Volcanic Hazard and Risk Assessment at Reykjanes, Vulnerability of Infrastructure
Total Page:16
File Type:pdf, Size:1020Kb
Volcanic hazard and risk assessment at Reykjanes, vulnerability of infrastructure Þóra Björg Andrésdóttir Faculty of Earth Sciences University of Iceland 2018 Hazard and risk assessment at Reykjanes, vulnerability of infrastructure Þóra Björg Andrésdóttir 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in geology MS Committee Ármann Höskuldsson Ingibjörg Jónsdóttir Þorvaldur Þórðarsson Master’s Examiner Sólveig Þorvaldsdóttir Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, May 2018 Volcanic hazard and risk assessment at Reykjanes, vulnerability of infrastructure. Volcanic hazard and risk assessment at Reykjanes 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Geology Copyright © 2018 Þóra Björg Andrésdóttir All rights reserved Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Sturlugata 7 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Þóra Björg Andrésdóttir, 2018, Volcanic hazard and risk assessment at Reykjanes, vulnerability of infrastructure., Master’s thesis, Faculty of Earth Sciences, University of Iceland, pp. 95. Printing: Svansprent Reykjavik, Iceland, June 2018 Abstract Volcanic eruptions can have serious consequences, both locally and globally. In Iceland there is a high eruption frequency, where the volcanism is affected by the North Atlantic plate boundary and the hot spot underneath the island. Some areas experience long periods between volcanic activity and because of that, the knowledge of volcanic threat is not in the living memory of the public. Many volcanos have not erupted after recent advances in technology and therefore have not been observed with modern equipment. The Reykjanes peninsula, in SW Iceland, has five volcanic systems with SW-NE orientation, where volcanic activity occurs in episodes, the last ended in the Reykjanes fires 1210-1240. The Reykjanes peninsula is highly populated with many critical infrastructures connecting the urban area that makes hazard assessment very important. In order to implement this assessment, we followed a well-established methodology of evaluating volcanic hazards. This includes a geological database of eruption events throughout the Reykjanes Peninsula, analysis of a spatial probability map and local intensity map and a more detailed analysis of the westernmost part of the Peninsula around the urban areas of Grindavík, Vogar and Keflavík. With these steps the following questions: “Where are the most probable areas of vent opening (hosting a volcanic eruption)”, “What is the most likely event”, and “Where is it most likely that critical infrastructure will be affected”, can be answered. Útdráttur Eldgos geta haft víðtækar afleiðingar, ekki einungis fyrir nærumhverfi heldur einnig á heimsvísu. Ísland er mjög eldvirkt, með háa eldgosatíðni og er eldvirknin tengd stöðu landsins á flekaskilum og heitum reiti undir landinu. Langur tími getur þó liðið á milli goshrina og því má leiða líkur að því að afleiðingar þeirra gosa séu ekki lengur í minni manna. Jafnframt hafa mörg þessara eldgosa einnig átt sér stað fyrir tíma vöktunar og því líklegt að síðustu gos á einhverjum svæðum hafi ekki verið rannsökuð með nútímatækni. Á Reykjanesskaga eru fimm virk eldstöðvakerfi með stefnuna SV-NA, þar sem eldvirkni kemur í hrinum en síðasta eldgosahrina endaði í Reykjaneseldum milli áranna 1210-1240. Greiningar á eldgosavá eru mjög mikilvægar á Reykjanesskaga þar sem íbúafjöldi er mikill og mikilvægir innviðir tengja bæi langar vegalengdir. Til þess að meta tjónnæmi svæðisins er þekktum aðferðum í mati á eldfjallavá á eldsumbrotasvæðum fylgt. Fyrstu skrefin við greiningu eldgosavár á Reykjanesskaga eru tekin með því að byggja gagnagrunn. Mat á tjónnæmni svæðisins með áherslu á líklegustu svæðin þar sem eldgos gætu hafist, ásamt nákvæmara hættumat, er unnið fyrir Reykjanes, vestasta eldgosakerfi skagans þar sem Grindavík, Vogar og Keflavík standa í nálægð við með áherslu á mikilvæga innviði á svæðinu. Table of Contents List of Figures ..................................................................................................................... ix List of Tables ...................................................................................................................... xii Acknowledgements ........................................................................................................... xiii 1 Introduction ................................................................................................................... 15 1.1 Aims and goals ...................................................................................................... 15 1.2 Definition of terms ................................................................................................ 16 2 Background ................................................................................................................... 19 2.1 Volcanic hazards ................................................................................................... 19 2.1.1 Tephra fallout ............................................................................................... 19 2.1.2 Pyroclastic density currents ......................................................................... 21 2.1.3 Lava flows .................................................................................................... 23 2.1.4 Volcanic gas and aerosols ............................................................................ 24 2.1.5 Jökulhlaup and Lahars ................................................................................. 25 2.2 Vulnerability .......................................................................................................... 26 2.3 Geological settings ................................................................................................ 27 2.3.1 Geology of Reykjanes Peninsula ................................................................. 28 2.3.2 Eruption history of the Reykjanes peninsula. .............................................. 31 2.3.3 Potential volcanic hazards in Reykjanes peninsula ..................................... 34 3 Methods .......................................................................................................................... 35 3.1 Building a geological database .............................................................................. 35 3.1.1 Volcanic features ......................................................................................... 36 3.1.2 Tectonic features .......................................................................................... 36 3.1.3 Geothermal activity ...................................................................................... 37 3.2 VOLCANBOX ...................................................................................................... 37 3.2.1 Analyze the spatial probability of a vent opening using QVAST ............... 38 3.2.2 Q-LavHA, Quantum-Lava Hazard Assessment ........................................... 43 3.3 Water catchment area and aspect analysis of the westernmost part of Reykjanes peninsula. ............................................................................................. 44 3.4 Important data when evaluating potential hazard in volcanic activity .................. 44 4 Data ................................................................................................................................ 47 4.1 Geological database ............................................................................................... 47 4.1.1 Volcanic features ......................................................................................... 47 4.1.2 Tectonic features .......................................................................................... 47 4.1.3 Geothermal areas ......................................................................................... 47 4.2 Population .............................................................................................................. 50 4.2.1 Residents ...................................................................................................... 50 4.2.2 Tourists ........................................................................................................ 51 4.3 Critical infrastructure ............................................................................................ 56 vii 4.3.1 Electricity ..................................................................................................... 57 4.3.2 Telecommunication ..................................................................................... 58 4.3.3 Transportations ............................................................................................ 58 5 Results ............................................................................................................................ 61 5.1 Susceptibility analyses .......................................................................................... 61 5.1.1 QVAST ........................................................................................................ 61 5.1.2 The expert judgment weight ........................................................................ 66 5.1.3 Susceptibility map of the westernmost part of the Reykjanes peninsula .... 69 5.1.4 Q-LAVHA ..................................................................................................