Structure of the Upper Troposphere and Lower Stratosphere in the Vicinity of Hurricane Isbell, 1964

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Upper Troposphere and Lower Stratosphere in the Vicinity of Hurricane Isbell, 1964 551. 515. 2 Structure of the Upper Troposphere and Lower Stratosphere in the Vicinity of Hurricane Isbell, 1964 by R. Cecil Gentry National Hurricane Research Laboratory, Environmental Science Services Administration, Miami, Florida, U.S.A. (Received Octobor 10, 1967) Abstract Extensive reconnaissance of mature Hurricane Isbell was made October 14, 1964. Data collected at 850 mb, 700 mb, 550 mb, 200 mb, 150 mb, and in the lower stratosphere reveal that the storm had a warm core (up to 15°C above normal in the eye) from sea level up to 115 mb and a cold core between 115 mb and 90 mb. Convection in the storm was very in- tense and clouds rose into the stratosphere, with isolated clouds projecting 2. 5 km above the tropopause. The lower stratosphere (up to 4000 ft above the tropopause) had temperatures ranging from 1. 8°C to 7. 6°C below normal. Even in the stratosphere, which had a very stable lapse rate, there were temperature gradients as large as 5°C per 10 n miles in the vicinity of the hurricane center. The cyclonic wind circulation decreased from a maximum of 116 kt at low levels to near zero at 115 mb, and increased, relatively, in the layer near the tropopause. Data were insufficient, however, to verify whether the very weak wind field measured at the tropopause and in the lower stratosphere was actually cyclonic. The tropopause was abnormally high and cold above the hurricane with the height varying inversely with distance from the storm, at least beyond the vicinity of the eye wall. Data were insufficient to define the slope of the tropopause over the eye and eye wall. 1. Introduction Moreinformation is needed concerning the structure of temperature, wind, and pressure fields of hurricanes in the upper troposphere and lower stratosphere. To support the current efforts to develop satisfactory numerical—dynamical models of hur- ricanes, we need answers to these questions : 1) Does the low pressure at sea level in the hurricane result from changes in the air column temperature in the troposphere or in the stratosphere ? 2) Does the tropopause dip above the hurricane to bring a warmlargermassof relatively warstratospheric air over the center ? 3) Does the tro- * Partly worked under the U.S.—Japan Cooperative Science Program. 294R. C. GentryVol. XVIII No. 4 popause height increase as the hurricane approaches and bring relatively cool upper tropospheric air over the center ? Various models formulated have simulated the hurricane structure in differing ways. Data are needed to test these models to de- termine which simulate nature's effects. RIEHL suggested that the tropopause might be higher above the center of a hur- ricane than in the surrounding areas (RIEHL 1954, p. 318) . He and others hypothe- sized that there is some level above a hurricane, probably between 150 and 80 mb, where the vortical components of the wind and pressure fields are zero, and where the slopes of the pressure surfaces are functions only of the surrounding larger scale cir- culations (MALKUSand RIEHL 1960; MILLER, 1964; RIEHL, 1954) . This implies that changes in sea-level pressures in hurricanes are a function of temperature changes produced primarily by vertical currents within the troposphere, and by the latent heat released as the moisture condenses in the ascending currents. Our investigation was designed to obtain some detailed information about atmospheric structure near the tropopause in the area of a hurricane, and to answer some of the questions previously listed. In the Atlantic area, only four radiosonde observations to high levels have been made in the eyes of hurricanes (Fig. 1) . Three observations made in Florida did not reach the tropopause (RIEHL, 1948 ; SIMPSON, 1947 ; SUGG 1967) . The one made at Bermuda in Hurricane Arlene in August 1963, reached the tropopause. STEAR (1965) reported that temperatures in the eye of this storm were higher than in the ambient atmosphere up to 150 mb and were lower from 120 mb to 90 mb. The tro- popause was higher above the eye of the storm than beyond the storm circulation. Arlene had already recurved into the westerlies and was a weak tomoderate hur- ricane. Maximum winds of 85 kt were measured at Bermuda. At Hong Kong, a sounding was obtained to high levels in the eye of weak typhoon. Alice in May 1961. Mr. GORDONBELL* of the Royal Obs' ervatory reported that tem- peratures in the eye at levels below the 120 mb surface were much warmer than those in the mean May sounding for Hong Kong. At the tropopause the eye sound- ing had slightly lower temperatures than the mean sounding, but at levels above the 85 mb the temperatures were approximately the same as in the mean sounding. ARAKAWAprepared a cross section for a typhoon that passed near Tokyo in 1949 (ARAKAWA1950). One sounding was made near the eye wall, but none was made in the eye. The data suggested that the tropopause was higher over the storm's convective area than at greater distances. A recent source of high-level data over hurricanes has been from an instrumented. U-2 aircraft operated for the United States Air Force Cambridge Research Labora- tories. PENN (1965) made a study of the ozone and temperature measurement taken over Hurricane Ginny, October 1963. Ginny, however, was then barely of hurricane intensity. The above accounts show that no measurements are recorded in the literature of the structure of a hurricane of at least moderate intensity in the layer including the tropopause and lower stratosphere while the storm was still in tropical areas. A chance to improve this situation was provided by a cooperative project of the Air * Personal Communication . Force Cambridge Research Laboratories, ESSA's Research Flight Facility, and ESSA's National Hurricane Research Laboratorythis project provided research reconnais- sance flights into Hurricane Isbell on October 14, 1964. Data from these flights and from rawinsonde flights made at neighboring weather stations give considerable in- formation on the structure of this hurricane between 150 and 85 mb as well as lower levels. Tropical storm Isbell started developing into a hurricane south of Cuba on Octo- ber 12, 1964 (Fig. 2) . DUNN et al. (1965) prepared a general description of this 296R. C. GentryVol. XVIII No. 4 storm. It slowly moved north while intensifying. During the night of October 13-14, Isbell accelerated as it crossed Cuba and intensified rapidly while moving into the Florida Straits where it was located by the reconnaissance flights on October 14. By 1200 GMT, October 14, the moderately intense hurricane had a central pressure of 964 mb and was 70 n miles west-southwest of Key West, Florida. The hurricane was of moderate intensity and changing rather slowly in structure and intensity between 1830 and 1925 GMT, October 14, while the principal aircraft data used in this investigation were obtained. The minimum sea level pressure, and maximum winds measured in the storm between 5, 000 and 15, 000 feet varied on October 14 as follows : 1200 GMT, 964 mb 1755 GMT, 968 mb and 116 kts ; 1915 GMT, 968 mb and 112 kts ; and 2108 GMT, 970 mb and 110 kts. Fig. 10 shows the wind field at 850 mb. By 1730 GMT the hurricane had a well-formed radar eye. Although the storm structure did vary with time, pictures in Fig. 3 (a, b, and c) show that the structure of the rainbands and eye wall resembled that of a mature hurricane at least through 2000 GMT. Afterwards the storm began dissipating and by 2230 GMT the eye wall image was so poor that it was difficult to track the hurricane center with radar. Nevertheless, the maximum winds and the pressure at sea level in the center of the storm remained nearly constant during the reconnaissance period, and the structure and distributions of the strongly convective radar bands indicated a a mature hurricane during this time. Experienced observers reported more than usually severe turbulence at the flight levels between 5, 000 and 45, 000 feet in the northern quadrants of the storm. This 1967Structure of Hurricane Isbell, 1964297 298R. C. GentryVol. XVIII No. 4 hurricane also had several tornadoes associated with it later that evening as it passed over southern Florida. The U-2 aircraft of the Air Force Cambridge Research Laboratories made re- connaissance of the lower stratosphere in the vicinity of Isbell between 1830 and 1925 GMT. It flew south from Fort Myers, Florida, across the hurricane to a point about 60 n miles south of the storm center, then to a point 50 n miles southeast of the center, and there the plane turned northwest to re-cross the storm (Fig. 2) . The aircraft departed Fort Myers at 52 mb, and slowly descended enroute to fly near 93 mb (about 2,000 feet above the tropopause) most of the time that it was near the storm center. On the westward track, the pilot picked a spot surrounded by the highest clouds and assumed that this was the eye. There he descended through clouds into the troposphere to 116 mb. (That there was an unusually large amount of cloudiness in the eye between 35,000 and 50,000 ft all day was verified by data from the planes flying at levels between 5,000 and 45,000 ft.) During the aircraft's descent, turbulence became stronger than the pilot considered safe for operation, so he rapidly ascended again. After leaving the storm vicinity the plane climbed to about 50 mb to return to land. The pilot, Captain ROSBORG,reported that the cirrus cloud's tops north and near the storm were at 54, 000 feet, and that some cumulus tops protruded through this cirrus deck up to 61, 000 ft*.
Recommended publications
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Downloaded 09/28/21 10:59 AM UTC 1 76 MONTHLY WEATHER REVIEW Vol
    March 1965 Gordon E. Dunn and Staff 175 THEHURRICANE SEASON OF 1964 GORDON E. DUNN AND STAFF* U.S. Weather Bureau Office, Miami, Fla. 1. GENERALSUMMARY spondvery well withthe composite chart for atverage Twelvetropical cyclones,six of hurricaneintensity, departures from nornml for seasons of maxinlum tropical developedover tropical Atlantic waters during 1964. cycloneincidence inthe southeastern United States as This is the largest number since 1955 and compares with developed by Ballenzweig [a]. an average of 10during the past three decades. The September was aneven more active month and cor- centers of four hurricanes penetrated the mainland of the respondence between Ballenzweig'scomposite chrt and United States, the largest number to do so since the five theobserved values was better, particularly south of in 1933. There have been only four other years with four latitude 40' W. According toGreen [3] thesubtropical or more since 1900; four in 1906, 1909, and 1926, and six High was abnornlallystrong and displacedslightly in 1916.While none of thefour renching the mainland northwardfrom normal (favorable for tropical cyclone in 1964 wits :L major hurricane at the time of landfall, formation) while the 700-mb. jet was slightlysouth of three-Cleo, Dora, and EIi1da"were severe. normal (unfavorable). The long-wave position fluctuated Florida was struck by three hurricanes in addition to back and forth from the Rockies and Great Plains east- dyinghurricane Hilda and one tropical cyclone of less ward and the tropical cyclones experienced considerable than hurricane intensity; thus ended an unequalled rela- difficulty in penetrating the westerlies. During the major tively hurricane-free period of 13 years from 1951 through hurricanemonths in 1964 the long-wavetrough failed 1963.
    [Show full text]
  • Tornado Outbreak June 23-24, 2012
    NOAA, NATIONAL WEATHER SERVICE, WEATHER FORECAST OFFICE Miami, Florida 33165 http://weather.gov/southflorida Summary of Tornado Reports over South Florida: June 23-24, 2012 A total of ten tornadoes were reported in south Florida on the weekend of June 23-24 as a result of the outer circulation associated with Tropical Storm Debby in the northeastern Gulf of Mexico. Two were noted on June 23 and eight on June 24. The total of eight tornadoes in a four-hour period on June 24 is the most in one day over the southern Florida peninsula since October 14, 1964 when Hurricane Isbell also spawned eight tornadoes. The tornadoes of this past weekend were of EF0 intensity (of those that were rated). A total of 27 tornado warnings were issued by the National Weather Service Miami Forecast Office over the weekend. Following is a summary of the reported tornadoes. June 23, 2012 Tornado 1: East Naples (Collier County) tornado. Path length 1.7 miles. EF0. 335 PM – 337 PM EDT. Naples Municipal Airport Survey of damage in revealed mainly broken tree branches, uprooted small trees and a palm tree split in half. A pool lanai was heavily damaged, but only minor roof damage to structures was noted. Well-defined damage path suggests low-end EF0 tornado with winds likely no more than 70-75 mph. Discontinuous path length approximately 1.7 miles with width likely no more than 20 yards. This tornado was first observed as a waterspout just east of Isle of Capri on the southern shoreline of the Collier County mainland, then likely tracked unobserved over the unpopulated mangrove areas of Rookery Bay and Henderson Creek before reaching the East Naples area.
    [Show full text]
  • Analysis of the Deconstruction of Dyke Marsh, George Washington
    Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios Dyke Marsh image credit: NASA Open-File Report 2010-1269 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Hurricane Isabel approaching landfall, September 17, 2003. The storm’s travel path is shaded, and trends from southeast to north-northwest. The initial cloud bands from Isabel are arriving at Dyke Marsh in this image. Base imagery taken from a LANDSAT 5 visible image; see appendix 3A. Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios By Ronald J. Litwin, Joseph P. Smoot, Milan J. Pavich, Helaine W. Markewich, Erik Oberg, Ben Helwig, Brent Steury, Vincent L. Santucci, Nancy J. Durika, Nancy B. Rybicki, Katharina M. Engelhardt, Geoffrey Sanders, Stacey Verardo, Andrew J. Elmore, and Joseph Gilmer Prepared in cooperation with the National Park Service Open-File Report 2010–1269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
    3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8.
    [Show full text]
  • October No Time to Stop Watching for Storms Updated: 11:43 A.M
    October no time to stop watching for storms Updated: 11:43 a.m. Saturday, Oct. 10, 2015 | Posted: 8:00 a.m. Saturday, Oct. 10, 2015 By Kimberly Miller - Palm Beach Post Staff Writer South Florida breezed through the statistical peak of this year’s hurricane season with nary a scratch and only one mad dash for bottled water when Tropical Storm Erika seemed intent on an August visit. But while Sept. 10 is marked as the height of the Atlantic hurricane season, October is the true pinnacle for Florida, with more landfalls than any other month in the six-month storm stretch. Between 1851 and 2014, 23 October hurricanes have trekked across South Florida, or taken a swipe at the Keys. That’s compared to 17 in September, 13 in August and two in both June and July, according to an analysis by Brian McNoldy, a senior research associate at the University of Miami Rosenstiel School of Marine and Atmospheric Science. A single November hurricane was recorded, “September is when most of the really strong hurricanes hit, but October is when the most hurricanes of any intensity have hit,” McNoldy said. “During October, not only are we more likely to get a hurricane than during any other month, they typically will come from the south or southwest, not from the east.” These so-called “backdoor storms” often brew up in the western Caribbean Sea or Gulf of Mexico in October as opposed to the eastern tropical Atlantic, which is a more typical hurricane incubator early in the season. This year, strong westerly wind shear fortified by a brawny El Nino cut down most of the tropical waves exiting western Africa before they could become hurricanes.
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    Florida Commission on Hurricane Loss Projection Methodology Professional Team Report 2019 Hurricane Standards Hurricane Matthew Hurricane Michael CoreLogic, Inc. Remote Review April 5 – 8, 2021 CL Professional Team Report April 5-8, 2021 On April 5-8, 2021, the Professional Team conducted a remote review of the CoreLogic, Inc. (CL), CoreLogic Florida Hurricane Model 2021a in platform Risk Quantification and Engineering™ Version 21. The following individuals participated in the remote review. CoreLogic Amin Ilia, Ph.D., Coastal Scientist and Engineer Branimir Betov, M.S., Director, Model Development Daniel Betten, Ph.D., Atmospheric Scientist Justin Brolley, Ph.D., Principal Research Scientist Annes Haseemkunju, Ph.D., Atmospheric Scientist Mahmoud Khater, Ph.D., P.E., Chief Science and Engineering Officer Howard Kunst, FCAS, MAAA, Actuary Ilyes Meftah, Research Scientist Sergey Pasternak, Software Architect David Smith, Senior Director, Model Development Amanuel Tecle, Ph.D., Research Scientist Professional Team Paul Fishwick, Ph.D., Computer and Information Scientist Tim Hall, Ph.D., Meteorologist Mark Johnson, Ph.D., Statistician, Team Leader Stu Mathewson, FCAS, MAAA, Actuary Masoud Zadeh, Ph.D., P.E., Structural Engineer Donna Sirmons, Staff Due to the COVID-19 pandemic and State Board of Administration travel restrictions, the Professional Team conducted the review remotely rather than on-site. The remote review followed the on-site review process as detailed in the Report of Activities and the remote review procedures adopted by
    [Show full text]
  • Frequency Analysis of Daily Rainfall Maxima for Central and South Florida
    TECHNICAL PUBLICATION EMA # 390 Frequency Analysis of Daily Rainfall Maxima For Central and South Florida January 2001 by Chandra S. Pathak Hydro Information Systems & Assessment Department Environmental Monitoring & Assessment Division South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406 EXECUTIVE SUMMARY Rainfall frequency analysis and rainfall maps for short storm durations and various return periods pertaining to Central and South Florida are used for design, regulatory and hydrologic applications. Periodic updating of these analyses and maps is essential when additional data and new technologies become available. The objective of this study is to update the existing rainfall frequency analysis by using up-to-date data and detailed analysis, and to prepare maps showing contours of rainfall depths (isohyetal maps) for selected durations and return periods. The South Florida Water Management District collects and archives rainfall data from various rain gages. The daily rainfall data collected between January 1, 1900 to December 31, 1999, a period of 100 years, were used for this study. Three sets of rainfall gage records for one-day, three-day and five-day durations were used in determining the maximum rainfall over their respective period-of-record. The maximum recorded rainfall varied from four to 18 inches for the one-day duration; six to 20 inches for the three-day duration; and eight to 22 inches for the five-day duration. Central and South Florida was affected by 38 hurricanes and 23 tropical storms from 1900 to 1999. Of these 61 rainfall events, 59 were recorded in the District's database.
    [Show full text]
  • Characteristics of Tornadoes Associated with Land-Falling Gulf
    CHARACTERISTICS OF TORNADOES ASSOCIATED WITH LAND-FALLING GULF COAST TROPICAL CYCLONES by CORY L. RHODES DR. JASON SENKBEIL, COMMITTEE CHAIR DR. DAVID BROMMER DR. P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geography in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2012 Copyright Cory L. Rhodes 2012 ALL RIGHTS RESERVED ABSTRACT Tropical cyclone tornadoes are brief and often unpredictable events that can produce fatalities and create considerable economic loss. Given these uncertainties, it is important to understand the characteristics and factors that contribute to tornado formation within tropical cyclones. This thesis analyzes this hazardous phenomenon, examining the relationships among tropical cyclone intensity, size, and tornado output. Furthermore, the influences of synoptic and dynamic parameters on tornado output near the time of tornado formation were assessed among two phases of a tropical cyclone’s life cycle; those among hurricanes and tropical storms, termed tropical cyclone tornadoes (TCT), and those among tropical depressions and remnant lows, termed tropical low tornadoes (TLT). Results show that tornado output is affected by tropical cyclone intensity, and to a lesser extent size, with those classified as large in size and ‘major’ in intensity producing a greater amount of tornadoes. Increased values of storm relative helicity are dominant for the TCT environment while CAPE remains the driving force for TLT storms. ii ACKNOWLEDGMENTS I would like to thank my advisor and committee chair, Dr. Jason Senkbeil, and fellow committee members Dr. David Brommer and Dr. P. Grady Dixon for their encouragement, guidance and tremendous support throughout the entire thesis process.
    [Show full text]
  • A Socio-Economic Environmental Baseline Summary for the South
    W&M ScholarWorks Reports 9-1974 A socio-economic environmental baseline summary for the south Atlantic region between Cape Hatteras, North Carolina and Cape Canaveral, Florida Volume II : Climatology Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Climate Commons, and the Oceanography Commons Recommended Citation Virginia Institute of Marine Science. (1974) A socio-economic environmental baseline summary for the south Atlantic region between Cape Hatteras, North Carolina and Cape Canaveral, Florida Volume II : Climatology. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/reports/ 2098 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A SOCIO-ECONOMIC ENVIRONMENT AL BASELINE SUMMARY FOR THE SOUTH ATLANTIC REGION BETWEEN CAPE HATTERAS, NORTH CAROLINA AND CAPE CANAVERAL, FLORIDA ~ . Volume II CLIMATOLOGY Prepared by the VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 for the BUREAU OF LAND MANAGEMENT United States Department of Interior under Contract No. EQ4AC007 with the Council on Environmental Quality September 197 4 A SOCIO-ECONOMIC ENVIRONMENTAL BASELINE SUMMARY FOR THE SOUTH ATLANTIC REGION BETWEEN CAPE HATTERAS, NORTH CAROLINA AND CAPE CANAVERAL, FLORIDA Volume II Climatology prepared by Evon P. Ruzecki Virginia Institute of Marine Science Gloucester Point, Virginia 23062 for the Bureau of Land Management U. S. Department of Interior under Contract No. EQ4AC007 with the Council on Environmental Quality September 1974 FOREWORD The geographic area covered in this report extends from Cape Hatteras, North Carolina, on the north, to Cape Canaveral, Florida, to the·south.
    [Show full text]
  • CEMP Annex E
    Collier County Comprehensive Emergency Management Plan 2012 August 1, 2012 COLLIER COUNTY, FLORIDA Comprehensive Emergency M anagement Plan FLOOD WARNING PROGRAM ANNEX E August 1, 2012 Annex E – Page 1 Collier County Comprehensive Emergency Management Plan 2012 August 1, 2012 COLLIER COUNTY FLOOD WARNING PROGRAM I. INTRODUCTION: A. Purpose 1. This program establishes a framework through which Collier County may prepare for, mitigate the impacts of, respond to, and recover from salt water or fresh water flooding conditions that could adversely affect the health, safety and general welfare of Collier County residents and guests. 2. Provisions are made for the needed flexibility of direction, coordination and method of operation to enable government and non-government entities to accomplish their objectives of mitigation, preparedness, response and recovery. This Annex also provides the framework for rendering support to other counties, municipalities, States and the Federal government in their flood management efforts. B. Scope The Collier County Flood Warning Program 1. Describes the various types of flooding that could occur and provides procedures for disseminating warning information and for determining, assessing and reporting the severity and magnitude of flooded areas, 2. Establishes the concepts under which the county government will maintain a 24/7 flood warning program, and 3. Creates a framework for expeditious, effective and coordinated employment of local resources. 4. The County Emergency Management Office administers/disseminates flood warning information to the municipalities and all response operations are conducted under the authority of the Collier County Comprehensive Emergency Management Plan. C. Assumptions 1. The State Agencies of Florida has certain expertise and resources at its disposal that may be used in relieving emergency or disaster related problems that are beyond the County's capability.
    [Show full text]
  • Examining Planetary, Synoptic, and Mesoscale Features That Enhance Precipitation Associated with Tropical Cyclones Making Landfall Over North Carolina
    EXAMINING PLANETARY, SYNOPTIC, AND MESOSCALE FEATURES THAT ENHANCE PRECIPITATION ASSOCIATED WITH TROPICAL CYCLONES MAKING LANDFALL OVER NORTH CAROLINA Meredith S. Croke*, Michael L. Kaplan and Lian Xie North Carolina State University, Raleigh, North Carolina Kermit Keeter NOAA National Weather Service, Raleigh, North Carolina 1. INTRODUCTION AND BACKGROUND 2. MOTIVATION AND HYPOTHESIS Forecasting heavy rain associated with a landfalling North Carolina’s geographic location makes it a prime tropical cyclone (TC) is a difficult task that can be made target for TCs that recurve in the Atlantic Ocean, near even more complicated when external features exist the U.S. Forecasting precipitation totals from landfalling that may enhance the precipitation preceding or during TCs is made even more complicated by their landfall. The damage of inland freshwater floods can interactions with midlatitude systems. It is believed that often exceed the coastal damage of these life- a paradigm can be created to determine the potential of threatening storms (Rappaport 2000). In the United enhanced precipitation due to the interaction of the TC States, inland flooding is the predominant cause of with other meteorological features as early as 72 hours deaths associated with TCs (Elsberry 2002). The most prior to landfall. This paradigm would give forecasters recent example of this was during Hurricane Floyd an indication of the potential for an enhanced (1999) when inland floods claimed 50 lives in the United precipitation event. Features may exist at different States. Another 1400 people were saved from Floyd’s temporal and spatial scales (i.e. planetary, synoptic, floodwaters, thanks to a massive rescue mission meso-α and meso-β) and intensify as landfall is (Rappaport 2000; J.
    [Show full text]