Analysis of the Deconstruction of Dyke Marsh, George Washington
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Park Sites of the George Washington Memorial Parkway
National Park Service Park News and Events U.S. Department of the Interior Virginia, Maryland and Potomac Gorge Bulletin Washington, D.C. Fall and Winter 2017 - 2018 The official newspaper of the George Washington Memorial Parkway Edition George Washington Memorial Parkway Visitor Guide Drive. Play. Learn. www.nps.gov/gwmp What’s Inside: National Park Service U.S. Department of the Interior For Your Information ..................................................................3 George Washington Important Phone Numbers .........................................................3 Memorial Parkway Become a Volunteer .....................................................................3 Park Offices Sites of George Washington Memorial Parkway ..................... 4–7 Alex Romero, Superintendent Partners and Concessionaires ............................................... 8–10 Blanca Alvarez Stransky, Deputy Superintendent Articles .................................................................................11–12 Aaron LaRocca, Events ........................................................................................13 Chief of Staff Ruben Rodriguez, Park Map .............................................................................. 14-15 Safety Officer Specialist Activities at Your Fingertips ...................................................... 16 Mark Maloy, Visual Information Specialist Dawn Phillips, Administrative Officer Message from the Office of the Superintendent Jason Newman, Chief of Lands, Planning and Dear Park Visitors, -
NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE
NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE FREQUENCY ANALYSIS FOR THE GULF COAST OF FLORIDA FROM CAPE SAN BLAS TO ST. PETERSBURG BEACH Francis P. Ho and Robert J. Tracey Office of Hydrology Silver Spring, Md. April 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretar1 Robert M. White, Administrator George P, Cressman, Director CONTENTS 1. Introduction. • • • • • • • 1 1.1 Objective and scope •• 1 1.2 Authorization •• 1 1.3 Study method •• 2 2. Summary of historical hurricanes •• 2 2.1 Hurricane tracks 2 2.2 Historical notes 3 3. Climatology of hurricane characteristics. 8 3.1 Frequency of hurricane tracks •••. 8 3.2 Probability distribution of hurricane intensity. 8 3.3 Probability distribution of radius of maximum winds. 9 3.4 Probability distribution of speed and direction of forward motion • . • • • • • • • • 9 4. Hurricane surge • • • • 9 4.1 Surge model ••• 9 4.2 Shoaling factor •• 10 5. Tide frequency analysis by joint probability method • 10 5.1 The joint probability method • 10 5.2 Astronomical tides •••••• 11 5.2.1 Reference datum •.•••• 11 Table 1. Tropical storm parameters - Clearwater, Fla 12 Table 2. Tropical storm parameters - Bayport, Fla •• 13 Table 3. Tropical storm parameters - Cedar Key, Fla. 14 Table 4. Tropical storm parameters- Rock ·Islands, Fla .. 15 Table 5. Tropical storm parameters - Carrabelle, Fla • 16 Table 6. Tropical storm parameters - Apalachicola, Fla 17 5.2.2 Astronomical tide • • • •.• 19 5.3 Prestorm water level ••••••. 19 5.4 Tide frequencies • • • • . • ••• 19 5.5 Adjustment along coast ••••••.•••.•••. 19 5.6 Comparison of frequency curves with observed tides and high-water marks • • • • • • • • • • • . -
Viewed Erature to Ensure the Most Up-To-Date Treatment with Caution, P~Rticularlyamong Older Literature
PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Vol. 50, No. 3, pp. 39-114. December 9, 1997 SPECIES CATALOG OF THE NEUROPTERA, MEGALOPTERA, AND RAPHIDIOPTERA OF AMERlCA NORTH OF MEXICO Norman D. Penny Department ofE~ztorizolog)~,Caldornla Acndony oJ'Sc~erzces, San Fmnc~sco,CA 941 18 Phillip A. Adams Ccllg'rnia State Utzivet-sity, F~lllet-ton,CA 92634 and Lionel A. Stange Florida Depat>tnzen/oj'Agt.~czi/trrre, Gr~~nesv~/le, FL 32602 Thc 399 currently recognized valid species of the orders Neuroptera, Megaloptera, and Raphidioptera that are known to occur in America north of Mexico are listed and full synonymies given. Geographical distributions are listed by states and province\. Complete bibliographic references are given for all namcs and nomenclatural acts. Included are two new Junior homonyms indicated, seven new taxonomic cornbinations, two new changes of rank, fourteen new synonymies, three new lectotype de\ignations, and onc new name. Received March 20,1996. Accepted June 3, 1997. The recent publication of Nomina Insecta been consulted whenever possible, as well as Nearctica, A Check List of the Insects of North Zoological Record, and appropriate mono- America (Poole 1996) has given us a listing of graphic revisions publishedup to 1 January 1997. North American Neuropterida (Neuroptera + A number of taxonomic changes are incorpo- Megaloptera + Raphidioptera) species for the rated into this catalog: there are two new Junior first tlme in more than a century. However, for homonyms indicated, seven new taxonomic anyone trying to identify these species, the litera- combinations, two new changes of rank. fourteen ture is scattered and obscure. -
HISTORICAL HURRICANES in SOUTH CAROLINA September 10-22, 1989 N Average, South Carolina Experiences a Land-Falling Hurricane Hurricane Hugo Every Seven Years
HISTORICAL HURRICANES IN SOUTH CAROLINA September 10-22, 1989 n average, South Carolina experiences a land-falling hurricane Hurricane Hugo every seven years. Between 1900 and 2000, 14 hurricanes Time of Landfall: 12 a.m., 9/22/1989 Saffir/Simpson Scale Category: Category 4 Omade landfall along the coast of South Carolina including three Location of Landfall: Sullivans Island, SC Estimated U.S. Damage Costs: $7 billion major hurricanes: Hurricane Hugo (1989), Hurricane Gracie (1959), Maximum Winds at Landfall: 140 mph Estimated U.S. Deaths: 49 and Hurricane Hazel (1954). These South Carolina hurricanes made the Minimum Pressure at Landfall: 27.58” (934 mb) Estimated Storm Surge: 18-20 feet Top 40 Most Intense Hurricanes in a study by scientists at the National Hurricane Center. Rankings were based on minimum central pressures SUMMARY at the time of landfall. Hugo ranked #11 on the list, followed by Hazel Hugo originated off the coast of western Africa near the Cape Verde Islands as a tropical disturbance on September 9th and quickly gained strength to a tropical storm on the 11th and hurricane on the 13th. Hugo reached maximum intensity at Category 5 on the 15th with winds estimated at 160 mph and a minimum pressure of 918 mb east of the Leeward Islands. at #13, and Gracie at #33. Although major hurricanes are rare for the The hurricane passed directly over the islands of Guadaloupe, St. Croix, and Puerto Rico over the next few days before heading northwestward toward the South Carolina coast. By 6 a.m. coastal sections of South Carolina, averaging one every 25 years, the EDT on September 21, 1989, hurricane warnings were issued for coastal South Carolina and more than 250,000 people evacuated the coast. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Understanding Our Coastal Environment
Preface The South Carolina Beachfront Management Act In the Beginning The Coastal Zone Management Act of 1977 was enacted to protect our coastal resources from unwise development. This legislation served the beaches well during its first decade, but as South Carolina became a more popular tourist destination, it became apparent that the portion of the Act that dealt with beaches was inadequate. As development crept seaward, seawalls and rock revetments proliferated, damaging the public’s beach. In many areas there was no beach left at high tide. In some areas, there was no beach at low tide, either. In 1988 and again in 1990, South Carolina’s legislators took action and amended and strengthened the Coastal Zone Management Act. The resulting Beachfront Management Act protects South Carolina’s sandy shores by increasing the state’s jurisdiction and encouraging development to move landward. South Carolina’s Beachfront Jurisdiction To find the boundaries of this jurisdiction, staff from the Office of Ocean and Coastal Resource Management must first locate the baseline, which is the crest of the primary oceanfront sand dune. Where there are no dunes, the agency uses scientific methods to determine where the natural dune would lie if natural or man-made occurrences had not interfered with nature’s dune building process. The setback line is the most landward boundary and is measured from the baseline. To find the depth of the setback line, the beach’s average annual erosion rate for the past forty years is calculated and multiplied by forty. For example, if the erosion rate is one foot per year, the results will be a setback line that stretches forty feet from the baseline. -
Megaloptera, Sialidae)
MUSEUM & INSTITUTE OF ZOOLOGY POLISH ACADEMY OF SCIENCES FRAGMENTA FAUN I STIC A Fragm. faun. Warsaw, 30.12.2000 43 11 123-125 Wiesława C z e c h o w s k a Sialis morio K lingstedt, 1932 Megaloptera( , S ia lid a), e an alderfly species new to Poland Abstract: Sialis morio K lingstedt, 1932 is reported from Poland for the first time. It was found in two sites in the Masurian Lake District in the years 1998-1999. Key words:Neuropteroidea, Megaloptera , Sialis morio, Poland. Author's address: Museum and Institute of Zoology, PAS, Wilcza 64, 00-679 Warszawa, POLAND The Megaloptera is a small order of insects of the superorder Neuropteroi dea whose larval development occurs in an aquatic habitat. In Europe, this taxon is represented by 10 species of the genus Sialis L a t r . , the family Siali dae (A s p ó c k et al. 1980, V s h iv k o v a 1985, 1987). However, according to A s p ó c k (1992) and A s p ó c k and H o l z e l (1994), this genus should be revised, for some of the recently described species may be synonyms of others. The species considered unquestionable by these authors include Sialis lutaria L., S. morio K l i n g s t . , S. sordida K l i n g s t . , S. fuliginosa PICT., S. rtigripes PICT, and S. sibirica M c L a c h l . Three of these have been recorded from Poland, namely S. -
Long-Term Development in Post-Disaster Intentional Communities in Honduras
From Tragedy to Opportunity: Long-term Development in Post-Disaster Intentional Communities in Honduras A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Ryan Chelese Alaniz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ronald Aminzade June 2012 © Ryan Alaniz 2012 Acknowledgements Like all manuscripts of this length it took the patience, love, and encouragement of dozens of people and organizations. I would like to thank my parents for their support, numerous friends who provided feedback in informal conversations, my amazing editor and partner Jenny, my survey team, and the residents of Nueva Esperanza, La Joya, San Miguel Arcangel, Villa El Porvenir, La Roca, and especially Ciudad España and Divina for their openness in sharing their lives and experiences. Finally, I would like to thank Doug Hartmann, Pat McNamara, David Pellow, and Ross MacMillan for their generosity of time and wisdom. Most importantly I would like to express my gratitude to my advisor, Ron, who is an inspiration personally and professionally. I would also like to thank the following organizations and fellowship sponsors for their financial support: the University of Minnesota and the Department of Sociology, the Social Science Research Council, Fulbright, the Bilinski Foundation, the Public Entity Risk Institute, and the Diversity of Views and Experiences (DOVE) Fellowship. i Dedication This dissertation is dedicated to all those who have been displaced by a disaster and have struggled/continue to struggle to rebuild their lives. It is also dedicated to my son, Santiago. May you grow up with a desire to serve the most vulnerable. -
The Accelerating Erosion of Dyke Marsh Basic Findings of the U.S
The Accelerating Erosion of Dyke Marsh Basic Findings of the U.S. Geological Survey Study In 1940, the wetland known as Dyke Marsh was around 180 acres. By 2010, it was around 53 acres. Ned Stone It is eroding six to eight feet or 1.5 to two acres per Dyke Marsh shoreline erosion year on average. “Analysis of field evidence, aerial photography, and published maps has revealed an accelerating rate of erosion and marsh loss at Dyke Marsh, which now appears to put at risk the short term survivability of this marsh.” – USGS At this rate, Dyke Marsh could be gone in 30-40 years. Dredging of sand and gravel from 1940 to 1972 was a strong destabilizing force, transforming it from a net depositional state to a net erosional state. Dredging removed around 101 acres or 54 percent of the 1937 marsh. Erosion is both continuous and episodic. The chang- es caused by dredging have made the marsh subject to significant erosion by storm waves, especially from winds traveling upriver. Damaging storms oc- cur approximately every three years. Dredging out a promontory removed the geologic wave protection of the south marsh that existed back to at least 1864 and altered the size and func- tion of the tidal creek network. “This freshwater tidal marsh has shifted from a semi-stable net depositional environment (1864– 1937) into a strongly erosional one . The marsh has been deconstructed over the past 70 years by a combination of manmade and natural causes. The 1937 1959 2006 marsh initially experienced a strong destabilizing period between 1940 and 1972 by direct dredge The USGS study can be found at: www.pubs.usgs.gov/of/2010/1269. -
The Hurricane Preparedness Handbook
THE HURRICANE PREPAREDNESS HANDBOOK THE HURRICANE PREPAREDNESS HANDBOOK Bob Stearns Skyhorse Publishing Copyright © 2009, 2015 by Bob Stearns All rights reserved. No part of this book may be reproduced in any manner without the express written consent of the publisher, except in the case of brief excerpts in critical reviews or articles. All inquiries should be addressed to Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018. Skyhorse Publishing books may be purchased in bulk at special discounts for sales promotion, corporate gifts, fund-raising, or educational purposes. Special editions can also be created to specifications. For details, contact the Special Sales Department, Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018 or [email protected]. Skyhorse® and Skyhorse Publishing® are registered trademarks of Skyhorse Publishing, Inc.®, a Delaware corporation. Visit our website at www.skyhorsepublishing.com. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available on file. Cover design by Jane Sheppard Cover satellite image of Hurricane Rita by NASA Cover photographs, bottom: FEMA News Photo Print ISBN: 978-1-63220-275-8 Ebook ISBN: 978-1-63220-941-2 Printed in China Contents Foreword vii CHAPTER 1: The Nature of the Beast 1 Why you need to prepare CHAPTER 2: How Hurricanes Form 13 Understand basic storm dynamics CHAPTER 3: Hurricane Intensity 27 The category system for determining potential for damage CHAPTER 4: Forecasting Track and Intensity 35 How -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.