October No Time to Stop Watching for Storms Updated: 11:43 A.M

Total Page:16

File Type:pdf, Size:1020Kb

October No Time to Stop Watching for Storms Updated: 11:43 A.M October no time to stop watching for storms Updated: 11:43 a.m. Saturday, Oct. 10, 2015 | Posted: 8:00 a.m. Saturday, Oct. 10, 2015 By Kimberly Miller - Palm Beach Post Staff Writer South Florida breezed through the statistical peak of this year’s hurricane season with nary a scratch and only one mad dash for bottled water when Tropical Storm Erika seemed intent on an August visit. But while Sept. 10 is marked as the height of the Atlantic hurricane season, October is the true pinnacle for Florida, with more landfalls than any other month in the six-month storm stretch. Between 1851 and 2014, 23 October hurricanes have trekked across South Florida, or taken a swipe at the Keys. That’s compared to 17 in September, 13 in August and two in both June and July, according to an analysis by Brian McNoldy, a senior research associate at the University of Miami Rosenstiel School of Marine and Atmospheric Science. A single November hurricane was recorded, “September is when most of the really strong hurricanes hit, but October is when the most hurricanes of any intensity have hit,” McNoldy said. “During October, not only are we more likely to get a hurricane than during any other month, they typically will come from the south or southwest, not from the east.” These so-called “backdoor storms” often brew up in the western Caribbean Sea or Gulf of Mexico in October as opposed to the eastern tropical Atlantic, which is a more typical hurricane incubator early in the season. This year, strong westerly wind shear fortified by a brawny El Nino cut down most of the tropical waves exiting western Africa before they could become hurricanes. One exception was Hurricane Joaquin, a formidable storm that reached Category 4 strength after hitting a weak spot in the shear. The storm, which became a hurricane Sept. 30, devastated southern Bahamian islands, sunk the 33-crewmember El Faro cargo ship, and made it within 500 miles of Florida’s east coast before sparing it with an abrupt turn north. “October can be fickle,” said Dan Kottlowski, a meteorologist and hurricane expert with the Pennsylvania-based AccuWeather. “But the conditions in the tropics usually don’t settle down until the end of the month.” As the summer season turns to fall, upper-level winds shift and tropical waves find more hospitable places to grow in the warm waters of the Caribbean. From there, steering winds take them north or northwest toward Florida. Hurricane Wilma in 2005 was a backdoor storm that began as a tropical depression Oct. 15 in the Caribbean Sea south of Jamaica. It crashed into Florida south of Naples on Oct. 24 as a Category 3 hurricane packing 120 mph winds. Within hours, it ripped through Palm Beach County and exited near Jupiter. In 1964, Hurricane Isbell spun up on Oct. 13 and followed almost the exact same track as Wilma, cutting into Florida near Everglades City and leaving just south of Jupiter. But not all late season storms that hit South Florida come from the west. Hurricane King became a Category 1 storm on Oct. 16, 1950 south of Cuba. King crossed Cuba, gained strength, and hit near Miami as a Category 4 with 132 mph winds, according to National Hurricane Center archives. “Even though we are in the second half of hurricane season, it doesn’t mean that we are winding down,” said Robert Molleda, warning coordination meteorologist with the National Weather Service in Miami. “The Sept. 10 peak data can be misinterpreted as meaning that our local tropical threat diminishes after this date, when, in fact, history shows that we’ve been hit by more hurricanes after Sept. 10 versus before.” Meteorologists say it’s human nature after four months on high hurricane alert to feel like the storm threat diminishes in October. But that’s a wrong assumption. “People tend to let their guard down in October, but by far it can still be a dangerous month, especially for Florida,” Kottlowski said. As of late last week, Kottlowski was watching a weak low pressure system in the Gulf for signs of it becoming something more. He didn’t give it much of a chance, but he’s wasn’t counting it out entirely. “There will be a heck of a fight going on late next week in that area,” Kottlowski said. “But we’ve had a low pressure system there multiple times and nothing has happened because they’ve all been sheared to death.” .
Recommended publications
  • Hurricane Andrew and Insurance: the Enduring Impact of An
    HURRICANE ANDREW AND INSURANCE: THE ENDURING IMPACT OF AN HISTORIC STORM AUGUST 2012 Lynne McChristian Florida Representative, Insurance Information Institute (813) 480-6446 [email protected] Florida Office: Insurance Information Institute, 4775 E. Fowler Avenue, Tampa, FL 33617 INTRODUCTION Hurricane Andrew hit Florida on August 24, 1992, and the tumult for the property insurance market there has not ceased in the 20 years since. Andrew was the costliest natural disaster in U.S. history in terms of insurance payouts to people whose homes, vehicles and businesses were damaged by the storm when it struck Florida and Louisiana in 1992. The insurance claims payout totaled $15.5 billion at the time ($25 billion in 2011 dollars). Even today, the storm is the second costliest natural disaster; Hurricane Katrina, which hit in 2005, is the most costly natural disaster. But the cost is only part of Andrew’s legacy. It also revealed that Florida’s vulnerability to hurricanes had been seriously underestimated. That reality was not lost on other coastal states nor on the insurance industry, which reassessed their exposure to catastrophic storm damage in the aftermath of Andrew. The event brought a harsh awakening and forced individuals, insurers, legislators, insurance regulators and state governments to come to grips with the necessity of preparing both financially and physically for unprecedented natural disasters. Many of the insurance market changes that have occurred nationally over the last two decades can be traced to the wakeup call delivered by Hurricane Andrew. These include: . More carefully managed coastal exposure. Larger role of government in insuring coastal risks.
    [Show full text]
  • Investigation and Prediction of Hurricane Eyewall
    INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification.
    [Show full text]
  • Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike
    Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Updated February 26, 2019 Congressional Research Service https://crsreports.congress.gov R43139 Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Summary This report provides information on federal financial assistance provided to the Gulf States after major disasters were declared in Alabama, Florida, Louisiana, Mississippi, and Texas in response to the widespread destruction that resulted from Hurricanes Katrina, Rita, and Wilma in 2005 and Hurricanes Gustav and Ike in 2008. Though the storms happened over a decade ago, Congress has remained interested in the types and amounts of federal assistance that were provided to the Gulf Coast for several reasons. This includes how the money has been spent, what resources have been provided to the region, and whether the money has reached the intended people and entities. The financial information is also useful for congressional oversight of the federal programs provided in response to the storms. It gives Congress a general idea of the federal assets that are needed and can be brought to bear when catastrophic disasters take place in the United States. Finally, the financial information from the storms can help frame the congressional debate concerning federal assistance for current and future disasters. The financial information for the 2005 and 2008 Gulf Coast storms is provided in two sections of this report: 1. Table 1 of Section I summarizes disaster assistance supplemental appropriations enacted into public law primarily for the needs associated with the five hurricanes, with the information categorized by federal department and agency; and 2.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Downloaded 09/28/21 10:59 AM UTC 1 76 MONTHLY WEATHER REVIEW Vol
    March 1965 Gordon E. Dunn and Staff 175 THEHURRICANE SEASON OF 1964 GORDON E. DUNN AND STAFF* U.S. Weather Bureau Office, Miami, Fla. 1. GENERALSUMMARY spondvery well withthe composite chart for atverage Twelvetropical cyclones,six of hurricaneintensity, departures from nornml for seasons of maxinlum tropical developedover tropical Atlantic waters during 1964. cycloneincidence inthe southeastern United States as This is the largest number since 1955 and compares with developed by Ballenzweig [a]. an average of 10during the past three decades. The September was aneven more active month and cor- centers of four hurricanes penetrated the mainland of the respondence between Ballenzweig'scomposite chrt and United States, the largest number to do so since the five theobserved values was better, particularly south of in 1933. There have been only four other years with four latitude 40' W. According toGreen [3] thesubtropical or more since 1900; four in 1906, 1909, and 1926, and six High was abnornlallystrong and displacedslightly in 1916.While none of thefour renching the mainland northwardfrom normal (favorable for tropical cyclone in 1964 wits :L major hurricane at the time of landfall, formation) while the 700-mb. jet was slightlysouth of three-Cleo, Dora, and EIi1da"were severe. normal (unfavorable). The long-wave position fluctuated Florida was struck by three hurricanes in addition to back and forth from the Rockies and Great Plains east- dyinghurricane Hilda and one tropical cyclone of less ward and the tropical cyclones experienced considerable than hurricane intensity; thus ended an unequalled rela- difficulty in penetrating the westerlies. During the major tively hurricane-free period of 13 years from 1951 through hurricanemonths in 1964 the long-wavetrough failed 1963.
    [Show full text]
  • Tropical Storm Fay August 18-23, 2008
    Tropical Storm Fay August 18-23, 2008 Tropical Storm Fay radar-based rainfall accumulation The Preliminary Summary Report, containing all storm-related data gathered from east-central Florida, including wind, rainfall and barometric pressure extremes. National Hurricane Center Summary of Tropical Storm Fay (pdf) Three tornadoes were reported with Fay. They are documented here. Rainfall map, from NOAA's Weather Prediction Center More maps are available at the WPC's website Brevard County has also produced a map of rainfall This map (pdf format) can "zoom in" for more detail. 3-hour radar-based rainfall estimates Day animated gif 18th loop0818.gif 19th loop0819.gif 20th loop0820.gif 21st loop0821.gif PRELIMINARY data indicates that this event is the 4th wettest tropical cyclone to affect the state of Florida and by far the wettest for east central Florida. A maximum rainfall total of 27.65 occurred 8 miles NW of Melbourne. The previous rainfall record for a tropical cyclone in the region was set in 1950, when Hurricane King dumped 15.44" of rain on Patrick Air Force Base near Cape Canaveral. Hurricane Wilma of 2005 holds third place--it dumped 13.26" on Kennedy Space Center. The "top ten" list for Florida follows: Storm Name (Year) Max Rainfall (ins) Location Easy (1950) 38.70 Yankeetown Georges (1998) 38.46 Munson Unnamed (1941) 35.00 Trenton Dennis (1985) 25.56 Homestead TD 1A (1992) 25.00 Arcadia Tower Jeanne (1980) 29.48 Key West Dora (1964) 23.73 Mayo TD (1969) 23.40 Havana Unnamed (1924) 23.22 Marcos Island Bob (1985) 21.50 Everglades City Alberto (1994) 21.38 Niceville Below is a map depicting the wind fields of Tropical Storm Fay (Click the map to see a larger version) Map based upon data provided by NOAA's Hurricane Research Division Photographs of Flooding in the Melbourne Area POST TROPICAL CYCLONE REPORT...TROPICAL STORM FAY NATIONAL WEATHER SERVICE MELBOURNE FL 225 PM EDT TUE SEP 2 2008...UPDATE 3 UPDATE...FOR KCOF: ADDED MIN PRES...UPDATED MAX SUSTAINED WIND AND TOTAL PRECIP.
    [Show full text]
  • Storms Surging: Building Resilience in Extreme Weather
    ALLIANZ GLOBAL CORPORATE & SPECIALTY® STORMS SURGING BUILDING RESILIENCE IN EXTREME WEATHER Hurricane seen from space. Source: 3dmotus / Shutterstock.com HURRICANE REPORT 2020 STORMS SURGING: BUILDING RESILIENCE IN EXTREME WEATHER Hurricane approaching tropical island coastline. Source: Ryan DeBerardinis / Shutterstock.com The intensity, frequency and duration of North Atlantic hurricanes, as TOP 10 COSTLIEST HURRICANES IN THE UNITED STATES2 well as the frequency of Category 4 and 5 hurricanes, have all increased ($ millions) since the early 1980s. Hurricane-associated flooding and rainfall rates Rank Date Location Hurricane Estimated insured loss In 2018 dollars3 are projected to rise. Models project a slight decrease in the annual Dollars when occurred number of tropical cyclones, but an increase in the number of the 1 August 25-30, 2005 AL, FL, GA, LA, MS, TN Hurricane Katrina $41,100 $51,882 strongest (Category 4 and 5) hurricanes going forward1. 2 September 19-22, 2017 PR, USVI Hurricane Maria4 $25,000-30,000 $25,600-30,700 3 September 6-12, 2017 AL, FL, GA, NC, PR, SC, UV Hurricane Irma4 $22,000-27,000 $22,500-27,600 4 August 25-Sep. 1, 2017 AL, LA, MS, NC, TN, TX Hurricane Harvey4 $18,000-20,000 $18,400-20,400 5 October 28-31, 2012 CT, DC, DE, MA, MD, ME, NC, NH, Hurricane Sandy $18,750 $20,688 NJ, NY, OH, PA, RI, VA, VT, WV 6 August 24-26, 1992 FL, LA Hurricane Andrew $15,500 $25,404 7 September 12-14, 2008 AR, IL, IN, KY, LA, MO, OH, PA, TX Hurricane Ike $12,500 $14,631 WILL 2020 BE ANOTHER RECORD-BREAKING YEAR? 8 October 10-12,
    [Show full text]
  • Estimating Tropical Cyclone Intensity from Infrared Image Data
    690 WEATHER AND FORECASTING VOLUME 26 Estimating Tropical Cyclone Intensity from Infrared Image Data MIGUEL F. PIN˜ EROS College of Optical Sciences, The University of Arizona, Tucson, Arizona ELIZABETH A. RITCHIE Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona J. SCOTT TYO College of Optical Sciences, The University of Arizona, Tucson, Arizona (Manuscript received 20 December 2010, in final form 28 February 2011) ABSTRACT This paper describes results from a near-real-time objective technique for estimating the intensity of tropical cyclones from satellite infrared imagery in the North Atlantic Ocean basin. The technique quantifies the level of organization or axisymmetry of the infrared cloud signature of a tropical cyclone as an indirect measurement of its maximum wind speed. The final maximum wind speed calculated by the technique is an independent estimate of tropical cyclone intensity. Seventy-eight tropical cyclones from the 2004–09 seasons are used both to train and to test independently the intensity estimation technique. Two independent tests are performed to test the ability of the technique to estimate tropical cyclone intensity accurately. The best results from these tests have a root-mean-square intensity error of between 13 and 15 kt (where 1 kt ’ 0.5 m s21) for the two test sets. 1. Introduction estimate the intensity of tropical cyclones was developed by V. Dvorak in the 1970s during the early years of Tropical cyclones (TC) form over the warm waters of satellites (Dvorak 1975). In this technique, an analyst the tropical oceans where direct measurements of their classifies the cloud scene types in visible and infrared intensity (among other factors) are scarce (Gray 1979; satellite imagery and applies a set of rules to calculate McBride 1995).
    [Show full text]
  • Preliminary Hurricane Irma Post-Storm Beach Conditions And
    Preliminary Hurricane Irma Post-Storm Beach Conditions and Coastal Impact Report Division of Water Resource Management Florida Department of Environmental Protection October 2017 Florida Department of Environmental Protection Preliminary Hurricane Irma Postal-Storm Beach Conditions and Coastal Impact Report Table of Contents I. Introduction ........................................................................................................................................ 2 II. Hurricane Irma: August 30 – September 15, 2017 ........................................................................ 4 III. Hurricane Irma Impact Summary and Overview ..................................................................... 11 Table 1. Beach and Dune Erosion Summary. ........................................................................................ 11 Table 2. Summary of Major Structural Damage to Major Structures by Hurricane Irma along the Coast of Peninsula Florida (Florida Keys not included). ......................................... 16 Table 3. Summary of Coastal Armoring Damage Caused by Hurricane Irma. ..................................... 17 IV. Detailed Damage Assessment by County .................................................................................... 18 St. Johns County .................................................................................................................................... 19 Flagler County ......................................................................................................................................
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    Submitted: November 5, 2018 Revised: January 21, 2019 Revised: February 13, 2019 Revised: March 22, 2019 Revised: April 9, 2019 Revised: July 12, 2019 HurLoss Version 9.0 Florida Commission on Hurricane Loss Projection Methodology 2017 Hurricane Standards Prepared for: Florida Commission on Hurricane Loss Projection Methodology State Board of Administration 1801 Hermitage Boulevard Tallahassee, Florida 32308 Prepared by: Applied Research Associates, Inc. IntraRisk Division 8537 Six Forks Road, Suite 600 Raleigh, North Carolina 27615 Copyright © 2019 Applied Research Associates, Inc. For Evaluation by the Florida Commission on Hurricane Loss Projection Methodology 1 Applied Research Associates, Inc. April 9, 2019 4 4/9/2019 5:30 PM Florida Commission on Hurricane Loss Projection Methodology Model Identification Name of Hurricane Model: HurLoss Florida Model Hurricane Model Version Identification: 9.0 Interim Hurricane Model Update Version Identification: N/A Hurricane Model Platform Name and Identifications: HurLoss Software Platform Interim Data Update Designation: N/A Name of Modeling Organization: Applied Research Associates, Inc. Street Address: 8537 Six Forks Road, Suite 600 City, State, Zip Code: Raleigh, NC, 27615 Mailing Address, if different from above: N/A Contact Person: Frank Lavelle Phone Number: (919) 582-3350 Fax Number: (919) 582-3401 E-mail Address: [email protected] Date: April 9, 2019 Applied Research Associates, Inc. April 9, 2019 3 4/9/2019 5:30 PM Applied Research Associates, Inc. April 9, 2019 4 4/9/2019 5:30 PM November 5, 2018 Floyd Yager, FCAS Chair, Florida Commission on Hurricane Loss Projection Methodology 1801 Hermitage Boulevard, Suite 100 Tallahassee, FL 32308 Re: ARA Model Submission under the November 1, 2017 Standards Dear Mr.
    [Show full text]
  • Tornado Outbreak June 23-24, 2012
    NOAA, NATIONAL WEATHER SERVICE, WEATHER FORECAST OFFICE Miami, Florida 33165 http://weather.gov/southflorida Summary of Tornado Reports over South Florida: June 23-24, 2012 A total of ten tornadoes were reported in south Florida on the weekend of June 23-24 as a result of the outer circulation associated with Tropical Storm Debby in the northeastern Gulf of Mexico. Two were noted on June 23 and eight on June 24. The total of eight tornadoes in a four-hour period on June 24 is the most in one day over the southern Florida peninsula since October 14, 1964 when Hurricane Isbell also spawned eight tornadoes. The tornadoes of this past weekend were of EF0 intensity (of those that were rated). A total of 27 tornado warnings were issued by the National Weather Service Miami Forecast Office over the weekend. Following is a summary of the reported tornadoes. June 23, 2012 Tornado 1: East Naples (Collier County) tornado. Path length 1.7 miles. EF0. 335 PM – 337 PM EDT. Naples Municipal Airport Survey of damage in revealed mainly broken tree branches, uprooted small trees and a palm tree split in half. A pool lanai was heavily damaged, but only minor roof damage to structures was noted. Well-defined damage path suggests low-end EF0 tornado with winds likely no more than 70-75 mph. Discontinuous path length approximately 1.7 miles with width likely no more than 20 yards. This tornado was first observed as a waterspout just east of Isle of Capri on the southern shoreline of the Collier County mainland, then likely tracked unobserved over the unpopulated mangrove areas of Rookery Bay and Henderson Creek before reaching the East Naples area.
    [Show full text]