Pitch Moths in Utah What Is Making These Pitch Masses on Pines? Pitch Moths in Utah the Moth People Want to Blame

Total Page:16

File Type:pdf, Size:1020Kb

Pitch Moths in Utah What Is Making These Pitch Masses on Pines? Pitch Moths in Utah the Moth People Want to Blame Pitch Moths in Utah What is making these pitch masses on pines? Pitch Moths in Utah The Moth People Want to Blame Zimmerman Pine Moth: Dioryctria zimmermani Pitch Moths in Utah Known Zimmerman Pine Moth Distribution Austrian Scotch Pondo Zimmerman Pine Moth Pitch Moths in Utah Other Pitch Makers: Pyralidae Pitch Nodule Moths Pinyon Pitch Mass Pinyon Tip Moth Retiniaspp. Dioryctria ponderosae Dioryctria albovittella Pinyon; ponderosa Ponderosa; pinyon; pinus Pinyon Pitch Moths in Utah Bark Beetles Ips Dendroctonus Pitch Moths in Utah Bark Beetles Canopy Exit Galleries Frass fading holes Pitch Moths in Utah Bark Beetles Disease/Abiotic? Pitch Moths in Utah So…What is it? Pitch Moths in Utah Only 3 Clearwing species attack Pinaceae in NA Pitch Moth Distribution Pitch Mass Borer Doug-Fir Pitch Moth Sequoia Pitch Moth Pitch Moths in Utah Pitch Mass Borer Synanthedon pini Hosts: Eastern white pine*; white spruce; jack pine; scotch pine Pitch Moths in Utah Douglas-Fir Pitch Moth Synanthedon novaroensis Hosts: Lodgepole pine; Douglas-Fir; Picea spp.; Pinus spp. Pitch Moths in Utah Sequoia Pitch Moth Synanthedon sequoiae Hosts: Pinus spp.; Picea spp.; Douglas-Fir Pitch Moths in Utah LarVal and Adult Collections Taken April 22, 2015 Pitch Moths in Utah LarVal Habits Gallery: Vertical and lateral; up to 5” Pitch Moths in Utah Pitch Moths in Utah Identification of Adult Moths Pitch Moths in Utah Identification of Adult Moths Pitch Moths in Utah Identification of Adult Moths S. novaroensis = S. sequoiae Pitch Moths in Utah Process of Elimination Sequoia Pitch Moth Doug-Fir Pitch Moth Pitch Mass Borer Likely our moth unless Not morphologically Not morphologically another undescribed species similar similar exists here PCR not a match Distribution eastern Pitch Moths in Utah Sequoia Pitch Moth Life Cycle LarVa: Always Present Pupae Egg Adult Flight • 1-2 Yr. life cycle • offset, oVerlapping generations Pitch Moths in Utah Sequoia Pitch Moth Biological Points • LarVae feed in cambium and sap/heartwood (primarily in spruces) • Young larVae usually in gallery; older in resin mass • LarVal feeding produces copious resin • LarVal feeding usually aesthetic; serious damage/death may occur • Adult females attracted to freshly pruned/damaged trees • Abandoned galleries are attractiVe to graVid females • Daytime flyers Pitch Moths in Utah Sequoia Pitch Moth Non-Chemical Control • Avoid pruning February – September • Avoid any mechanical injury to trees using buffer zones (mowers, weed-whippers, tree staking materials, etc.) • Select more resistant pines (they seem to faVor Austrian and scotch pine in UT) • Proper irrigation • Peeling pitch masses with larVae Pitch Moths in Utah Sequoia Pitch Moth Chemical Control • All fact sheets suggest that there are no recommended insecticides for this insect. • Systemic neonicitinoids ineffective against clearwings. • CoVer sprays ineffectiVe: Carbaryl, Bifenthrin, Permethrin • Does Emamectin Benzoate work? Boxer; TreeAge • John Brown, WA. Study suggests that it does work. Clearwing Moths in Utah There are Others… Lilac-Ash Borer Peachtree Borer Sycamore Borer Western Poplar Clearwing Raspberry Crown Borer Common Pests of Schools and Structures in Utah https://utahpests.usu.edu/schoolIPM/htm/pest-id-guide/ Ryan Davis [email protected] 435-797-2435 utahpests.usu.edu.
Recommended publications
  • Zimmerman Pine Moth Phil Pellitteri, UW Insect Diagnostic Lab
    XHT1164 Provided to you by: Zimmerman Pine Moth Phil Pellitteri, UW Insect Diagnostic Lab Zimmerman pine moth (Dioryctria zimmermani) was first detected in the US in 1879, and has subsequently been found and is established throughout the northern US east of the Rocky Mountains. Austrian and Scots pines are preferred hosts of Zimmerman pine moth. However Eastern white and mugo pines are also attacked. Symptoms of Zimmerman pine moth. Tunneling by larvae in branch whorls leads to formation of masses of pitch (left). Sap from feeding sites often runs down branches and trunks (right). Left photo courtesy of the Minnesota Department of Natural Resources Archive, Minnesota Department of Natural Resources, Bugwood.org Appearance: Adult Zimmerman pine moths are midsized with gray and red- brown wings, marked with zigzag lines. Larvae are generally dirty white to light grey and up to one inch long. They can only be found in pitch masses, under bark or in new shoots. Symptoms and Effects: Zimmerman pine moth larvae tunnel into new growth causing shoot dieback, or into whorl areas causing masses of pitch to form at the wound site. Repeated attacks by the larvae cause a weakening at the area of the infestation and make the branches and trunk susceptible to breakage. Life Cycle: Zimmerman pine moth has a one-year life cycle and spends the winter as a young caterpillar underneath bark scales of infested trees. In mid to late April, larvae become active and they migrate to the base of branches or shoots and burrow inside. Larvae continue to feed into July and then pupate within a chamber in a mass of pitch.
    [Show full text]
  • Shade Tree Borers No
    I N S E C T S E R I E S TREES & SHRUBS Shade Tree Borers no. 5.530 by W.S. Cranshaw and D.A. Leatherman 1 Shade tree borers are insects that develop underneath the bark of woody plants. Most of these insects can attack only dying trees, felled logs or trees under stress. Stress to woody plants may be the result of mechanical injury, recent transplanting, overwatering or drought. These borers often are incorrectly blamed Quick Facts... for damage caused by a pre-existing condition or injury. Certain borers, in particular the “clear-wing borers,” are capable of damaging apparently healthy trees. Shade tree borers are insects that develop underneath the Life History and Habits bark of trees and shrubs. Certain A large number of beetles and moths develop as wood borers in their beetles and moths are the most immature (larval) stage. When full-grown, typically in one to two years, the adult common borers. stages cut a hole through the bark and emerge. Many of the adult borers, particularly the longhorned beetles and Most shade tree borers can metallic wood borers, feed on pollen, tender bark or leaves but do not cause any successfully attack only trees significant injury. The adult stage is mostly spent flying to new host trees, mating that are injured or stressed. and laying eggs. Eggs of most shade tree borers are laid on the bark, usually within small Shade tree borer development cracks. Longhorned beetles and horntails deposit their eggs underneath bark. takes from one to three years to Eggs typically hatch within one to two weeks, and the newly emerged complete.
    [Show full text]
  • Common Names Working-2008Jan
    correct scientific Final Final submission Subfa name (if different WFI common ESC common ESA common Submitted to Submitted to Accepted Assigned to: ID Order Family mily WFI scientific name from WFI) name name name CABI name info? WFIWC: ESA/ESC: Name GROUP 000: Official common name in ESA and ESC are COMPLETED and is same as that in WFI (take off list) need change? bronze poplar bronze poplar bronze poplar 1026-Bup Coleoptera Buprestidae Agrilus liragus Barter and Brown Agrilus granulatus borer borer borer poplar-and-willow poplar-and-willow poplar-and-willow Coleoptera Curculionidae Cryptorhynchus [Sternochetus] lapathi (L.) borer borer borer Coleoptera Curculionidae Nemocestes incomptus (Horn) woods weevil woods weevil wood weevil cooley spruce gall adelgid; douglas fir adelges; sitka Cooley spruce Cooley spruce Cooley spruce spruce gall aphid; gall aphid gall aphid gall aphid spruce gall aphid, Homoptera Adelgidae Adelges cooleyi (Gillette) (adelgid) (adelgid) (adelgid) blue GROUP 00: One of the names in ESA, ESC or WFI differs (Decide by case; likely change highlighted name) ponderosa pine ponderosa pine approved 1989 Lepidoptera Pyralidae Dioryctria auranticella (Grote) pine coneworm coneworm coneworm rough strawberry rough strawberry rough strawberry rough strawberry root weevil; rough Coleoptera Curculionidae Otiorhynchus rugosostriatus (Goeze) root weevil weevil root weevil strawberry weevil western conifer western conifer- western conifer- western conifer- approved 1989 Hemiptera Coreidae Leptoglossus occidentalis Heidemann seed
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Genetic Variability and Leaf Waxes of Some Eucalyptus Species with Horticultural Potential
    29. *t Genetic Variability and Leaf Waxes of some Eucalyptus Species with Horticultural Potential Michelle Gabrielle Wirthensohn B.Ag.Sc. (Hons) Submitted in fulfîllment of the requirements for the degree of Doctor of Philosophy Department of Horticulture, Viticulture and Oenology Waite Agricultural Research Institute University of Adelaide September 1998 Eucalyptus macrocarpa Anne.ndix Table of Contents Abstract I Declaration iv Acknowledgements v List of Tables vi List of Figures viii Glossary xi Chapter 1 General lntroduction I The genus EucalYPtus 2 Lignotubers and mallee 3 Leaf phases 4 Leaf waxes 5 Wax structure 5 Wax chemistry 5 Ontogenetic variation 8 Wax extraction and seParation t0 Functions of epicuticular wax l0 Glaucousness 10 Environmental adaPtations 11 Influencing factors on epicuticular wax t2 Light t2 Temperature and other environmental effects 12 Etfect of agricultural chemicals on leaf waxes 13 Taxonomic significance of wax structure and composition 13 Thesis aims I4 Chapter 2 Plant Material t6 Species Descriptions and Taxonomy l9 Ghapter 3 Species Evaluation and Pruning lntroduction 25 Materials and Methods Species evaluation 26 Pruning trial on E. globulus 26 Pruning trial on 16 species ol Eucalyptus 27 Pruning trial on E. gunnii 27 Results Species evaluation 28 Pruning trial on E. globulus 28 Pruning trial on 16 species ol Eucalyptus 28 Pruning trial on E. gunnii 30 Discussion 47 Chapter 4 Postharvest Treatment of Gut Stems lntroduction 51 Materials and Methods Plant material 5l Vase life 52 Pulsing 52 Pulsing and
    [Show full text]
  • Taxonomic Groups of Insects, Mites and Spiders
    List Supplemental Information Content Taxonomic Groups of Insects, Mites and Spiders Pests of trees and shrubs Class Arachnida, Spiders and mites elm bark beetle, smaller European Scolytus multistriatus Order Acari, Mites and ticks elm bark beetle, native Hylurgopinus rufipes pine bark engraver, Ips pini Family Eriophyidae, Leaf vagrant, gall, erinea, rust, or pine shoot beetle, Tomicus piniperda eriophyid mites ash flower gall mite, Aceria fraxiniflora Order Hemiptera, True bugs, aphids, and scales elm eriophyid mite, Aceria parulmi Family Adelgidae, Pine and spruce aphids eriophyid mites, several species Cooley spruce gall adelgid, Adelges cooleyi hemlock rust mite, Nalepella tsugifoliae Eastern spruce gall adelgid, Adelges abietis maple spindlegall mite, Vasates aceriscrumena hemlock woolly adelgid, Adelges tsugae maple velvet erineum gall, several species pine bark adelgid, Pineus strobi Family Tarsonemidae, Cyclamen and tarsonemid mites Family Aphididae, Aphids cyclamen mite, Phytonemus pallidus balsam twig aphid, Mindarus abietinus Family Tetranychidae, Freeranging, spider mites, honeysuckle witches’ broom aphid, tetranychid mites Hyadaphis tataricae boxwood spider mite, Eurytetranychus buxi white pine aphid, Cinara strobi clover mite, Bryobia praetiosa woolly alder aphid, Paraprociphilus tessellatus European red mite, Panonychus ulmi woolly apple aphid, Eriosoma lanigerum honeylocust spider mite, Eotetranychus multidigituli Family Cercopidae, Froghoppers or spittlebugs spruce spider mite, Oligonychus ununguis spittlebugs, several
    [Show full text]
  • Insect Borers of Shade Trees and Woody Ornamentals
    Know how. Know now. EC1580 Insect Borers of Shade Trees and Woody Ornamentals James A. Kalisch, Extension Associate-Entomology Frederick P. Baxendale, Extension Specialist-Entomology Several species of wood boring insects can damage trees and shrubs in Nebraska (Figure 1). Many of these require carefully timed annual management programs to minimize infestation and damage. This publication covers the biology, life history, and management of the key wood borer species in Nebraska. Nearly all shade trees and most shrubs are subject to borer attack, especially if they are injured or weakened by disease or environmental stresses. Younger trees are likely to decline or die if borer damage is left unchecked. Borers are the cream-colored, worm-like larval stages of beetles or moths. There are four important families of wood borer insects. The life cycles and habits of these vary, depending on the type of borer. Among the beetles are two families — roundheaded borers (Cerambycidae) and fl atheaded borers (Buprestidae). Among the moths are two families of wood-boring caterpillars — clearwing borers (Sesiidae) and carpenterworms (Cossidae). Borer infestations are best prevented because once larvae have penetrated deep beneath the bark, little can be done to control them. In addition, injury by borers can permit fungal and bacterial disease organisms to enter the tree, contributing to further decline. Figure 1. Damage from a wood-boring insect. Borer infestations are best prevented — once they bore beneath the bark, there are few treatment options. Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture.
    [Show full text]
  • Zimmerman Pine Moth Biology and Management RICHARD S
    Zimmerman Pine Moth Biology and Management RICHARD S. COWLES, VALLEY LABORATORY, CONNECTICUT AGRICULTURAL EXPERIMENT STATION Zimmerman pine moth (ZPM or a close christmas-trees/information/pest-fact- Connecticut moths. The closest match relative) has been found feeding on sheets/zimmerman-pine-moth), these (only one of the 516 nucleotides in the main stems of true firs (Abies spp.) in articles have focused on damage by sequence differed) was from a Michigan and Wisconsin (Jill O’Donnell, ZPM to two-needle pines, such as D. cambiicola specimen collected from personal communication). This damage Scotch and Austrian pines, and make British Columbia. It is easy to see how appears similar to damage on the main no mention of damage to the trunks of larvae feeding under the bark could stem of Douglas-firs throughout southern Douglas-fir trees. The uncertainty have been transported with asymptomatic New England that made trees unsaleable regarding the identity of the insect is nursery stock from the Pacific Northwest (Fig. 1). These cankers, when extensive caused by the great diversity of similar, to New England, where they completed enough, cause the tops of affected trees closely related moths that feed on conifers. development and reproduced. However, to turn yellow and eventually die. The Other species that appear to be close efforts to consistently distinguish species cause of this injury was revealed from matches to D. zimmermani include D. closely related to D. zimmermani via samples containing caterpillars obtained abietivorella (the evergreen coneworm wing coloration and gene sequencing in mid-summer. Younger larvae are a moth), D. pseudotsugella, D.
    [Show full text]
  • Genetic Variation in Resistance of Scotch Pine to Zimmerman Pine Moth
    The Great Lakes Entomologist Volume 8 Number 4 - Winter 1975 Number 4 - Winter Article 8 1975 December 1975 Genetic Variation in Resistance of Scotch Pine to Zimmerman Pine Moth Jonathan W. Wright Louis F. Wilson USDA Forest Service John N. Bright Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Wright, Jonathan W.; Wilson, Louis F.; and Bright, John N. 1975. "Genetic Variation in Resistance of Scotch Pine to Zimmerman Pine Moth," The Great Lakes Entomologist, vol 8 (4) Available at: https://scholar.valpo.edu/tgle/vol8/iss4/8 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Wright et al.: Genetic Variation in Resistance of Scotch Pine to Zimmerman Pine THE GREAT LAKES ENTOMOLOGIST GENETIC VARIATION IN RESISTANCE OF SCOTCH PlNE TO ZIMMERMAN PlNE MOTH1 Jonathan W. Wright, Louis F. Wilson and John N. ~ri~ht~ Scotch pine (Pinus sylvestris L.), a forest tree introduced from Eurasia, is commonly planted for Christmas tree and timber use in northeastern United States. In this country it has numerous insect enemies. Among the most important are European pine shoot moth, Rhyacionia buoliana (Schiffermiieller); pine root collar weevil, Hylobius radicis Buchanan;,European pine sawfly, Neodiprion sertifer (Geoffroy); and eastern white-pine shoot borer, Eucosma gloriola Heinrich. Previous studies (Wright et al., 1967; Wright and Wilson, 1972; Steiner, 1974) have revealed large genetic differences in resistance to some of these pests.
    [Show full text]
  • Zimmerman Pine Moth Fact Sheet No
    Zimmerman Pine Moth Fact Sheet No. 5.591 Insect Series|Trees and Shrubs by W.S. Cranshaw* In recent years, the Zimmerman pine and the larvae feed for only a brief time Quick Facts moth, Dioryctria zimmermani, has become before preparing to overwinter. established along the Front Range. Austrian • Larvae of the Zimmerman pines have been most commonly infested. pine moth damage trees by Control Scotch and ponderosa pines are also tunneling under the bark, reported as hosts. Zimmerman pine moth is most making gouging wounds. Branches typi cally break at the crotch vulnerable to controls when larvae are Most injuries occur at branch area where they join the trunk (Figure 1). active and exposed on the bark in spring crotches. Dead and dying branches, most often in the and late summer. Drenching trunk sprays upper half of the tree, commonly indicate pene trate the bark scales. Apply them • Pale yellow, popcorn-like infestations. The first external symptoms around mid-April or in August to kill active, masses of sap occur at of injury are popcorn-like pitch masses at exposed larvae before they enter tree trunks. wounds. wound sites. The pitch masses may reach Permethrin or bifenthrin applied during early golf-ball size and ultimately resemble clusters April to early May is currently recommended • Preventive insecticide sprays, of small, pale grapes (Figure 2). for trunk sprays. applied to the trunk before the The adults, rarely observed, are midsized caterpillars begin tunneling, moths, with gray wings blend ed with are best applied in April or red-brown and marked with zigzag lines.
    [Show full text]
  • Identification of Dioryctria
    SYSTEMATICS Identification of Dioryctria (Lepidoptera: Pyralidae) in a Seed Orchard at Chico, California 1 2 3 1 AMANDA D. ROE, JOHN D. STEIN, NANCY E. GILLETTE, AND FELIX A. H. SPERLING Ann. Entomol. Soc. Am. 99(3): 433Ð448 (2006) ABSTRACT Species of Dioryctria Zeller (Lepidoptera: Pyralidae) are important pests of conifers, particularly in seed orchards, and accurate species identiÞcation is needed for effective monitoring and control. Variable forewing morphology and lack of species-speciÞc genitalic features hinder identiÞcation, prompting the search for additional diagnostic characters. Mitochondrial DNA (mtDNA) sequences from the cytochrome c oxidase I and II genes (COI and COII) were obtained from specimens collected at lights, pheromone traps, and host plants in the PaciÞc Northwest, focusing on a U.S. Forest Service seed orchard in Chico, CA. A 475-bp fragment of COI was used to identify eight distinct genetic lineages from 180 Dioryctria specimens, and these were identiÞed as eight described species. Comparisons among mtDNA variation, adult morphology, larval host association, and pheromone attraction were used to assign individuals to species groups and to identify diagnostic characters for species identiÞcation. A 2.3-kb fragment of COI-COII was sequenced for 14 specimens to increase resolution of phylogenetic relationships. Species groups were well resolved using both the 475-bp and “DNA barcode” subsets of the 2.3-kb sequences, with the 475-bp fragment generally showing lower divergences. The zimmermani and ponderosae species groups were sister groups and had similar male genitalic morphology and larval feeding habits. The pentictonella group was sister to the zimmermani ϩ ponderosae group clade, and all species have raised scales and a Pinus sp.
    [Show full text]
  • Adobe Photoshop
    Isolates from LEPIDOPTERA Biological Integrated Pest Management Research Catalog compiled Robert W. Holley Center for Agriculture & Health 16 January 2014 538 Tower Road Fully Indexed Ithaca, New York 14853-2901 (USA) Includes 1411 isolates CONTACTING ARSEF COLLECTION STAFF Richard A. Humber Curator and Insect Mycologist [email protected] phone: [+1] 607-255-1276 fax: [+1] 607-255-1132 Karen S. Hansen Biological Technician [email protected] phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 Micheal M. Wheeler Biological Technician [email protected] phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 USDA-ARS Biological Integrated Pest Management Research Robert W. Holley Center for Agriculture and Health 538 Tower Road Ithaca, New York 14853-2901 (USA) ii New nomenclatural rules bring new challenges, and new taxonomic revisions for entomopathogenic fungi Richard A. Humber Insect Mycologist and Curator, ARSEF February 2014 The previous (2007) version of this introductory material for ARSEF catalogs sought to explain some of the phylogenetical rationale for major changes to the taxonomy of many key fungal entomopathogens, especially those involving some key conidial and sexual genera of the ascomycete order Hypocreales. Phylogenetic revisions of the taxonomies of entomopathogenic fungi continued to appear, and the results of these revisions are reflected in the ARSEF catalog as quickly and completely as we can do so. As many of people dealing with entomopathogenic fungi are already aware, there has been one still recent event that has a more far-reaching and pervasive influence whose magnitude still remains to be fully appreciated, but that leaves much of the mycological world (including insect mycology) semiparalyzed by uncertainty and worried about the extent and impacts of changes that still remain unformalized and, hence, a continuing subject for speculation and prediction.
    [Show full text]