Hurricanes and Storms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Andrew and Insurance: the Enduring Impact of An
HURRICANE ANDREW AND INSURANCE: THE ENDURING IMPACT OF AN HISTORIC STORM AUGUST 2012 Lynne McChristian Florida Representative, Insurance Information Institute (813) 480-6446 [email protected] Florida Office: Insurance Information Institute, 4775 E. Fowler Avenue, Tampa, FL 33617 INTRODUCTION Hurricane Andrew hit Florida on August 24, 1992, and the tumult for the property insurance market there has not ceased in the 20 years since. Andrew was the costliest natural disaster in U.S. history in terms of insurance payouts to people whose homes, vehicles and businesses were damaged by the storm when it struck Florida and Louisiana in 1992. The insurance claims payout totaled $15.5 billion at the time ($25 billion in 2011 dollars). Even today, the storm is the second costliest natural disaster; Hurricane Katrina, which hit in 2005, is the most costly natural disaster. But the cost is only part of Andrew’s legacy. It also revealed that Florida’s vulnerability to hurricanes had been seriously underestimated. That reality was not lost on other coastal states nor on the insurance industry, which reassessed their exposure to catastrophic storm damage in the aftermath of Andrew. The event brought a harsh awakening and forced individuals, insurers, legislators, insurance regulators and state governments to come to grips with the necessity of preparing both financially and physically for unprecedented natural disasters. Many of the insurance market changes that have occurred nationally over the last two decades can be traced to the wakeup call delivered by Hurricane Andrew. These include: . More carefully managed coastal exposure. Larger role of government in insuring coastal risks. -
Investigation and Prediction of Hurricane Eyewall
INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification. -
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Updated February 26, 2019 Congressional Research Service https://crsreports.congress.gov R43139 Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Summary This report provides information on federal financial assistance provided to the Gulf States after major disasters were declared in Alabama, Florida, Louisiana, Mississippi, and Texas in response to the widespread destruction that resulted from Hurricanes Katrina, Rita, and Wilma in 2005 and Hurricanes Gustav and Ike in 2008. Though the storms happened over a decade ago, Congress has remained interested in the types and amounts of federal assistance that were provided to the Gulf Coast for several reasons. This includes how the money has been spent, what resources have been provided to the region, and whether the money has reached the intended people and entities. The financial information is also useful for congressional oversight of the federal programs provided in response to the storms. It gives Congress a general idea of the federal assets that are needed and can be brought to bear when catastrophic disasters take place in the United States. Finally, the financial information from the storms can help frame the congressional debate concerning federal assistance for current and future disasters. The financial information for the 2005 and 2008 Gulf Coast storms is provided in two sections of this report: 1. Table 1 of Section I summarizes disaster assistance supplemental appropriations enacted into public law primarily for the needs associated with the five hurricanes, with the information categorized by federal department and agency; and 2. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Insurer Stock Price Responses to Hurricane Floyd: an Event Study Analysis Using Storm Characteristics
JUNE 2006 E W I N G E T A L . 395 Insurer Stock Price Responses to Hurricane Floyd: An Event Study Analysis Using Storm Characteristics BRADLEY T. EWING Jerry S. Rawls College of Business, and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, Texas SCOTT E. HEIN Jerry S. Rawls College of Business, Texas Tech University, Lubbock, Texas JAMIE BROWN KRUSE Natural Hazards Mitigation Research Center, East Carolina University, Greenville, North Carolina (Manuscript received 20 January 2005, in final form 30 September 2005) ABSTRACT This research uses an event study methodology to examine the effect of Hurricane Floyd and the associated scientific and media releases on the market value of insurance firms. The research is unique in that information describing the development of the storm over time and space is incorporated to determine how the financial market reacted to changing news about a storm’s characteristics. Key empirical results can be summarized as follows. Overall, there was a negative effect on insurer stock price changes around the synoptic life cycle of the storm; however, this effect was neither constant nor was it always negative on each day of the cycle. Significant market reaction to the news concerning the path and strength of the storm prior to the storm landfall was found. The results herein suggest that markets find reliable time-sensitive reports provided by the National Weather Service, the National Hurricane Center, and other media outlets to be valuable information. 1. Introduction tops the list (the 11 September terrorist attack ranks second). Given the large amount of physical and eco- In September 1999 Hurricane Floyd hit the area nomic damage it should not be surprising that insurance around Wilmington/New Hanover County, North firms were materially affected by these windstorms. -
P1.28 a Digital Archive of Significant Florida Weather Events to Improve the Public’S Response to Future Warnings
P1.28 A Digital Archive of Significant Florida Weather Events to Improve the Public’s Response to Future Warnings Charles H. Paxton1,2, Jennifer M. Collins2, Kortnie J. Pugh1,2,3, and Jennifer L. Colson1 1. National Weather Service, Tampa Bay Florida 2. University of South Florida, Tampa, FL 3. National Marine Fisheries Service, St. Petersburg, FL I. Introduction other artifacts. These resources are of immense The past is our guide, our manual, it helps value not only to NOAA but also the American illuminate actions for the future. Through a NOAA people their true owners. Two frail leather-bound Preserve America Initiative grant obtained in U.S. Weather Bureau means books dating back to collaboration between the NWS (Tampa Bay 1890 needed rebinding. The office also has a region) and the University of South Florida (USF) wealth of other record books, older original two students were hired by NMFS Regional office weather maps depicting major events, news to work at the Tampa Bay Area NWS to document articles, and photos of major past events. historic weather events (Fig 1) and preserve weather relics. In an effort to save items of historical content, President Bush through his Preserve America executive order (E.O. 13287) called on NOAA and other federal agencies to inventory, preserve, and showcase federally- managed historic, cultural, or "heritage" resources and foster tourism in partnership with local communities. Fig. 2. Scanned weather photos. Many old weather artifacts from the past have been photographed and existing photographs of past weather events were scanned too (Fig. 2). When in electronic form, the pages of the books make accessible viewing on the Internet. -
HURRICANE Betsy Track Aug
UPS. Weather Bureau, WW~icane Betsy, August 27-Sept . 12, 1.65... U.S. DEPARTMENT OF COMMERCE ENVIRONMENT L SCIENCE SERVICES ADMlNlSTkATlON % ,j. WEATHER BUREAU CANE BTETZ~SX Prelimi~yReport wilh Advisorks and Bulletins Issued WASHINGTON, D. C. SEPT National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series ERRATA NOTICE One or more conditions of the original document may affect the quality of the image, such as: Discolored pages Faded or light ink Binding intrudes into the text This has been a co-operative project between the NOAA Central Library and the Climate Database Modernization Program, National Climate Data Center (NCDC). To view the original document contact the NOAA Central Library in Silver Spring, MD at (301) 7 13-2607 x124 or Libra~y.Keference(u~noaa.gov. HOV Services Imaging Contractor 12200 Kiln Court Beltsville, MD 20704-1 387 November 6,2007 HURRICANE Betsy Track Aug. 21 - Sept. 12,1965 Minimum Surface Pressure and Maximum Surface W~nd Mlnlrnum Surface Pressure and Max~mumSurlace W~nd Stippled area represents area traversed by radar eye. - 8 2' 8 6' 84' 4 I , 80' MIAMI-KEY WEST-TAMPA'I6 I COMBINED RADAR TRACK OF HURRICANE BETSY SEPTEMBER 6-9, 1965 Radar eye boundary Radar center track Stippled area represents area traversed by radar eye. &ELIMINARY REPORT ON I:URRICANE BETSY August 27 - September 10, 1965 On August 27, 1965 at 10:30 AM EST a Navy hurricane reconnaissance aircraft discovered a tropical depression at 13' North Latitude and 54' West Longitude or about 350 miles east southeast of Barbados in the Windward Islands, West Indies. -
2020 Atlantic Hurricane Season Begins Now Is the Time to Get Ready for a Hurricane
SUMMER 2020 2020 Atlantic Hurricane Season Begins Now is the time to get ready for a hurricane he 2020 Hurricane Season started June 1. Hurricanes are El Nino Southern Oscillation (ENSO) conditions are expected to either among nature’s most powerful and destructive phenomena. remain neutral or to trend toward La Nina, meaning there will not be an T Early forecasts by the National Oceanic and Atmospheric El Nino present to suppress hurricane activity. Also, there are warm- Administration (NOAA) Climate Prediction Center is predicting er-than-average sea surface temperatures in the tropical Atlantic above-normal activity for the 2020 Atlantic hurricane season. Ocean and Caribbean Sea, coupled with reduced vertical wind NOAA is a division of the National Weather Service. shear, and weaker tropical Atlantic trade winds. Similar con- The outlook predicts a 60 percent chance of an above-nor- ditions have been producing more active seasons since the mal season, a 30 percent chance of a near-normal season and current high-activity era began in 1995. only a 10 percent chance of a below-normal season. The Atlantic Hurricanes pose the greatest threat to life and property hurricane season officially runs from June 1 through November 30. however, tropical storms and depressions can also be devastating. NOAA’s Climate Prediction Center is forecasting a likely range of 13 The primary hazards from tropical storms, tropical depressions, and to 19 named storms (winds of 39 mph or higher), of which 6 to 10 could hurricanes, are storm surge flooding, inland flooding from heavy rains, become hurricanes (winds of 74 mph or higher), including 3 to 6 major hur- destructive winds, tornadoes, and high surf and rip current. -
FLORIDA HAZARDOUS WEATHER by DAY (To 1994) OCTOBER 1 1969
FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) OCTOBER 1 1969 - 1730 - Clay Co., Orange Park - Lightning killed a construction worker who was working on a bridge. A subtropical storm spawned one weak tornado and several waterspouts in Franklin Co. in the morning. 2 195l - south Florida - The center of a Tropical Storm crossed Florida from near Fort Myers to Vero Beach. Rainfall totals ranged from eight to 13 inches along the track, but no strong winds occurred near the center. The strong winds of 50 to 60 mph were all in squalls along the lower east coast and Keys, causing minor property damage. Greatest damage was from rains that flooded farms and pasture lands over a broad belt extending from Naples, Fort Myers, and Punta Gorda on the west coast to Stuart, Fort Pierce, and Vero Beach on the east. Early fall crops flooded out in rich Okeechobee farming area. Many cattle had to be moved out of flooded area, and quite a few were lost by drowning or starvation. Roadways damaged and several bridges washed out. 2-4 1994 - northwest Florida - Flood/Coastal Flood - The remnants of Tropical Depression 10 moved from the northeast Gulf of Mexico, across the Florida Panhandle, and into Georgia on the 2nd. High winds produced rough seas along west central and northwest Florida coasts causing minor tidal flooding and beach erosion. Eighteen people had to be rescued from sinking boats in the northeast Gulf of Mexico. Heavy rains in the Florida Big Bend and Panhandle accompanied the system causing extensive flooding to roadways, creeks and low lying areas and minor flooding of rivers. -
Meteorological Conditions Over Puerto Rico During Hurricane Betsy, 1956 Jos~A
FEBRUARY1959 MOXTHLY WEATHER REVIEW 69 METEOROLOGICAL CONDITIONS OVER PUERTO RICO DURING HURRICANE BETSY, 1956 JOS~A. COL~N US.Weather Bureau, San Juan,P.R.’ (Manuscript received January 28, 1958; revised November 28, 19581 ABSTRACT The observations of wind, pressure, rainfall, and radar bands recorded orer Puerto Rico during the passage of HurricaneBetsy are presented and discussed. Thetrack of thehurricane across the Atlantic and eastern Caribbean Sea, which shows an apparent sinusoidal oscillation around the mean path, is also included. The radar obserrations are used to obtain the detailed path of the hurricane across Puerto Rico and to study the changes in the structure of the precipitation bands that resulted from the passage over the mountainous section. Photo- graphs are presented to illustrate the rariations in the radar structure. Some inferences are made in regard to the changes in the intensity of the wind and pressure fields. It is shown that snme weakening of the wind field and filling of the central pressure occurred with motion over the land area, and that rapid deepening followed as soon as the humicane mored orer mater on the north side of the island. The rainfall observations are compared with those recorded in the great “Sam Felipe” hurricane of September 13, 1925. 1. INTRODUCTION 2. SYNOPTIC HISTORY On August 12, 1956, hurricane Betsy, the second tropi- Hurricane Betsy mas detected on August 9, 1956, near cal storm of the season, moved across the island of Puerto 1at.itude 14” N, longitude 49” W. withthe aid of ship Rico. It mas the first hurricane to pass direct,ly over the reports [ 11.