Insurer Stock Price Responses to Hurricane Floyd: an Event Study Analysis Using Storm Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

Insurer Stock Price Responses to Hurricane Floyd: an Event Study Analysis Using Storm Characteristics JUNE 2006 E W I N G E T A L . 395 Insurer Stock Price Responses to Hurricane Floyd: An Event Study Analysis Using Storm Characteristics BRADLEY T. EWING Jerry S. Rawls College of Business, and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, Texas SCOTT E. HEIN Jerry S. Rawls College of Business, Texas Tech University, Lubbock, Texas JAMIE BROWN KRUSE Natural Hazards Mitigation Research Center, East Carolina University, Greenville, North Carolina (Manuscript received 20 January 2005, in final form 30 September 2005) ABSTRACT This research uses an event study methodology to examine the effect of Hurricane Floyd and the associated scientific and media releases on the market value of insurance firms. The research is unique in that information describing the development of the storm over time and space is incorporated to determine how the financial market reacted to changing news about a storm’s characteristics. Key empirical results can be summarized as follows. Overall, there was a negative effect on insurer stock price changes around the synoptic life cycle of the storm; however, this effect was neither constant nor was it always negative on each day of the cycle. Significant market reaction to the news concerning the path and strength of the storm prior to the storm landfall was found. The results herein suggest that markets find reliable time-sensitive reports provided by the National Weather Service, the National Hurricane Center, and other media outlets to be valuable information. 1. Introduction tops the list (the 11 September terrorist attack ranks second). Given the large amount of physical and eco- In September 1999 Hurricane Floyd hit the area nomic damage it should not be surprising that insurance around Wilmington/New Hanover County, North firms were materially affected by these windstorms. Carolina. Swiss Re ranks Floyd 23rd on its list of the 40 What is not so clear is exactly how and to what extent most costly insurance losses worldwide from 1970 the value of insurance firms would respond to the ex- through 2004. (The ranking uses property and business pected damage. The accuracy of and public access to interruption losses, excluding life and liability losses information concerning the expected magnitude of a and can be found online at http://www.swissre.com.) tropical system has expanded significantly over the 10 Insured property and business interruption losses of yr since Hurricane Andrew. Because the severity of a $2.548 billion (indexed in 2002 dollars) were attributed hurricane develops and evolves over both time and to Floyd. Although Floyd was devastating to millions of space, dating this type of event by date of landfall alone people, it ranks far below Hurricane Andrew, which is likely to give an incomplete description of the market moved across Florida south of Miami in August 1992. response. With $20.511 billion of insured property and business It is expected that the development of potentially interruption losses (indexed in 2002 dollars), Andrew catastrophic events plays an important role in deter- mining the value of firms in the insurance industry. As such, this study seeks to determine how the stock prices Corresponding author address: Dr. Jamie Brown Kruse, Center for Natural Hazards Research, East Carolina University, Brew- of insurance firms behaved before, during, and imme- ster A-438, Greenville, NC 27858. diately after Hurricane Floyd because financial market E-mail: [email protected] participants would take accurate and readily available © 2006 American Meteorological Society Unauthenticated | Downloaded 09/29/21 04:12 AM UTC WAF917 396 WEATHER AND FORECASTING VOLUME 21 spatial and atmospheric characteristics of the storm into earlier studies. In contrast, this study examines market account. We also perform a comparison study analyzing reactions produced by Hurricane Floyd on the insur- the response of insurer stock prices to 1992’s Hurricane ance industry prior to hurricane landfall, taking into Andrew. account the actual development of the storm over time Economic research aimed at measuring the effect of and space. It is logical to expect that market analysts do an event on the value of firms and businesses is typi- not wait for all uncertainty to be resolved, but rather cally conducted in the event study framework. It has use all information as it becomes available to update become common in finance to measure an event’s eco- and refine their estimates of the financial impact of a nomic impact by using asset prices observed over a rela- hurricane. We conduct an event study that utilizes the tively short time period (Campbell et al. 1997). This synoptic life cycle of a hurricane as the event “date” methodology utilizes financial market data to estimate and describe the responses of insurance stock returns in the equilibrium or “normal” return for a stock price or light of storm characteristic information. In other index over a window of time (via a standard time series words, we see a multitude of different events that cor- model), and then isolate the effect of the event by con- respond with the release of information by the National trolling for when the event occurred. A normal return Hurricane Center (NHC) and National Weather Ser- for an industry is seen as capturing all quantifiable risk vice (NWS). Although investors may use a broad vari- in the value of the stock. In other words, the stock price ety of available information sources, including media takes into consideration the value of future insurance reports and expert opinion, we use the measurements premiums and payouts based on the first and second provided by the NHC because it is relatively unbiased, moments of the net income distribution. The first mo- publicly available, and considered credible. Johnson ment captures the statistical expectation. The second and Holt (1997) note that, generally speaking, weather moment captures the variance and therefore the re- data and forecasts are “public goods” that generate sig- maining risk, given the risk management strategies in nificant positive externalities in the economic sense. place for typical firms in the industry. Abnormal per- The input of meteorological and atmospheric param- formance is indicated by returns that are statistical out- eters such as pressure, wind speed, storm direction, and liers to the distribution, in other words, an event with location associated with the hurricane event can be very unexpected magnitude. Thus, normal performance may important information to financial markets and are be compared to abnormal performance that is, presum- used to construct the windstorm characteristics. Hurri- ably, driven by the event (Campbell et al. 1997). Using cane track and intensity as provided by the NHC were event study methodology, research has shown that the used to characterize the evolution of the hurricane market value of insurance firms is significantly affected event. This unique feature of our research provides a by catastrophic events, such as a hurricane. Lamb significant improvement over the standard event study (1998) found evidence that in 1992 when Hurricane An- analysis. To date, no other study has focused on the drew hit south Florida and Louisiana, property and ca- characteristics of a windstorm when analyzing or ex- sualty firms with exposures in these areas saw their plaining the market responses of insurer stock prices. stock returns adversely affected. This is not surprising The ability of an unfettered trading institution to given the amount of destruction these natural hazards quickly assimilate relevant information is summarized cause and the corresponding insured losses. Still others by the efficient markets hypothesis that states all rel- have argued that a natural disaster may have two op- evant and available information is incorporated into posing effects on the value of insurer stock prices current financial asset prices (Campbell et al. 1997). (Angbazo and Narayanan 1996)—a negative effect is The efficient markets hypothesis is one of the most hypothesized because of payments on claims and a influential and fundamental theories in finance. It sim- positive effect may be because of expectations of higher ply states that financial market prices should reflect all future premiums. available information. In particular, this means that MacKinlay (1997, p. 37) has stated in his review of market prices should reflect expectations of relevant “event studies in economics and finance” that “An im- events. For example, if market participants are con- portant characteristic of a successful event study is the vinced that a firm is going to increase its dividend, this ability to identify precisely the date of the event.” How- will already be priced in the stock price and the stock ever, previous research has not specifically considered price will not change with the news of a dividend in- the storm’s characteristics as the storm evolves over crease. Roll (1984), for example, provides evidence time, but instead the focus has been centered on the showing that financial markets, in the case of prices for date that the hurricane made landfall. That is, the date orange juice futures contracts, are very much linked to that a hurricane makes landfall has defined the event in weather forecasts, especially predictions of freezing Unauthenticated | Downloaded 09/29/21 04:12 AM UTC JUNE 2006 E W I N G E T A L . 397 weather, provided by the NWS. In a similar vein, this TABLE 1. Summary of descriptions of Hurricane Floyd. (Source: paper investigates whether the financial markets re- NHC) sponded to hurricane-track and intensity information as Synoptic life cycle 7–17 Sep 1999 provided by the NHC therefore indicating its value. Estimate of total U.S. damage $3–$6ϩ billion Number of deaths in United States 56 2. Background and related research Maximum wind speed (Saffir–Simpson 135 kt (category 4/5) The direct losses from hurricanes can total in the scale category) millions, even billions, of dollars (West and Lenze Wind speed at landfall 90 kt Saffir–Simpson scale category at landfall Category 2 1994).
Recommended publications
  • Investigation and Prediction of Hurricane Eyewall
    INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • FLORIDA HAZARDOUS WEATHER by DAY (To 1994) OCTOBER 1 1969
    FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) OCTOBER 1 1969 - 1730 - Clay Co., Orange Park - Lightning killed a construction worker who was working on a bridge. A subtropical storm spawned one weak tornado and several waterspouts in Franklin Co. in the morning. 2 195l - south Florida - The center of a Tropical Storm crossed Florida from near Fort Myers to Vero Beach. Rainfall totals ranged from eight to 13 inches along the track, but no strong winds occurred near the center. The strong winds of 50 to 60 mph were all in squalls along the lower east coast and Keys, causing minor property damage. Greatest damage was from rains that flooded farms and pasture lands over a broad belt extending from Naples, Fort Myers, and Punta Gorda on the west coast to Stuart, Fort Pierce, and Vero Beach on the east. Early fall crops flooded out in rich Okeechobee farming area. Many cattle had to be moved out of flooded area, and quite a few were lost by drowning or starvation. Roadways damaged and several bridges washed out. 2-4 1994 - northwest Florida - Flood/Coastal Flood - The remnants of Tropical Depression 10 moved from the northeast Gulf of Mexico, across the Florida Panhandle, and into Georgia on the 2nd. High winds produced rough seas along west central and northwest Florida coasts causing minor tidal flooding and beach erosion. Eighteen people had to be rescued from sinking boats in the northeast Gulf of Mexico. Heavy rains in the Florida Big Bend and Panhandle accompanied the system causing extensive flooding to roadways, creeks and low lying areas and minor flooding of rivers.
    [Show full text]
  • Hurricanes and Tropical Storms Location and Extent of All • Severe Thunderstorms Natural Hazards That Can Affect the Jurisdiction
    HAZARD I DENTIFICATION The United States and its communities are vulnerable to a wide array of natural hazards that threaten life and property. These hazards include, in no particular order: • Drought 44 CFR Requirement • Extreme Temperatures Part 201.6(c)(2)(i): The risk • Flood assessment shall include a description of the type, • Hurricanes and Tropical Storms location and extent of all • Severe Thunderstorms natural hazards that can affect the jurisdiction. The plan • Tornadoes shall include information on • Wildfire previous occurrences of hazard events and on the • Winter Storms probability of future hazard • Erosion events. • Earthquakes • Sinkholes • Landslides • Dam/Levee Failure Some of these hazards are interrelated (i.e., hurricanes can cause flooding and tornadoes), and some consist of hazardous elements that are not listed separately (i.e., severe thunderstorms can cause lightning; hurricanes can cause coastal erosion). It should also be noted that some hazards, such as severe winter storms, may impact a large area yet cause little damage, while other hazards, such as a tornado, may impact a small area yet cause extensive damage. This section of the Plan provides a general description for each of the hazards listed above along with their hazardous elements, written from a national perspective. Section 4: Page 2 H AZARD I DENTIFICATION N ORTHERN V IRGINIA R EGIONAL H AZARD M ITIGATION P LAN Drought Drought is a natural climatic condition caused by an extended period of limited rainfall beyond that which occurs naturally in a broad geographic area. High temperatures, high winds, and low humidity can worsen drought conditions, and can make areas more susceptible to wildfire.
    [Show full text]
  • I. INTRODUCTION As Part of the Beaufort
    PAMLICO SOUND REGIONAL HAZARD MITIGATION PLAN SECTION 3. HAZARD IDENTIFICATION AND ANALYSIS I. INTRODUCTION As part of the Beaufort, Carteret, Craven, Hyde, and Pamlico counties hazard mitigation efforts and the preparation of this plan, the five-county region will need to decide on which specific hazards it should focus its attention and resources. To plan for hazards and to reduce losses, the Pamlico Sound Region needs to know: 1) the type of natural hazards that threaten the region, 2) the characteristics of each hazard, 3) the likelihood of occurrence (or probability) of each hazard, 4) the magnitude of the potential hazards, and 5) the possible impacts of the hazards on the community. The following section identifies each hazard that poses an elevated threat to the counties and municipalities located within the Pamlico Sound Region. A rating system that evaluates the potential for occurrence for each identified threat is provided (see Table 39). The following natural hazards were determined to be of concern for the five-county region: 1. Hurricanes 2. Nor’easters 3. Flooding 4. Severe Winter Storms 5. Thunderstorms/Windstorms 6. Tornados 7. Wildfire 8. Earthquakes 9. Dam/Levee Failure 10. Tsunamis 11. Droughts/Heat Waves 12. Coastal Hazards A detailed explanation of these hazards and how they have impacted the five-county region is provided on the following pages. The weather history summaries provided throughout this discussion have been compiled from the National Oceanic and Atmospheric Administration (NOAA) as provided through the National Climatic Data Center (NCDC). The NCDC compiles monthly reports that track weather events and any financial or life loss associated with a given occurrence.
    [Show full text]
  • Hurricane Floyd and Irene (1999)
    The Impact of Hurricane Floyd & Hurricane Irene on the Florida East Coast 1999 Post-Storm Report No. BCS-00-01 Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems April 2000 STORM SUMMARIES Hurricane Floyd Hurricane Floyd formed in the eastern north Atlantic as a tropical wave that moved off the African coast on September 2nd (figure 1). After traveling westward several days, the eighth tropical depression of the season became organized on September 7th and was upgraded to Tropical Storm Floyd on September 8th and then to Hurricane Floyd on September 10th when it was about 200 miles from the Leeward Islands. On September 11th, Floyd slowed, turned to the northwest and avoided the northeast Caribbean. A turn westward coincided with strengthening, and from September 12 to 13 Floyd strengthened to an intense category four hurricane on the Saffir-Simpson Hurricane Classification Scale. Floyd passed just northeast of San Salvador and the Cat Islands in the Bahamas late on September 13 but grazed Eleuthera Island on September 14 in the morning and turned northwest moving over Abaco Island in the afternoon where there was slight weakening from its peak intensity. Floyd finally veered from its track toward Florida moving northwest then north paralleling the coast. Hurricane Floyd’s eye came within 95 nautical miles off Cape Canaveral on September 15 before heading north toward the Carolina’s where it made landfall with 10-foot storm tides as a category two hurricane near Cape Fear on September 16. The Tropical Prediction Center reports maximum intensity winds of 135 knots (155 miles per hour) on September 13th when Floyd was located in the Atlantic east of the Bahamas.
    [Show full text]
  • Floyd Guilty of Manslaughter
    Lumberton, N.C. Established 1870 www.robesonian.com Heartland Publications, LLC All Rights Reserved Saturday September 3, 2011 THE ROBESONIAN Volume 142 No. 135 Daily Sunday 50¢ $1 Floyd guilty of manslaughter ALI ROCKETT after the verdict was announced, but STAFF WRITER remained silent. Will be sentenced Sept. 15 The left side, where the Arnette LUMBERTON — After deliberat- family sat with friends, remained ing for 12 hours over two days, a jury was fatally wounded during an alter- may not be happy,” Sasser told the stoic. on Friday found William Drew Floyd cation at a parking lot courtroom audience. Both families declined to make a guilty of the voluntary manslaughter on Roberts Avenue that “It may be that both comment to The Robesonian. in the stabbing death of Chad Arnette. was prompted by a text parties are unhappy.” New sentencing guidelines make Floyd was taken into custody by message Arnette sent There was a collec- it dificult to project what kind of the Robeson County Sheriff’s Ofice to Floyd’s girlfriend. tive in-take of air as the sentence Floyd might face. A court after the verdict was read about 4:15 Before the verdict clerk read the verdict oficial who did not want to be named p.m. and ushered to the county jail, was read, Superior of guilty of voluntary said under old sentencing guidelines, where he will remain until a sentenc- Court Judge Douglas manslaughter. Floyd would have faced up to six years ing hearing on Sept. 15. Sasser warned those in Floyd’s relatives in prison for voluntary manslaughter.
    [Show full text]
  • Colorado State University Hurricane Forecast Team
    SUMMARY OF 1999 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHORS' SEASONAL ACTIVITY PREDICTION A Very Active Hurricane Season and a Successful Seasonal Forecast (as of 24 November 1999) By William M. Gray,* Christopher W. Landsea**, Paul W. Mielke, Jr. and Kenneth J. Berry*** [with special assistance from Todd Kimberlain, William Thorson and Eric Blake****] * Professor of Atmospheric Science ** Meteorologist with NOAA/AOML HRD Lab., Miami, FL *** Professors of Statistics **** Dept. of Atmospheric Science [David Weymiller and Thomas Milligan, Colorado State University, Media Representatives (970-491- 6432) are available to answer various questions about this forecast. ] Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Phone Number: 970-491-8681 Colorado State University Hurricane Forecast Team Figure 1: Colorado State University Hurricane Forecast Team Front Row - left to right: John Knaff, Ken Berry, Paul Mielke, John Sheaffer, Rick Taft. Back Row - left to right: Bill Thorson, Bill Gray, and Chris Landsea. Missing members include Todd Kimberlain and Eric Blake. SUMMARY OF 1999 SEASONAL FORECASTS AND VERIFICATION Sequence of Forecast Updates Tropical Cyclone Seasonal 4 Dec 98 7 Apr 99 4 Jun 99 6 Aug 99 Observed Parameters (1950-90 Ave.) Forecast Forecast Forecast Forecast Totals Named Storms (NS) (9.3) 14 14 14 14 12 Named Storm Days (NSD) (46.9) 65 65 75 75 77 Hurricanes (H)(5.8) 9 9 9 9 8 Hurricane Days (HD)(23.7) 40 40 40 40 43 Intense Hurricanes (IH) (2.2) 4 4 4 4 5 Intense Hurricane Days (IHD)(4.7) 10 10 10 10 15 Hurricane Destruction Potential (HDP) (70.6) 130 130 130 130 145 Maximum Potential Destruction (MPD) (61.7) 130 130 130 130 114 Net Tropical Cyclone Activity (NTC)(100%) 160 160 160 160 193 VERIFICATION OF 1999 PROBABILITY OF MAJOR HURRICANE LANDFALL Forecast Probability and Climatology (in parentheses) Observed 1.
    [Show full text]
  • CHAPTER 7 Extratropical Transition of Tropical Cyclones in the North Atlantic
    CHAPTER 7 Extratropical transition of tropical cyclones in the North Atlantic J.L. Evans1 & R.E. Hart2 1Department of Meteorology, The Pennsylvania State University, Pennsylvania, USA. 2Florida State University, Florida, USA. Abstract Apart from a few early case studies that documented tropical cyclones (TCs) that tracked into the extratropics, it was generally accepted through the 1970s that TCs would decay as they moved out of the tropics. This preconception was challenged in the 1980s. Over the past two decades, a flurry of research on these extratropi- cally transitioning TCs has revealed much about their behavior. Here, we discuss extratropically transitioning TCs, beginning from their tropical formation, the con- ditions under which they evolve, and their spatial and temporal distributions. Case studies are presented and potential indicators of transition, of use to the forecast community, are introduced. Case studies demonstrate the need for research into the interactions between the evolving TC and an approaching higher latitude trough. Constructive interactions between these systems, when accompanied by a supportive remnant tropical envi- ronment, will lead to transition and possibly reintensification of the storm as an extratropical system. Key results include a late season maximum in the percentage of storms that undergo transition. This late season peak is related to the need for synoptic support for tropical development to intensify cyclones prior to transition, followed almost immediately by a strong baroclinic synoptic energy source as transition occurs. Recognition of key structural changes as the storm transitions has led to the devel- opment of a number of indicators of transition currently being tested by the forecast community.
    [Show full text]
  • The Rms Hurricane Model
    THE RMS HURRICANE MODEL Submitted in Compliance with the 2002 Standards of the Florida Commission on Hurricane Loss Projection Methodology February 2003 Information submitted to the Florida Commission on Hurricane Loss Projection Methodology, February 2003 © 2003 Risk Management Solutions, Inc 1 FLORIDA COMMISSION ON HURRICANE LOSS PROJECTION METHODOLOGY Model Identification Name of Model and Version: RiskLink Version 4.3a 4.2 SP1a Name of Modeling Company: Risk Management Solutions, Inc. Street Address: 7015 Gateway Boulevard City, State, Zip: Newark, CA 94560 Mailing Address, if different from above: Risk Management Solutions Limited 10 Eastcheap London EC3M 1AJ U.K. Contact Person: Brian Owens Phone Number: +44 (0)20 7256 3807 Fax Number: +44 (0)20 7256 3838 E-mail Address: [email protected] Date: February 2003 Information submitted to the Florida Commission on Hurricane Loss Projection Methodology, February 2003 © 2003 Risk Management Solutions, Inc FLORIDA COMMISSION ON HURRICANE LOSS PROJECTION METHODOLOGY Table of Contents TABLE OF CONTENTS I LIST OF FIGURES IV LIST OF TABLES V 2002 STANDARDS 1 5.1 General Standards 1 5.1.1 Scope of the Computer Model and Its Implementation 1 5.1.2 Qualifications of Modeler Personnel and Independent Experts 1 5.1.3 Model Revision Policy 2 5.1.4 Independence of Model Components 2 5.1.5 Risk Location 3 5.1.6 Identification of Units of Measure and Conversion Factors 3 5.1.7 Visual Presentation of Data 3 5.2 Meteorological Standards 4 5.2.1 Units of Measure for Model Output 4 5.2.2 Damage Function
    [Show full text]
  • Boundary Layer Structure in Landfalling Tropical Cyclones William D
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Boundary Layer Structure in Landfalling Tropical Cyclones William D. Maxham Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES BOUNDARY LAYER STRUCTURE IN LANDFALLING TROPICAL CYCLONES By WILLIAM D. MAXHAM A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2004 The members of the Committee approve the thesis of William D. Maxham defended on July 19, 2004. ________________________ Paul Ruscher Professor Directing Thesis ________________________ Robert Hart Committee Member ________________________ T. N. Krishnamurti Committee Member Approved: ________________________________________________ Robert Ellingson, Chairperson, Department of Meteorology The Office of Graduate Studies has verified and approved the above named committee members. ii TABLE OF CONTENTS List of Tables ......................................................................................................................... v List of Figures........................................................................................................................ vi Abstract.................................................................................................................................. ix 1. INTRODUCTION ...........................................................................................................
    [Show full text]