Calamintha nepeta Turkish Calamint 1 Camellia sinensis Tea 2 Cananga odorata Cananga; Ylang-Ylang 1 Capsicum frutescens Tabasco; Cayenne; Chili; Hot Pepper; Spur Pepper; Red Chili 1 35800.0 Capsicum annuum Cherry Pepper; Cone Pepper; Paprika; Bell Pepper; Sweet Pepper; Green Pepper 2 8000.0 Centaurea calcitrapa Star-Thistle 1 Chenopodium album Lambsquarter 1 Cinnamomum verum Ceylon Cinnamon; Cinnamon 1 20320.0 Cinnamomum camphora Camphor; Ho Leaf 1 Cinnamomum aromaticum Cassia Lignea; Chinese Cassia; Chinesischer Zimtbaum (Ger.); Canela de la China (Sp.); 1 Saigon Cinnamon; Chinazimt (Ger.); Kashia-Keihi
    [Show full text]
  • Peucedanum Ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells Through Interference with NF-Κb Signaling
    biomolecules Article Peucedanum ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells through Interference with NF-κB Signaling Christoph Lammel 1, Julia Zwirchmayr 2 , Jaqueline Seigner 1 , Judith M. Rollinger 2,* and Rainer de Martin 1 1 Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; [email protected] (C.L.); [email protected] (J.S.); [email protected] (R.d.M.) 2 Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-1-4277-55255; Fax: +43-1-4277-855255 Received: 5 June 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: Twenty natural remedies traditionally used against different inflammatory diseases were probed for their potential to suppress the expression of the inflammatory markers E-selectin and VCAM-1 in a model system of IL-1 stimulated human umbilical vein endothelial cells (HUVEC). One third of the tested extracts showed in vitro inhibitory effects comparable to the positive control oxozeaenol, an inhibitor of TAK1. Among them, the extract derived from the roots and rhizomes of Peucedanum ostruthium (i.e., Radix Imperatoriae), also known as masterwort, showed a pronounced and dose-dependent inhibitory effect. Reporter gene analysis demonstrated that inhibition takes place on the transcriptional level and involves the transcription factor NF-κB. A more detailed analysis revealed that the P. ostruthium extract (PO) affected the phosphorylation, degradation, and resynthesis of IκBα, the activation of IKKs, and the nuclear translocation of the NF-κB subunit RelA.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic)
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic) Plant Chemical Count Activity Count Garcinia xanthochymus 1 1 Nicotiana rustica 1 1 Acacia modesta 1 1 Galanthus nivalis 1 1 Dryopteris marginalis 2 1 Premna integrifolia 1 1 Senecio alpinus 1 1 Cephalotaxus harringtonii 1 1 Comptonia peregrina 1 1 Diospyros rotundifolia 1 1 Alnus crispa 1 1 Haplophyton cimicidum 1 1 Diospyros undulata 1 1 Roylea elegans 1 1 Bruguiera gymnorrhiza 1 1 Gmelina arborea 1 1 Orthosphenia mexicana 1 1 Lumnitzera racemosa 1 1 Melilotus alba 2 1 Duboisia leichhardtii 1 1 Erythroxylum zambesiacum 1 1 Salvia beckeri 1 1 Cephalotaxus spp 1 1 Taxus cuspidata 3 1 Suaeda maritima 1 1 Rhizophora mucronata 1 1 Streblus asper 1 1 Plant Chemical Count Activity Count Dianthus sp. 1 1 Glechoma hirsuta 1 1 Phyllanthus flexuosus 1 1 Euphorbia broteri 1 1 Hyssopus ferganensis 1 1 Lemaireocereus thurberi 1 1 Holacantha emoryi 1 1 Casearia arborea 1 1 Fagonia cretica 1 1 Cephalotaxus wilsoniana 1 1 Hydnocarpus anthelminticus 2 1 Taxus sp 2 1 Zataria multiflora 1 1 Acinos thymoides 1 1 Ambrosia artemisiifolia 1 1 Rhododendron schotense 1 1 Sweetia panamensis 1 1 Thymelaea hirsuta 1 1 Argyreia nervosa 1 1 Carapa guianensis 1 1 Parthenium hysterophorus 1 1 Rhododendron anthopogon 1 1 Strobilanthes cusia 1 1 Dianthus superbus 1 1 Pyropolyporus fomentarius 1 1 Euphorbia hermentiana 1 1 Porteresia coarctata 1 1 2 Plant Chemical Count Activity Count Aerva lanata 1 1 Rivea corymbosa 1 1 Solanum mammosum 1 1 Juniperus horizontalis 1 1 Maytenus
    [Show full text]
  • Conservation Gaps in Traditional Vegetables Native to Europe and Fennoscandia
    agriculture Article Conservation Gaps in Traditional Vegetables Native to Europe and Fennoscandia Kauê de Sousa 1,2 and Svein Øivind Solberg 1,* 1 Department of Agricultural Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences, 2318 Hamar, Norway; [email protected] 2 Bioversity International, 00054 Rome, Italy * Correspondence: [email protected]; Tel.: +46-7354-01516 Received: 15 July 2020; Accepted: 3 August 2020; Published: 6 August 2020 Abstract: Vegetables are rich in vitamins and other micronutrients and are important crops for healthy diets and diversification of the food system, and many traditional (also termed underutilized or indigenous) species may play a role. The current study analyzed 35 vegetables with a European region of diversity with the effort to map the conservation status in Fennoscandia and beyond. We mapped georeferenced occurrences and current genebank holdings based on global databases and conducted conservation gaps analysis based on representativeness scores in situ and ex situ. Out of the 35 target species, 19 got at a high priority score for further conservation initiatives, while another 14 species got a medium priority score. We identified a pattern where traditional vegetables are poorly represented in genebank holdings. This corresponds well to a lack of attention in the scientific community measured in number of published papers. Considering the grand challenges ahead in terms of climate change, population growth and demand for sustainability, traditional vegetables deserve greater attention. Our contribution is to provide a basis for conservation priorities among the identified vegetables species native to Fennoscandia. Keywords: crop wild relatives; ecosystem services; ensemble models; genetic diversity; plant genetic resources; species distribution models 1.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • Tuexenia-Beiheft-11-2018.Pdf
    Tuexenia Mitteilungen der Floristisch–soziologischen Arbeitsgemeinschaft Beiheft Nr. 11 Edelweiß und Gewürztraminer – Vielfalt der Natur- und Kulturlandschaft der Steiermark Herausgegeben von Christian Berg, Martin Magnes, Patrick Schwager, Kurt Stüwe, Kurt Zernig & Anton Drescher Im Auftrag der Floristisch-soziologischen Arbeitsgemeinschaft Graz 2018 ISSN 1866-3885 Inhalt_Tuexenia_Beiheft_11.pdf 1 Mai 15, 2018 10:00:57 Auftraggeber für die Herausgabe der Tuexenia-Beihefte Dr. Dominique Remy (Geschäftsführer der Floristisch-soziologischen Arbeitsgemeinschaft, FlorSoz) Barbarastr. 13 49076 Osnabrück Tel. +49 541 969 2829 [email protected] www.tuexenia.de Selbstverlag der Floristisch-soziologischen Arbeitsgemeinschaft e. V. (FlorSoz) Text Layout: FlorSoz AG Umschlag Layout: Leviendruck GmbH, Osnabrück Umschlagkonzept: Goltze-Druck, Göttingen Titelfoto: Oben: Hochschwab-Massiv, Blick ins Trawiestal Richtung Nordosten (R. Homberger, 9.10.2008); Unten: Panorama des Murtals bei Leoben von Süden aus, Mitte links der Häuselberg (R. Homberger, 2.10.2017); Inlet: Ostalpen-Nelke (Dianthus alpinus) (C. Berg) Druck: Leviendruck GmbH, Osnabrück Inhalt_Tuexenia_Beiheft_11.pdf 2 Mai 15, 2018 10:00:57 Inhaltsverzeichnis Einführung Einführung in das Exkursionsgebiet Steirische Ostalpen und südöstliches Alpenvor- land (Steiermark, Österreich) ................... .............. .............. 5 Christian Berg, Martin Magnes, Patrick Schwager, Kurt Stüwe, Kurt Zernig & Anton Drescher Geologie der Steiermark – relevante Aspekte für die Botanik
    [Show full text]
  • Threats to Australia's Grazing Industries by Garden
    final report Project Code: NBP.357 Prepared by: Jenny Barker, Rod Randall,Tony Grice Co-operative Research Centre for Australian Weed Management Date published: May 2006 ISBN: 1 74036 781 2 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Weeds of the future? Threats to Australia’s grazing industries by garden plants Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Weeds of the future? Threats to Australia’s grazing industries by garden plants Abstract This report identifies 281 introduced garden plants and 800 lower priority species that present a significant risk to Australia’s grazing industries should they naturalise. Of the 281 species: • Nearly all have been recorded overseas as agricultural or environmental weeds (or both); • More than one tenth (11%) have been recorded as noxious weeds overseas; • At least one third (33%) are toxic and may harm or even kill livestock; • Almost all have been commercially available in Australia in the last 20 years; • Over two thirds (70%) were still available from Australian nurseries in 2004; • Over two thirds (72%) are not currently recognised as weeds under either State or Commonwealth legislation.
    [Show full text]
  • Coumarins from Angelica Lucida L. - Antibacterial Activities
    Molecules 2009, 14, 2729-2734; doi:10.3390/molecules14082729 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Coumarins from Angelica lucida L. - Antibacterial Activities Jaroslaw Widelski 1, Milena Popova 2, Konstantia Graikou 3, Kazimierz Glowniak 1 and Ioanna Chinou 3,* 1 Department of Pharmacognosy with Medicinal Plant Laboratory, Skubiszewski Medicinal University of Lublin, 1 Chodzki str., 20-093, Poland; E-mails:[email protected] (J.W.), [email protected] (K.G.) 2 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; E-mail: [email protected] (M.P.) 3 Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Athens 15771, Greece; E-mail: [email protected] (K.G.) * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 1 July 2009; in revised form: 20 July 2009/ Accepted: 20 July 2009 / Published: 27 July 2009 Abstract: The first phytochemical investigation of the fruits of Angelica lucida has led to the isolation and characterization of five known coumarins (imperatorin, isoimperatorin, heraclenol, oxypeucedanin hydrate and heraclenin). All isolated compounds were identified by means of spectral and literature data. The extracts and the isolated constituents from A. lucida have been also evaluated for their antimicrobial activity against six Gram positive and negative bacteria, two oral pathogens and three human pathogenic fungi, exhibiting an interesting antimicrobial profile. Keywords: Angelica lucida; apiaceae; coumarins; antibacterial activity Introduction Angelica lucida L. is a species of Angelica genus (Apiaceae) known by the common names seacoast angelica and sea-watch.
    [Show full text]
  • Crops of European Origin 35
    CROPS OF EUROPEAN ORIGIN 35 Crops of European origin K. Hammer1 and M. Spahillari2 1 University of Kassel, Steinstrasse 11, 37213 Witzenhausen, Germany 2 Former Address: Enti Shteteror i Farave, Banka Gjenetike, Tirana, Albania 2 Present address: 06466 Gatersleben, Liebigweg 5, Germany Introduction Europe is not usually considered a cradle of agriculture and horticulture, but it has a wealth of plant genetic resources (Hammer & Schlosser 1995). Whereas the major crops have been introduced from the Southeast, minor crops have been developed and domesticated in the area. There are only a few estimates available on the number of crop plants in Europe. Hammer (1999) estimated 500 crop plants on the basis of 7000 crop plants worldwide and other data. However, there is no inventory enumerating the relevant species. Materials and methods Schlosser et al. (1991) compiled the useful plants list from the list of wild plants of middle Europe (Ehrendorfer 1973). Using Schlosser et al. (1991) as a reference, information about the cultivated species was obtained. Nine groups of use have been considered as indicated in Table 1. The species have been classified according to their main use. Ornamental plants, ornamental and lawn grasses (O); woody plants for wind breaks, soil erosion control or ornament (W); and forest trees (F) have not been considered in the groups of main use. The cultivation for one of the nine groups of use, regardless of time and location of cultivation, was taken as the principal criterion for the inclusion of a species in the list of European crops. Many species were cultivated in the past and some European plants became crops in other parts of the world.
    [Show full text]