The Most Experienced Whale Watching Company in Iceland!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iceland Can Be Considered Volcanologist “Heaven”
Iceland can be considered volcanologist “heaven” 1) Sub-aerial continuation of the Mid-Atlantic Ridge 2) Intersection of a mantle plume with a spreading ocean ridge 3) Volcanism associated with tectonic rifting 4) Sub-glacial volcanism 5) Tertiary flood (plateau) basalts 6) Bi-modal volcanism 7) Submarine volcanism 8) 18 historically active volcanoes 9) Eruptions roughly every 5 years 1. The North Atlantic opened about 54 Ma separating Greenland from Europe. 2. Spreading was initially along the now extinct Agir ridge (AER). 3. The Icelandic plume was under Greenland at that time. 4. The Greenland – Faeroe ridge represents the plume track during the history of the NE Atlantic. Kolbeinsey ridge (KR) 5. During the last 20 Ma the Reykjanes Ridge (RR) Icelandic rift zones have migrated eastward, stepwise, maintaining their position near the plume 6. The plume center is thought to be beneath Vatnajökull 1 North Rift Zone – currently active East Rift Zone – currently active West Rift Zone – last erupted about 1000-1300 AD [Also eastern (Oræfajökull) and western (Snæfellsnese) flank zones] Rift zones comprise en-echelon basaltic fissure swarms 5-15 km wide and up to 200 km long. Over time these fissures swarms develop a volcanic center, eventually maturing into a central volcano with a caldera and silicic Tertiary volcanics > 3.1 Ma volcanism Late Tertiary to Early Quaternary 3.1 – 0.7 Ma Neo-volcanic zone <0.7 - present Schematic representation of Iceland’s mantle plume. The crust is about 35 – 40 km thick Iceland’s mantle plume has been tomographically imaged down to 400 km. Some claim even deeper, through the transition zone, and down to the core – mantle boundary. -
Íbúakönnun Á Íslandi
ÍBÚAKÖNNUN Á ÍSLANDI Staða og mikilvægi búsetuskilyrða 19 landsvæða á landsbyggðunum frá Hornafirði í austri að Skagafirði í norðri Vífill Karlsson Samtök sveitarfélaga á Vesturlandi Skýrsla SSV Nr. 1 2018 Maí 2018 ISSN 1670-7923 EFNISYFIRLIT 1 Samantekt .................................................................................................................................................................... 8 2 Inngangur ................................................................................................................................................................. 10 3 Aðferð og gögn ........................................................................................................................................................ 10 3.1 Aðferðir í úrvinnslu innan hvers landshluta .................................................................................... 13 3.2 Aðferðir í samanburði á milli allra landshluta ................................................................................. 15 4 Niðurstöður íbúakannana á 19 landsvæðum ............................................................................................ 16 4.1 Almenn velferð íbúanna, ánægja þeirra og framtíðaráform ...................................................... 16 4.1.1 Aðferð: Meðaltöl og frávik afstöðu kvenna, ungra og þeirra sem búa í sveit ............ 16 4.1.2 Hamingja ................................................................................................................................................ 17 -
The Surtsey 1963 Eruption Plume, Characteristics and Tephra Dispersal
Geophysical Research Abstracts Vol. 21, EGU2019-17144, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. The Surtsey 1963 eruption plume, characteristics and tephra dispersal Einar Sindri Ólafsson (1), Magnus T Guðmundsson (2), and Esther R. Guðmundsdóttir (3) (1) Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland ([email protected]), (2) Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland ([email protected]), (3) Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland ([email protected]) Surtsey is a basaltic island in the south-western end of Vestmannaeyjar archipelago off the south coast of Iceland and is a part of the Vestmannaeyjar volcanic system. It is built from the ocean floor at about 130 m depth in a series of eruptions during 1963-1967, one of the longest eruption in Iceland in historical times. The eruptions can be split into four phases. The first phase of the eruptions was explosive and phreatomagmatic in character. The aim of this study is to put constraints on the mass of tephra transported with the plume. This is done in two ways: (1) Study soil profiles on Heimaey and on the mainland to look for tephra deposits from Surtsey as well as note contemporary descriptions of tephra fallout; and (2) by compiling existing contemporary records of plume height and use plume height – mass transport systematics to estimate the transport. Finally, we compare the outcomes of (1) and (2). Eruption started on 14 November 1963. It was explosive and fed an eruption plume rising typically to 5-9 km in November and December 1963. -
Subglacial and Submarine Volcanism in Iceland
Mars Polar Science 2000 4078.pdf SUBGLACIAL AND SUBMARINE VOLCANISM IN ICELAND. S. P. Jakobsson, Icelandic Inst. of Natural His- tory, P. O. Box 5320, 125 Reykjavik, Iceland Introduction: Iceland is the largest landmass ex- mounds, ridges and tuyas [5]. The thickness of basal posed along the Mid-Ocean Ridge System. It has been basaltic pillow lava piles often exceeds 60-80 meters constructed over the past 16 Ma by basaltic to silicic and a 300 m thick section has been reported. Pillow volcanic activity occurring at the Mid-Atlantic Ridge, lavas may also form lenses or pods at a higher level in and is topographically elevated because of the abundant the volcanoes. igneous material produced in association with the Ice- It has been suggested that at a water depth less than land hot spot, the center of which is thought to be lo- approximately 100-150 m, basaltic phreatic explosions cated beneath Vatnajokull glacier [1]. The axial rift produce hydroclastites. It appears feasible to subdivide zones which run through Iceland from southwest to the hyaloclastites of the Icelandic ridges and tuyas, ge- northeast are in direct continuation of the crestal zones netically into two main types. A substantial part of the of the Mid Atlantic Ridge and are among the most ac- base of the submarine Surtsey tuya is poorly bedded, tive volcanic zones on Earth. unsorted, hydroclastite, which probably was quenched Subglacial Volcanism: Volcanic accumulations of and rapidly accumulated below the seawater level with- hyaloclastites which are deposits formed by the intru- out penetrating the surface [6]. Only 1-2 % of the vol- sion of lava beneath water or ice and the consequent ume of extruded material in the 1996 Gjalp eruption fell shattering into small angular vitric particles, combined as air-fall tephra, the bulk piled up below the ice [4]. -
Strætó.Is Bus.Is
HÓLMAVÍK AKUREYRI REYKHOLT Melahverfi Akranes - Akratorg STYKKISHÓLMUR Akranes - Kirkjubraut Akranes - Þjóðbraut Borgarnes - N1 Akranes - Bæjarskrifstofur Kjalarnes - Kjalarnes - Kjalarnes - Akranes - Garðabraut Esjuskáli Esjugrund Klébergsskóli Akranes - Jaðarsbakki Akranes - Bresaflöt Esjurætur Skeljatangi Arnartangi STRÆTÓ.IS Þverholt Skei›holt Kelduskóli/Korpa Korpúlfssta›ir Bollatangi Brekkutangi Esjumelar Brúnasta›ir Bakkasta›ir Klapparhlí› FMOS Varmárskóli Leirvogstunga Skálatún Tröllaborgir Vættaborgir Jötnaborgir Strætóvegur Bar›asta›ir HÁHOLT v/Vættaborgir Mosavegur Goðaborgir Hulduborgir Borgarholtsskóli Kelduskóli/Vík Dofraborgir Go›aborgir Ásland Tjaldanes Mosfell Lundur Skólavegur Laufengi Egilshöll Borgavegur Dvergaborgir SPÖNG Jónsteigur Skarfagar›ar Kænugar›ar Borgavegur Borgavegur Úlfarsbraut SkyggnistorgSkyggnisbraut Úlfarsá Sundagar›ar Hé›insgata Hrafnista Hjallavegur Sægar›ar Víkurvegur Völuteigur Dalbraut Gullengi Mosarimi Lyngrimi Lambhagav./Mímisbrunnur Úlfarsbraut Fiskisló› Laugarnestangi Mi›gar›ur Keldnaholt Reykjalundur Lambhagav./Reynisvatnsvegur Fellsvegur Dælustö›varvegur Kirkjusandur Kirkjusandur Flétturimi Grunnsló› Höf›atorg Nóatún Hótel Cabin Borgartún Sund Holtagar›ar Hallsvegur Húsasmi›jan Reynisvatn Reykjabyggð LaugardalslaugLaugarásvegur Hrafnista Dragavegur Rimaflöt Gufunesbær Þúsöld Biskupsgata Hólsvegur Hólsvegur Dalhús Vallarhús BrekkuhúsVölundarhús Grandagar›ur Tún Teigar Gagnvegur Fíladelfía Hátún Laugardalshöll Lei›hamrar Vegghamrar Grandi LÆKJARTORG Harpa HLEMMUR MaríubaugurIngunnarskóliPrestastígur -
Iceland: a Laboratory for Non-Indigenous Ascidians
BioInvasions Records (2020) Volume 9, Issue 3: 450–460 CORRECTED PROOF Research Article Iceland: a laboratory for non-indigenous ascidians Alfonso A. Ramos-Esplá1,*, Joana Micael2, Halldór P. Halldórsson3 and Sindri Gíslason2 1Research Marine Centre of Santa Pola (CIMAR), University of Alicante, 03080 Alicante, Spain 2Southwest Iceland Nature Research Centre (SINRC), 245 Suðurnesjabær, Iceland 3University of Iceland, Sudurnes Research Center, 245 Suðurnesjabær, Iceland *Corresponding author E-mail: [email protected] Citation: Ramos-Esplá AA, Micael J, Halldórsson HP, Gíslason S (2020) Abstract Iceland: a laboratory for non-indigenous ascidians. BioInvasions Records 9(3): 450– Non-indigenous species (NIS) represent a serious problem worldwide, where ascidians 460, https://doi.org/10.3391/bir.2020.9.3.01 are one of the most important taxa. However, little has been done to document the non-indigenous ascidians in Iceland, and over the past decade only two species had Received: 30 October 2019 been recorded prior to the present study, Ciona intestinalis in 2007 and Botryllus Accepted: 19 March 2020 schlosseri in 2011. To increase the knowledge of this taxon, extensive sampling Published: 7 May 2020 was carried out in shallow waters around Iceland, during the summer 2018, in ports Handling editor: Noa Shenkar and on ropes of a long-line mussel aquaculture. In total, eleven species were identified, Thematic editor: Stelios Katsanevakis four native and seven NIS, of which Diplosoma listerianum, Ascidiella aspersa, Copyright: © Ramos-Esplá et al. Botrylloides violaceus, Molgula manhattensis and Ciona cf. robusta, are now reported This is an open access article distributed under terms for the first time in Iceland. -
In in Iceland: Pltihpopulationpg Changees and Ditht Main Threats
Atlantic Puff in in Iceland: PltihPopulationpg changees and ditht main threats Aevarea Petersen eese1 &Th& Thhorkello e LL. Thorarinsson o a sso 2 1Icelandic Institute of Natural Historry 2North East Iceland Nature Center 1. The Icelandic populationpp 3. Population chaanges The Atlantic Puffin Fratercula arctica is Prior to 2000 mean increase of 4.3%/yr believed to be the most common wasas recordedeco ded at tenten colonies,co o es, includingcud g bdibreedingg bibird d speciesp i iin IldIceland. MtMost the largest ones studied (>30000 pairs). recent estimate is 3-4 million pairspairs, or The greatest increease was 15%/yr/yr, about half the world population. The whichc iss exceptioneceptonala andadffoundou d in a populationpplti iis ditibtddistributed mostlytly on colony established in 1975 (Petersen islandsislands, among roughly 800 coloniescolonies, the 2010). largest about 200 thousand pairs. Many off ththe coloniesli are veryy small,ll onlyly a ffew More recently eightt colonies showed a pairs. Some islands only have single mean decline of 4.9%/yr. Same has pairs. takenta e placepace ono thetee Westmanest a Islandssa ds the largest Puffin coolony aggregation in 22. Data Availability the world (Hansenn 2009, Hansen & Although other ffactors may also affectff We reviewed available unpublished and GGardarssonGa da sso 2009009). individual Puffin coloniescolonies, climate ppublished blished information on poppopulationpp lation change and resulting effects on the changes. Colony sizes were estimated No quantitative datta are available for ffood resources is currently the greatest mainly from occupied burrow counts. mostost Icelandicce a d c Puffinuff n coloniesco o es. potential threat to Icelandic Puffins. PopPopulationp lation dedevelopment, elopmentp rangingggfrom 5 to 33 yearsyears, is reviewed for 19 colonies 4. -
Degassing Regime of Hekla Volcano 2012€“2013
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 159 (2015) 80–99 www.elsevier.com/locate/gca Degassing regime of Hekla volcano 2012–2013 Evgenia Ilyinskaya a,b,⇑, Alessandro Aiuppa c,d, Baldur Bergsson b, Rossella Di Napoli c, Thra´inn Fridriksson e, Audur Agla O´ lado´ttir e, Finnbogi O´ skarsson e, Fausto Grassa d, Melissa Pfeffer b, Katharina Lechner b, Richard Yeo b, Gaetano Giudice d a British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, United Kingdom b Icelandic Meteorological Office, Bustadavegi 7-9, 150 Reykjavik, Iceland c DiSTeM, Universita` di Palermo, Palermo, Italy d Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, 90146 Palermo, Italy e Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik, Iceland Received 24 February 2014; accepted in revised form 9 January 2015; available online 17 February 2015 Abstract Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (d13C, dD and d18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. 13 Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the d C signature was consistent with pub- lished values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. -
The Eruption on Heimaey, Vestmannaeyjar, Iceland
Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland This booklet was originally published in 1976 under the title "Man Against Volcano: The Eruption on Heimaey, Vestmann Islands, Iceland." The revised second edition was published in 1983. This PDF file is a recreation of the 1983 booklet. Cover photograph: View looking southeast along streets covered by tephra (volcanic ash) in Vestmannaeyjar: Eldfell volcano (in background) is erupting and fountaining lava. View of Heimaey before the eruption: Town of Vestmannaeyjar with Helgafell in the right back- ground (photo courtesy of Sólarfilma). Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland by Richard S. Williams, Jr., and James G. Moore Preface The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 States and its territories or trusteeships, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth sciences phenome- na throughout the world. In 1983, the U.S. Geological Survey had 57 active sci- entific exchange agreements with 24 foreign countries, and 47 scientific exchange agreements were pending with 30 foreign countries. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Vestmannaeyjar, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated, but, more importantly, the potential damage probably was reduced by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town. -
Pálsson, Grétar Már. 2015
Impact on households and critical infrastructures from electricity failure Two case studies and a survey on public preparedness Grétar Már Pálsson Faculty of Civil and Environmental Engineering University of Iceland 2015 Impact on households and critical infrastructures from electricity failure Two case studies and a survey on public preparedness Grétar Már Pálsson 30 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Civil Engineering Advisors Dr. Björn Karlsson Böðvar Tómasson Faculty Representative Sveinn Júlíus Björnsson Faculty of Civil and Environmental Engineering School of Engineering and Natural Sciences University of Iceland Reykjavik, May 2015 Impact on households and critical infrastructures - Two case studies and a survey on public preparedness. 30 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in civil engineering Copyright © 2015 Grétar Már Pálsson All rights reserved Faculty of Civil and Environmental Engineering School of Engineering and Natural Sciences University of Iceland VR II, Hjarðarhaga 2-6 107, Reykjavik Iceland Telephone: 525 4600 Bibliographic information: Grétar Már Pálsson, 2015, Impact on households and critical infrastructures - Two case studies and a survey on public preparedness, Master’s thesis, Faculty of Civil and Environmental Engineering, University of Iceland, pp. 76. Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík Reykjavik, Iceland, May 2015 Abstract This thesis studies the impact from electricity failure in Iceland on households and critical infrastructures. Households and critical infrastructures electricity dependence is discussed along with a theoretical identification of impacts towards these two subjects from electricity failure. Risk Assessment Plans for Iceland, Norway and Sweden are compared. The main focus of the comparison relates to how the countries focus on electricity, information and communication technologies and the role of the general public in these plans. -
Initial Assessment of the ISF Iceland Northern Shrimp Fishery (Inshore and Offshore)
FINAL REPORT Initial assessment of the ISF Iceland Northern shrimp fishery (inshore and offshore) Icelandic Sustainable Fisheries Report No.: 2017-032, Rev. 1 Document No.: Date: 2018-10-02 Certificate code: to be determined / xxx Report type: Final Report DNV GL – Business Assurance Report title: Initial assessment of the ISF Iceland Northern shrimp fishery (inshore and offshore) DNV GL Business Assurance Customer: Icelandic Sustainable Fisheries, Grandagarður Norway AS 16, 101 Reykjavík Veritasveien 1 Contact person: Kristinn Hjalmarsson 1322 HØVIK, Norway Date of issue: 2018-10-02 Tel: +47 67 57 99 00 Project No.: PRJC-569364-2017-MSC-NOR http://www.dnvgl.com Organisation unit: Food & Beverage Report No.: 2017-032, Rev.1 Certificate No.: Objective: Assessment of the Iceland Northern Shrimp fishery against MSC Fisheries Standards v2.0. Prepared by: Verified by: Stefan Midteide, Project Manager Sigrun Bekkevold Julian Addison, Expert, Principle 1 Lucia Revenga, Expert Principle 2, Team leader Geir Hønneland, Expert, Principle 3 Copyright © DNV GL 2014. All rights reserved. This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise without the prior written consent of DNV GL. DNV GL and the Horizon Graphic are trademarks of DNV GL AS. The content of this publication shall be kept confidential by the customer, unless otherwise agreed in writing. Reference to part of this publication which may lead to misinterpretation is prohibited. DNV GL Distribution: Keywords: ☒ Unrestricted distribution (internal and Marine Stewardship Council, Iceland, Northern external) shrimp ☐ Unrestricted distribution within DNV GL ☐ Limited distribution within DNV GL after 3 years ☐ No distribution (confidential) ☐ Secret Rev. -
Iceland Straight Baselines
2 STRAIGHT BASELINES: ICELAND Iceland's most recent action altering their system of straight baselines was the issuance on March 11, 1961, of the Regulations Concerning the Fishery Jurisdiction of Iceland. The Regulations were promulgated on April 22, 1961. These 1961 Regulations alter the straight baselines of the preceding decrees of 1952 and 1958. An exchange of notes between Iceland and the United Kingdom, on March 11, 1961, specified the changes that were to be made to the 1958 decree and incorporated in the new 1961 declaration. Iceland claims a four nautical-mile territorial sea and a 12 nautical mile fishery limit, as measured from the straight baselines. Iceland, although a signatory, is not a party to any of the four 1958 Geneva conventions on the law of the sea. These conventions concern the territorial sea and contiguous zone, the high seas, the continental shelf, and fishing and conservation of living resources of the high seas. The pertinent articles of the Regulations concerning the Fishery Jurisdiction of Iceland are as follows: Article 1 The fishery jurisdiction of Iceland shall be delimited 12 nautical miles outside base lines drawn between the following points: 1. Horn 66° 27'4 N Lat. 22° 24'5 W. Long. 2. Asbudarrif 66° 08'1 N 20° 11'2 W. 3. Siglunes 66° 11'9 N 18° 50'1 W. 4. Flatey 66° 10'3 N 17° 50'5 W. 5. Lagey 66° 17'8 N 17° 07'0 W. 6. Raudinupur 66° 30'7 N 16° 32'5 W. 7. Rifstangi 66° 32'3 N 16° 11'9 W 8.