<<

Europäisches Patentamt *EP000847371B1* (19) European Patent Office

Office européen des brevets (11) EP 0 847 371 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.7: C01B 11/02, A01N 59/00 of the grant of the patent: 19.11.2003 Bulletin 2003/47 (86) International application number: PCT/GB96/02130 (21) Application number: 96928614.5 (87) International publication number: (22) Date of filing: 02.09.1996 WO 97/009267 (13.03.1997 Gazette 1997/12)

(54) PREPARATION AND USE OF BIOCIDAL SOLUTIONS HERSTELLUNG UND VERWENDUNG VON BIOZIDEN LÖSUNGEN PREPARATION ET UTILISATION DE SOLUTIONS BIOCIDES

(84) Designated Contracting States: (74) Representative: Simpson, Paul Christopher et al AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT BTG International Ltd SE 10 Fleet Place Limeburner Lane (30) Priority: 01.09.1995 GB 9517885 London EC4M 7SB (GB)

(43) Date of publication of application: (56) References cited: 17.06.1998 Bulletin 1998/25 EP-A- 0 347 320 DE-A- 2 728 170

(60) Divisional application: • DATABASE WPI Section Ch, Week 8847 Derwent 03077420.2 Publications Ltd., London, GB; Class E36, AN 88-333818 XP002021866 & JP 63 246 304 A (73) Proprietor: BRITISH TECHNOLOGY GROUP (HELTH KOSAN KK) , 13 October 1988 INTER-CORPORATE LICENSING LIMITED London EC4A 7SB (GB) Remarks: The file contains technical information submitted (72) Inventors: after the application was filed and not included in this • PARKINSON, Timothy, John specification Prenton Birkenhead Merseyside L42 8PD (GB) • HARRIS, Arthur Pentre Halkyn Clwyd CH8 8BS (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 847 371 B1

Printed by Jouve, 75001 PARIS (FR) EP 0 847 371 B1

Description

[0001] The present invention relates to a method for the preparation of dioxide, to a solution capable of releasing and to a method of introducing chlorine dioxide to a system requiring bleaching and/or dis- 5 infection and/or other benefits derived from the oxidising effect of chlorine dioxide such as, for example, odour control. [0002] The use of chlorine dioxide as a bleaching agent and disinfectant is well known. In particular, the use of chlorine dioxide as a disinfectant in both industrial and potable water systems has become increasingly important in recent years because in contrast to chlorine, the most widely used oxidising biocide, its use does not give rise to the significant production of trihalomethanes. However the adoption of chlorine dioxide has been restricted because of the 10 hazardous nature of the chemical. [0003] Chlorine dioxide is an unstable gas which is explosive at pressures greater than 40 kPa (3000mmHg). It has been found impossible to compress and store chlorine dioxide gas either alone or in combination with other gases. Chlorine dioxide is therefore manufactured at its point of use. The equipment used to produce chlorine dioxide is costly and has to take account of the hazardous nature of the chemical. Large consumers of the chemical, e.g. those involved 15 in the bleaching of wood pulp, have used somewhat complicated processes based on the reduction of sodium . For use in smaller applications oxidation of chlorite is favoured. However all these processes require considerable capital expenditure, an understanding of the chemistry involved and skilled personnel to operate the units efficiently and safely. [0004] There is therefore a need to be able to produce chlorine dioxide safely and cost effectively in relatively small 20 quantities that will allow a greater number of industrial and potable water systems to take advantage of the superior disinfection and stability properties of the chemical without the need for large capital investments and specially trained personnel. [0005] To an extent this need has been satisfied by the introduction in recent years of "stabilised" solutions of chlorine dioxide sold under a variety of trade names. These products claim to be solutions of chlorine dioxide stabilized in 25 solution through the formation of a variety of complexes. [0006] Thus for example, the producers of Purogene claim to have produced a stable aqueous solution whose active ingredient is chlorine dioxide. They state that during water treatment 50-70% of the chlorine dioxide reacted will im- mediately appear as chlorite and the remainder as . The chlorite, it is stated, will continue to react with remaining oxidisable material reducing entirely to chloride. The reactions occurring being as follows:- 30

- - (1) ClO2 + e → ClO2 (chlorite)

- + - 35 (2) ClO2 + 4H +4e- → Cl +2H2O (chloride)

[0007] Viscona limited claim to have a 5% (50,000ppm) aqueous stabilised chlorine dioxide solution chemically buff- ered at a pH of 9 which releases chlorine dioxide in around 20 minutes when activated. Release of chlorine dioxide is achieved by lowering the pH of the solution to approximately 2 using a suitable acid (with a chlorine donor for rapid 40 results). Activation with citric acid converts only approximately 10% of the available chlorine dioxide to free chlorine dioxide, in aqueous solution, after about 15 minutes. It is stated subsequent activation would continue at a very slow rate. Such a method is not sufficiently rapid for use in disinfection where a need for an activation rate of 50% or more is required. [0008] The rate of activation can be increased using a stronger acid. For example adding 30 to 35% hydrochloric 45 acid to bring the pH down to 1.5 activates 15% of the potential chlorine dioxide in 1 hour, 25% in 2 hours and 50% in 24 hours. [0009] By adding a chlorine donor, e.g. , around a 70 to 80% release in about 15 minutes can be achieved. [0010] Another product, OCS Dioxide produced by Odour Control Systems Limited, is stated to be a combination of oxygen and chlorine joined as chlorine dioxide in aqueous solution. 50 [0011] Chlorine dioxide is generated from these solutions by reacting them with acids, particularly strong acids if a significant release of chlorine dioxide is required in a reasonable period of time. A common approach with these prod- ucts is to dilute the product in a mixing tank with water to give a solution which contains a theoretical concentration of about 2-3000ppm chlorine dioxide and then add sufficient strong acid, hydrochloric acid or phosphoric acid most com- monly, to reduce the pH to within the specified pH range. The chlorine dioxide is then released from the complex into 55 solution over a period of time which can vary from a few minutes to many hours depending primarily on the pH and the strength of the solutions. The solution is then proportionately dosed to the system to provide the required reserve of chlorine dioxide. The "stabilised" chlorine dioxide is never fully released from the complex and conversion rates to "free" chlorine dioxide are quoted as varying from 15% to 75% depending upon pH, concentrations and time.

2 EP 0 847 371 B1

[0012] It is clear that while the introduction of these "stabilised" solutions has provided a means of utilising chlorine dioxide without the need for complex and costly capital equipment they have not fully addressed many problems as- sociated with utilising chlorine dioxide safely and effectively. In particular strong acids have to be used to produce disinfecting amounts of chlorine dioxide, the concentrations and reaction times of the various ingredients have to be 5 carefully controlled to maximise the production of chlorine dioxide and finally the solution has to be dosed proportion- ately to the system to achieve the biocidal concentration of chlorine dioxide. [0013] In addition the preparation of these solutions is expensive as the chlorine dioxide has to be first generated, dissolved into water and then finally stabilised. [0014] DE- 2728170 discloses a method for producing an aqueous chlorine dioxide solution by dissolving a chlorite 10 and hypochlorite in the presence of a carbonate and subsequently and adjusting the solution to be slightly alkaline. [0015] JP- 63246304 discloses a composition for generating chlorine dioxide consisting of a metal chlorite, an acid and a diluting agent. [0016] It is an object of the present invention to provide a source of chlorine dioxide which is simple to use, produces effective amounts of chloride dioxide quickly and safely and is cost effective to produce and use. 15 [0017] According to a first aspect of the present invention there is provided a stable solution for use in an in situ method for producing chlorine dioxide and introducing it to a system for bleaching or disinfection, the solution com- prising:

a chlorite, 20 a chlorine donor, an alkali, and water, the chlorite and chlorine donor being present in a molar ratio of from 1.0:0.3 to 1.0: 15.0 chlorite to chlorine donor, the alkali being present in an amount sufficient to ensure a pH of above 12 and the water being present in an 25 amount to give a theoretical minimum concentration of 0.5 ppm chlorine dioxide on acidification of the solution.

[0018] Preferably the water is present in an amount to give a theoretical minimum concentration of 0.05% (500ppm) chlorine dioxide before the dilution. [0019] Preferably the chlorite and chlorine donor are respectively an chlorite and an alkali metal hy- 30 pochlorite such as, for example, those derived from sodium or potassium or an alkaline earth metal chlorite or an alkaline earth metal hypochlorite, such as, for example, those derived from magnesium or calcium. Alternative chlorine donors, such as, for example, chloroisocyanurate could however be used. [0020] More preferably the chlorite is and the chlorine donor is the hypochlorite, sodium hypochlorite. [0021] The more preferred molar ratio of chlorite to the chlorine donor, preferably a hypochlorite, is about 1.0 : 2.0. 35 [0022] The preferred theoretical concentration of chlorine dioxide derivable from the composition before dilution is from 20,000 to 50,000 ppm and after dilution is from 0.5 to 50 ppm. [0023] The composition of the invention may also be advantageously combined with other chemicals known to be useful in providing biocidal properties in water systems such as:

40 quaternary ammonium and phosphonium compounds, amines, iso-thiazolone mixtures and thiocyanates; and chemicals which are known to provide cleaning and penetration when combined with biocides such as sur- factants particularly non-ionic surfactants.

[0024] In accordance with a second aspect of the present invention there is provided a method of manufacturing the 45 composition of the first aspect of the invention, the method comprising sequentially adding the alkali, chlorine donor and chlorite to water in that order whilst maintaining the pH at 12 or above and the temperature at or below 30°C. [0025] Preferably the chlorine donor is a hypochlorite. [0026] More preferably the pH is maintained at 12 or above. [0027] More preferably the temperature is maintained at or below 20°C. 50 [0028] According to a third aspect of the present invention there is provided a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other beneficial effects e.g. odour control, the method com- prising reacting the composition of the first aspect of the invention with an acid to generate chlorine dioxide. [0029] Preferably the acid is a weak acid i.e. one which does not readily ionise such as, for example, citric acid or acetic acid. 55 [0030] Alternatively a strong acid, such as, for example, hydrochloric acid can be used. [0031] Whilst any acid which reduces the pH to within the range pH 2 to 4 can be used particular benefits accrue from the use of weak acids such as, for example, citric acid since they are much less hazardous to handle than strong acids, for example, hydrochloric acid.

3 EP 0 847 371 B1

- [0032] The solution of the present invention, comprising a mixture of chlorite (ClO2 ) and a chlorine donor, for example, hypochlorite ions (OCl-), overcomes many of the problems of the prior art solutions and when mixed with a weak acid such as citric acid produces almost instant quantitative conversion to chlorine dioxide. The mixed solution can then be dosed proportionately to the system, for example an industrial or potable water system to be treated, 5 without the need for any holding or reaction vessels or sophisticated mixing apparatus to provide the required biocidal level of chlorine dioxide. [0033] The invention thus provides a composition which when mixed with an acid which reduces the pH below 6, preferably below 5 and most preferably below 4 produces chlorine dioxide which can be dosed directly into the system to be treated. It also provides a process by which the solutions can be mixed and added to the system. 10 [0034] Alternatively the chlorine dioxide may be produced in situ. [0035] According to a forth aspect of the present invention there is provided a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other beneficial effects e.g. odour control, the method com- prising reacting a chlorite, a hypochlorite and an acid to generate chlorine dioxide in situ. [0036] The invention will be further described, by way of example only, with reference to the following examples and 15 methodology.

Example 1 (Example composition)

[0037] 20 Proportion by weight Sodium chlorite solution (28%) 96 Sodium hypochlorite solution (12%) 134

25 Sodium hydroxide solution (30%) 14 Water 756 - - ClO2 : OCl ratio 1.0 : 0.7

Example 2 (Example composition) 30 [0038]

Proportion by weight

35 Sodium chlorite solution (28%) 96 sodium hypochlorite solution (12%) 93 Sodium hydroxide solution (30%) 14 Water 797 - - ClO2 : OCl ratio 1.0 : 0.5 40 Example 3 (Method of preparation)

[0039] To 3.78Kg of deionised water was added 0.07Kg of 30% sodium hydroxide solution. The solution was con- tinuously stirred with a magnetic stirrer. 0.67Kg of a 12% (available chlorine) solution of sodium hypochlorite was added. 45 Finally 0.48Kg of a 28% solution of sodium chlorite was added. The final pH of the solution was 13.0. [0040] Based on the concentration of Sodium Chlorite the product contains the potential to produce 20,000ppm of Chlorine Dioxide.

Examgle 4 (Use of composition prepared according to example 3) 50 [0041] 5mls of solution prepared in Example 3 was added to 90mls of deionised water. To this solution was added 5mls of a 16% citric acid solution. The solution immediately turned a yellow colour. The solution was analysed using the standard DPD test procedure developed by Palintest, to determine concentration of chlorine dioxide, free chlorine, combined chlorine, and chlorite. 55 Concentrations determined were: 798pp Chlorine dioxide 20ppm free chlorine

4 EP 0 847 371 B1

0ppm combined chlorine 0ppm chlorite

[0042] Indicating that all the chlorite had been converted to Chlorine Dioxide. 5 Example 5 (Apparatus for dosing)

[0043] Referring to Fig. 1, a method of dosing a composition according to the invention into a system is illustrated. A dosing apparatus 8 is used it comprises two metering pumps (Prominent gamma G/4a 0215) 10,12 delivering re- 10 spectively a composition according to the invention and an acid. The metering pumps 10,12 were connected via a mixing block 14 into a water line 16 through which water to be treated was continuously flowing. A water meter 18 in the line delivered a signal for each 0.25 litre of water passing. The signal was fed to each of the pumps 10,12 which then delivered a nominal 0.15 ml. for each signal received. Pump 12 delivered a 16% solution of citric acid and pump 10 a solution of Example 1. 15 [0044] After a period of operation during which the flow of water and treatment chemicals were allowed to stabilise samples of treated water were collected from the water line and analysed, by the DPD method, for chlorine dioxide, free chlorine, combined chlorine and chlorite. The results obtained were:

Chlorine dioxide - 12.5 ppm as ClO2 20 Free chlorine - 0.3 ppm as Cl2 Combined Chlorine - 0.0 ppm Chlorite - 0.0 ppm

25 [0045] In a second experiment the delivery of the pumps was halved by reducing the stroke to 50% of the previous setting. Samples were again collected and analysed with the following results:

Chlorine dioxide - 5.9 ppm as ClO2 Free chlorine - 0.36 ppm as Cl2 30 Combined chlorine - 0.08 ppm as Cl2 Chlorite - 0.0 ppm

Claims 35 1. A stable solution for use in an in situ method for producing chlorine dioxide and introducing it to a system for bleaching or disinfection, the solution comprising:

a chlorite, 40 a chlorine donor, an alkali, and water, the chlorite and chlorine donor being present in a molar ratio of from 1.0 : 0.3 to 1.0 : 15.0 chlorite to chlorine donor, the alkali being present in an amount sufficient to ensure a pH of above 12 and the water being present 45 in an amount to give a theoretical minimum concentration of 0.5 ppm chlorine dioxide on acidification of the solution.

2. A solution as claimed in claim 1, in which the water is present in an amount to give a theoretical minimum concen- tration of 500 ppm chlorine dioxide. 50 3. A solution as claimed in claim 1 or 2, wherein the chlorite is an alkali metal chlorite.

4. A solution as claimed in claim 3, wherein the alkali metal chlorite is sodium or potassium chlorite.

55 5. A solution as claimed claim 1 or claim 2 wherein the chlorine donor is an alkaline earth metal hypochlorite.

6. A solution as claimed in claim 5 wherein the alkaline earth metal hypochlorite is magnesium hypochlorite or is calcium hypochlorite.

5 EP 0 847 371 B1

7. A solution as claimed in any of claims 1 to 4 wherein the chlorine donor is a chloroisocyanurate.

8. A solution as claimed in any of claims 1 to 7 wherein the chlorite is sodium chlorite and the chlorine donor is sodium hypochlorite. 5 9. A solution as claimed in any of the preceding claims in which the molar ratio of chlorite to chlorine donor is from 1.0 : 0.3 to 1.0 : 5.0.

10. A solution as claimed in claim 9 in which the molar ratio of chlorite to chlorine donor is from 1.0 : 0.3 to 1.0 : 2.0. 10 11. A solution as claimed in any of the preceding claims wherein the theoretical concentration of chlorine dioxide is from 20,000 to 50,000 ppm.

12. A solution as claimed in any of the preceding claims which further comprises a biocide other than a chlorine donor. 15 13. A solution as claimed in claim 12 wherein the biocide is selected from the group consisting of quaternary ammonium and phosphonium compounds, amines, iso-thiazolone mixtures and thiocyanates.

14. A solution as claimed in any of the preceding claims which further comprises a penetrating agent. 20 15. A solution as claimed in claim 14 wherein the penetrating agent is a surfactant.

16. A method of manufacturing the solution of any of claims 1 to 15, the method comprising sequentially adding the alkali, chlorine donor and chlorite to water, in that order, whilst maintaining the pH at or above 12 and the temper- 25 ature at or below 30°C.

17. A method as claimed in claim 16 wherein the temperature is maintained at or below 20°C.

18. An in situ method of introducing chlorine dioxide to a system for bleaching or disinfection, the method comprising: 30 (a) providing a stable solution comprising:

- a chlorite; - a chlorine donor; 35 - an alkali; and - water;

the chlorite and chlorine donor being present in a molar ratio from 1.0:0.3 to 1.0:15.0 chlorite to chlorine donor, the alkali being present in an amount sufficient to ensure a pH of above 12 and the water being present 40 in an amount to give a theoretical minimum concentration of 0.5ppm chlorine dioxide; (b) reacting the said solution with an acid in situ to generate chlorine dioxide, wherein the acid is added in an amount such as to reduce the pH of the solution to less than 4.

19. A method as claimed in claim 18 wherein the acid is a weak acid. 45 20. A method as claimed in claim 19 wherein the weak acid is citric or acetic acid.

21. A method as claimed in any of claims 18 to 20 wherein the reaction is conducted in situ in the system.

50 22. A method as claimed in any of claims 18-20 wherein the reaction is carried out and then the resulting solution is dosed into the system.

Patentansprüche 55 1. Eine stabile Lösung für die Verwendung in einem in situ Herstellungsverfahren von Chlordioxid und seiner Zugabe in ein System zum Bleichen bzw. Desinfizieren, wobei die Lösung umfasst:

6 EP 0 847 371 B1

- ein Chlorit - einen Chlordonator - ein Alkali sowie - Wasser, 5 Chlorit und Chlordonator liegen in einem Molarverhältnis zwischen 1,0:0,3 und 1,0:15,0 (Chlorit zu Chlordonator) vor, das Alkali in einer Menge, die ausreicht, einen pH-Wert über 12 zu gewährleisten, Wasser in einer Menge, die beim Säuern der Lösung eine theoretische Mindestkonzentration von 0,5 ppm Chlordioxid ergibt.

10 2. Eine Lösung nach Anspruch 1 dadurch gekennzeichnet, dass der Wassergehalt derart ist, dass sich eine theo- retische Mindestkonzentration von 500 ppm Chlordioxid ergibt.

3. Eine Lösung nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass das Colorit ein Alkalimetallchlorit ist.

15 4. Eine Lösung nach Anspruch 3 dadurch gekennzeichnet, dass das Chlorit Natrium- oder Kaliumchlorit ist.

5. Eine Lösung nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass der Chlordonator ein Erdalkalimetall-Hy- pochlorit ist.

20 6. Eine Lösung nach Anspruch 5 dadurch gekennzeichnet, dass das Erdalkalimetall-Hypochlorit Magnesiumhypo- chlorit oder Kalziumhypochlorit ist.

7. Eine Lösung nach irgendeinem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass der Chlordonator ein Chlorisocyanat ist. 25 8. Eine Lösung nach irgendeinem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass das Chlorit Natriumchlorit und der Chlordonator ein Natriumhypochlorit ist.

9. Eine Lösung nach irgendeinem der vorgenannten Ansprüche dadurch gekennzeichnet, dass das Molarverhältnis 30 zwischen Chlorit und Chlordonator zwischen 1,0:0,3 und 1,0:5,0 liegt.

10. Eine Lösung nach Anspruch 9 dadurch gekennzeichnet, dass das Molarverhältnis zwischen Chlorit und Chl- ordonator zwischen 1,0:0,3 und 1,0:2,0 liegt.

35 11. Eine Lösung nach irgendeinem der vorgenannten Ansprüche dadurch gekennzeichnet, dass die theoretische Konzentration des Chlordioxids zwischen 20.000 und 50.000 ppm liegt.

12. Eine Lösung nach irgendeinem der vorgenannten Ansprüche dadurch gekennzeichnet, dass sie weiterhin ein anderes Biozid, das kein Chlordonator ist, enthält. 40 13. Eine Lösung nach Anspruch 12 dadurch gekennzeichnet, dass das Biozid aus einer Gruppe gewählt wird, die aus quaternären Ammonium- und Phosphoniumverbindungen, Aminen, Iso-Thiazolon-Mischungen und Thiocya- naten besteht.

45 14. Eine Lösung nach irgendeinem der vorgenannten Ansprüche dadurch gekennzeichnet, dass sie zusätzlich einen penetrierenden Stoff enthält.

15. Eine Lösung nach Anspruch 14 dadurch gekennzeichnet, dass der penetrierende Stoff ein oberflächenaktives Mittel ist. 50 16. Ein Verfahren zur Darstellung der Lösung nach irgendeinem der Ansprüche 1 bis 15 dadurch gekennzeichnet, dass das Verfahren nacheinander Alkali, Chlordonator und Chlorit in dieser genannten Reihenfolge zu Wasser hinzugibt, während gleichzeitig der pH-Wert bei oder über 12 sowie die Temperatur bei oder unter 30°C gehalten werden. 55 17. Ein Verfahren nach Anspruch 16 dadurch gekennzeichnet, dass die Temperatur bei oder unter 20°C gehalten wird.

7 EP 0 847 371 B1

18. Ein in situ-Verfahren zur Zugabe von Chlordioxid zu einem Bleich- oder Desinfektionssystem, umfassend:

(a) die Darstellung einer stabilen Lösung aus

5 - einem Chlorit - einem Chlordonator - einem Alkali und - Wasser,

10 Chlorit und Chlordonator liegen in einem Molarverhältnis zwischen 1,0:0,3 und 1,0:15,0 (Chlorit zu Chlordona- tor) vor, das Alkali in einer Menge, die ausreicht, einen pH-Wert über 12 zu gewährleisten, Wasser in einer Menge, die beim Säuern der Lösung eine theoretische Mindestkonzentration von 0,5 ppm Chlordioxid ergibt

(b) die Reaktion der genannten Lösung vor Ort mit einer Säure zur Erzeugung von Chlordioxid, wobei die 15 Säure derart dosiert wird, dass der pH-Wert der Lösung unter 4 abgesenkt wird.

19. Ein Verfahren nach Anspruch 18 dadurch gekennzeichnet, dass die Säure eine schwache Säure ist.

20. Ein Verfahren nach Anspruch 19 dadurch gekennzeichnet, dass die Säure eine zitrische oder Acetylsäure ist. 20 21. Ein Verfahren nach einem der Ansprüche 18 bis 20 dadurch gekennzeichnet, dass die Reaktion im System vor Ort stattfindet.

22. Ein Verfahren nach einem der Ansprüche 18 bis 20 dadurch gekennzeichnet, dass zunächst die Reaktion abläuft 25 und dann die derart entstandene Lösung in das System hineindosiert wird.

Revendications

30 1. Solution stable destinée à être utilisée dans un procédé in situ de production de dioxyde de chlore et d'introduction de celui-ci dans un système de blanchiment ou de désinfection, la solution comprenant :

un chlorite, un donneur de chlore, 35 un alcali, et de l'eau,

le chlorite et le donneur de chlore étant présents en un rapport molaire de 1,0:0,3 à 1,0:15,0 du chlorite au donneur de chlore, l'alcali étant présent en une quantité suffisante pour assurer un pH supérieur à 12 et l'eau étant présente 40 en une quantité permettant d'obtenir une concentration théorique minimale de 0,5 ppm de dioxyde de chlore lors de l'acidification de la solution.

2. Solution selon la revendication 1, dans laquelle de l'eau est présente en une quantité permettant d'obtenir une concentration théorique minimale de 500 ppm de dioxyde de chlore. 45 3. Solution selon la revendication 1 ou 2, dans laquelle le chlorite est un chlorite de métal alcalin.

4. Solution selon la revendication 3, dans laquelle le chlorite de métal alcalin est le chlorite de sodium ou de potassium.

50 5. Solution selon la revendication 1 ou la revendication 2, dans laquelle le donneur de chlore est un hypochlorite de métal alcalino-terreux.

6. Solution selon la revendication 5, dans laquelle l'hypochlorite de métal alcalino-terreux est l'hypochlorite de ma- gnésium ou l'hypochlorite de calcium. 55 7. Solution selon l'une quelconque des revendications 1 à 4, dans laquelle le donneur de chlore est un chloroisocya- nurate.

8 EP 0 847 371 B1

8. Solution selon l'une quelconque des revendications 1 à 7, dans laquelle le chlorite est le chlorite de sodium et le donneur de chlore est l'hypochlorite de sodium.

9. Solution selon l'une quelconque des revendications précédentes, dans laquelle le rapport molaire du chlorite au 5 donneur de chlore est de 1,0:0,3 à 1,0:5,0.

10. Solution selon la revendication 9, dans laquelle le rapport molaire du chlorite au donneur de chlore est de 1,0:0,3 à 1,0:2,0.

10 11. Solution selon l'une quelconque des revendications précédentes, dans laquelle la concentration théorique du dioxyde de chlore est de 20 000 à 50 000 ppm.

12. Solution selon l'une quelconque des revendications précédentes, qui comprend en outre un biocide autre qu'un donneur de chlore. 15 13. Solution selon la revendication 12, dans laquelle le biocide est choisi dans le groupe constitué par des composés phosphoniums et ammoniums quaternaires, des amines, des mélanges d'isothiazolones et des thiocyanates.

14. Solution selon l'une quelconque des revendications précédentes, qui comprend en outre un agent de pénétration. 20 15. Solution selon la revendication 14, dans laquelle l'agent de pénétration est un agent tensioactif.

16. Procédé de fabrication de la solution selon l'une quelconque des revendications 1 à 15, le procédé comprenant les étapes consistant à ajouter successivement l'alcali, le donneur de chlore, et le chlorite à l'eau, dans cet ordre, 25 tout en maintenant le pH à une valeur supérieure ou égale à 12 et la température à une valeur inférieure ou égale à 30°C.

17. Procédé selon la revendication 16, dans lequel on maintient la température à une valeur inférieure ou égale à 20°C.

30 18. Procédé d'introduction in situ de dioxyde de chlore dans un système de blanchiment ou de désinfection, le procédé comprenant les étapes consistant à :

(a) fournir une solution stable comprenant :

35 un chlorite ; un donneur de chlore ; un alcali ; et de l'eau ;

40 le chlorite et le donneur de chlore étant présents en un rapport molaire de 1,0:0,3 à 1,0:15,0 du chlorite au donneur de chlore, l'alcali étant présent en une quantité suffisante pour assurer un pH supérieur à 12 et l'eau étant présente en une quantité permettant d'obtenir une concentration théorique minimale de 0,5 ppm de dioxyde de chlore ; (b) faire réagir in situ ladite solution avec un acide pour produire du dioxyde de chlore, sachant que l'on ajoute 45 l'acide en une quantité permettant de réduire le pH de la solution à moins de 4.

19. Procédé selon la revendication 18, dans lequel l'acide est un acide faible.

20. Procédé selon la revendication 19, dans lequel l'acide faible est l'acide citrique ou acétique. 50 21. Procédé selon l'une quelconque des revendications 18 à 20, dans lequel on effectue la réaction in situ dans le système.

22. Procédé selon l'une quelconque des revendications 18 à 20, dans lequel on effectue la réaction et on dose ensuite 55 la solution résultante dans le système.

9 EP 0 847 371 B1

10