Hurricane Development and Movement

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Development and Movement R. H. SIMPSON AND ROGER A. PIELKE* Introduction whereas the extratropical wave cyclone has a broader more homogeneous swath of damaging winds. A small Economic losses due to hurricanes in the United States change in the hurricane track may cause a major shift currently averagesmore than $800 million a year! and in the coastal threat (see e.g., Brand and Blelloch, 1975). the trend over the last three decades (see Fig. 1 next Thus, one of the greatest challenges in hurricane fore- page) is exponentially upward? This reflects the en9r- casting is the prediction of landfall, and most of the mous increases in construction along the hurricane- forecast improvement resources have been devoted to vulnerable coastlines as Americans migrate to the sea- the problems of movement and landfall. shore. Over the same period the annual loss of life in Hurricane forecasting comprises three closely related hurricanes has steadily diminished. If this is a measure but (at present) independent prediction tasks, the failure of increasing effectiveness of the hurricane warning of anyone of which may vitiate the success of the service, it is also a frail statistic. There are at least three others. These tasks are: (1) the prediction of movement reasons: first is the increasing numbers of people direct- and landfall; (2) the simulation of the storm surge3 in- ly exposed to hurricanes, many of whom have never cluding inland and riverine flooding; and (3) the predic- experienced one (N. L. Frank, 1974); second, the near- tion of extreme winds and areal extent of damaging plateau reached some years ago in prediction skill winds. Of these three, the greatest progress has been (R. H. Simpson, 1973) which persists despite the prog- made in the simulation of storm surge profiles 0 eles- ress which continues to be made in understanding hur- nianski, 1968, 1972). The least progress has been made ricane structure and the energy transformations which in predicting development or change in circulation drive it (J. Malkus and H. Riehl, 1960; LaSeur and strength. In fact, the modeling of development has ~een Hawkins, 1963). Finally, the great killer hurricanes are so ponderous and the initial value problem so intract- rare and comprise not only a critical challenge to the able that nearly all prediction models designed for experience and wits of the forecaster (R. Simpson, operational use seek only to forecast movement. 1971), but also to the formulation of the dynamic In the sections which follow we shall trace the prediction models upon which he is ever more de- progress in developing prediction techniques primarily pendent each year; models which, because of a num- for movement and landfall. We will examine the reasons ber of limiting factors described in this paper, are better why forecast skills have plateaued and what roadblocks able to predict the run-of-the-mill hurricane than the must be removed before significant new improvements extreme event. can be expected. However, the related oceanographic The hurricane poses a more difficult problem of problems relating to the sea-air interface, and the hy- modeling and of warning than do storms of temperate drologic problems of flash and riverine flooding due to latitudes because most of the hurricane's destructive excessive rains are beyond the scope of this paper and forces are concentrated within 20-50 miles of its center, are treated only inferentially. *See end of article for authors' affiliations and addresses. 3 An abnormal rise in sea level due to the influence of hurricane 1 National Weather Service, 1975: Hurricane preparednessbtief- pressuregradients and wind stresseson the sea. ing documents (slides). Similar terms which are common to the vQcabulariesof fluid 2Por a summar) of the 1975 hurricane seasonwith an illustra- dynamicists and are essential to the discussionin this text are tion of storm tracks see Mon. Wea. Rev., April 1976, Vol. 104 defined in "Glossary of Meteorology," 1959: Amer. Met. Soc., (Dollar amounts are adjusted to 1957-59 values). Boston, Mass. 601 APPLIED MECHANICS REVIEWS (/) z 2000 ~ 2- 0 <( (/) ..J II: ..J W 0 a- 0 u. u. 0 0 U) II: Z w 0 ~aJ ..J :: 1 ~ 1000 aJ 1910 1930 1950 1970 1910 1930 1950 1970 FIG.1 TRENDS IN HURRICANE RELATED DAMAGE AND DEATHS IN THE U.S. (5-YEAR AVERAGES) The Conceptual Problem in Predicting Movement performance of the model with hurricanes which are Before the advent of dynamic prediction models, hur- rapidly intensifying as they approach the coast, as in ricane movement was regarded conceptually as a re- Celia (1970), Carmen (1974), Eloise (1975), and the sponse to a "steering current" in the environment, and Florida hurricane of September, 1947. In such cases the development of prediction methods sought to iden- the influence of the developing vortex on its own move- tify and relate the properties of a steering level or layer ment may turn out to be significant. If so, another to the direction and speed of movement of the hurricane means must be found to deal with the initial value center. For example, Norton (1948) used the prevailing problem if such sophisticated primitive equation models wind direction and speed "at the top of the hurricane" are to cope with anomalous movement of the "bad as an index to movement of the vortex. Dynamically, actor," high-risk hurricanes more effectively than the however, the hurricane moves as a complex response simpler barotropic or statistically founded models which to the net forces imposed by environmental circulations can, at best, provide results of uncertain value in such interacting with the entire vortex (Beebe and Simpson, cases. 1976). An unresolved problem is the degree to which The earliest conceptual model to provide objective the vortex circulation may influence its own movement. predictions of hurricane movement was developed by The evidence suggests that when a hurricane circu- H. Riehl, et al. (1956). Riehl considered that the best lation approaches steady state, its movement is almost index to steering of the hurricane was the geostrophic wholly determined by the dynamics of environmental flow of the environment at the level of nondivergence. circulations.4 Hovermale (1975), in 'his development of Zonal and meridional components of geostrophic mo- a new hurricane prediction model for use at the National tion were calculated for the 500 mb surface (-5.5 km) Meteorological Center draws upon this evidence to solve using a large rectangular grid which enclosed the vortex. the very difficult problem of initializing his model. He This was used as input to a regression relation based fIrst removes the vortex and replaces it with one which upon historic data to obtain the westward and north- ward displacements of the vortex for the succeeding is artificially spun up. While further details of this procedure will be dis- 24-hour period. The method worked surprisingly well cussed in a later section, we remark here that the jus- in a research environment but, operationally, suffered tification of this procedure will be severelytested in the from the subjectivity of hurried hand analyses of the 500 mb geopotential fields. During the late 1950's and early 1960's the search "NHEML Field Program Plans-1975 4e.g., NOAA, 1975: for methods less sensitive to subjective circulation {Hurricane)," p. 50. 602 3000' APPLIED MECHANICS REVIEWS analyses led to the use of statistical screening to iden- clons (Garstang and Betts, 1974; Garstang, 1975), which tify predictors from surface charts. Veigas, et al. (1959) imply that dynamic interactions between cumulus-scale and R. G. Miller (1958) used a large storm-centered circulations and those of much larger scale in the en- grid to screen for predictors of 24-hour displacements. vironment supply a brake to the growth of disturbances. This research produced an operational model known as The explosive development of disturbances, and the T-60 (Veigas, 1961, 1962) which, despite the fact that rapid growth of hurricanes into extreme events-present- it took no cognizance of upper-level circulations, dis- ly beyond the reach of operational models-comprise played good skill with westward-moving hurricanes, and serious problems in hurricane prediction and warning: blazed the trail for development of a heirarchy of the first, because the skills of most models are at lowest ebb more powerful models that followed. These included in cases where there are development extremes, and one by B. I. Miller and Paul Moore (1960); and the second, because significant changes in strength and size NHC-64 model by B. I. Miller and P. chase (1966). The of the hurricane strongly influence the distribution of latter attempted to incorporate the better features of storm surge and tidal flooding at landfall, and hence, the work of Riehl and of Veigas, and is the foundation the need for evacuating coastal residents. upon which the subsequent statistically founded meth- ods, described in the next section, have evolved. The ap- Progress with Statistically Founded Prediction Models plication of these models was primarily responsible for a significant increase in forecast skills at the National Statistically founded methods for predicting move- Hurricane Center in the early 1960's. (Dunn, et al., ment are of two types, one employing historical in- 1968). formation whose application depends upon current ob- The problem of predicting hurricane development, servations only as regards the location of storm center from tropical cyclogenesis to the extreme event with and of its instantaneous movement. The second uses winds up to 100 mps, remains one of the most difficult statistical analogs or screening techniques to obtain pre- and intractable problems in meteorology. As such, it is dictors related to circulation characteristics, usually usually treated operationally as a separate problem, over a scale much larger than the hurricane environment.
Recommended publications
  • NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE
    NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE FREQUENCY ANALYSIS FOR THE GULF COAST OF FLORIDA FROM CAPE SAN BLAS TO ST. PETERSBURG BEACH Francis P. Ho and Robert J. Tracey Office of Hydrology Silver Spring, Md. April 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretar1 Robert M. White, Administrator George P, Cressman, Director CONTENTS 1. Introduction. • • • • • • • 1 1.1 Objective and scope •• 1 1.2 Authorization •• 1 1.3 Study method •• 2 2. Summary of historical hurricanes •• 2 2.1 Hurricane tracks 2 2.2 Historical notes 3 3. Climatology of hurricane characteristics. 8 3.1 Frequency of hurricane tracks •••. 8 3.2 Probability distribution of hurricane intensity. 8 3.3 Probability distribution of radius of maximum winds. 9 3.4 Probability distribution of speed and direction of forward motion • . • • • • • • • • 9 4. Hurricane surge • • • • 9 4.1 Surge model ••• 9 4.2 Shoaling factor •• 10 5. Tide frequency analysis by joint probability method • 10 5.1 The joint probability method • 10 5.2 Astronomical tides •••••• 11 5.2.1 Reference datum •.•••• 11 Table 1. Tropical storm parameters - Clearwater, Fla 12 Table 2. Tropical storm parameters - Bayport, Fla •• 13 Table 3. Tropical storm parameters - Cedar Key, Fla. 14 Table 4. Tropical storm parameters- Rock ·Islands, Fla .. 15 Table 5. Tropical storm parameters - Carrabelle, Fla • 16 Table 6. Tropical storm parameters - Apalachicola, Fla 17 5.2.2 Astronomical tide • • • •.• 19 5.3 Prestorm water level ••••••. 19 5.4 Tide frequencies • • • • . • ••• 19 5.5 Adjustment along coast ••••••.•••.•••. 19 5.6 Comparison of frequency curves with observed tides and high-water marks • • • • • • • • • • • .
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Long-Term Development in Post-Disaster Intentional Communities in Honduras
    From Tragedy to Opportunity: Long-term Development in Post-Disaster Intentional Communities in Honduras A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Ryan Chelese Alaniz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ronald Aminzade June 2012 © Ryan Alaniz 2012 Acknowledgements Like all manuscripts of this length it took the patience, love, and encouragement of dozens of people and organizations. I would like to thank my parents for their support, numerous friends who provided feedback in informal conversations, my amazing editor and partner Jenny, my survey team, and the residents of Nueva Esperanza, La Joya, San Miguel Arcangel, Villa El Porvenir, La Roca, and especially Ciudad España and Divina for their openness in sharing their lives and experiences. Finally, I would like to thank Doug Hartmann, Pat McNamara, David Pellow, and Ross MacMillan for their generosity of time and wisdom. Most importantly I would like to express my gratitude to my advisor, Ron, who is an inspiration personally and professionally. I would also like to thank the following organizations and fellowship sponsors for their financial support: the University of Minnesota and the Department of Sociology, the Social Science Research Council, Fulbright, the Bilinski Foundation, the Public Entity Risk Institute, and the Diversity of Views and Experiences (DOVE) Fellowship. i Dedication This dissertation is dedicated to all those who have been displaced by a disaster and have struggled/continue to struggle to rebuild their lives. It is also dedicated to my son, Santiago. May you grow up with a desire to serve the most vulnerable.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Creating a Hurricane Tolerant Community
    H!rt a. * am Hef7%e,,, io94 s~ NtA B.6~ «e ( >15 A Hurt a Comlnl Of+ Venice 19 "I t~Y: Oonald C aillOllette IC' i 2w-;vC p %7 iET ! A. 14- C M-i -r CREATING A HURRICANE TOLERANT COMMUNITY TABLE OF CONTENTS Acknowledgements . 1 .. Author's Notes . 5 Introduction . 6 Geography of Venice . Coastal Area Redevelopment Plan . 26 Venice Compliance Program . 62 Developing a Tolerant Building. 104 Hurricane Damage Prevention Project. .118 Growing Native for Nature ................. 136 Hurricane Defense Squadron . ............... 148 Executive Summary ..................... 157 A C K N O W L E D G E M E N T S This pilot study was contracted through the State of Florida and was made possible by funding provided by the Federal Emergency Management Agency (FEMA). William Massey and Eugene P. Zeizel, Ph.D. of FEMA and Michael McDonald with the Florida Department of Community Affairs were all instrumental in developing the scope of work and funding for this study. Special thanks go to the Venice City Council and City Manager George Hunt for their approval and support of the study. MAYOR: MERLE L. GRASER CITY COUNCIL: EARL MIDLAM, VICE MAYOR CHERYL BATTEY ALAN McEWEN DEAN CALAMARAS BRYAN HOLCOMB MAGGIE TURNER A study of this type requires time for the gathering of information from a variety of sources along with the assembling of these resources into a presentable format. Approximately six months were needed for the development of this study. The Venice Planning Department consisting of Chuck Place, Director, and Cyndy Powers need to be recognized for their encouragement and support of this document from the beginning to the end.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Construction and Application of a Spatial Hurricane Climatology Kelsey Nicole Scheitlin
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Construction and Application of a Spatial Hurricane Climatology Kelsey Nicole Scheitlin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CONSTRUCTION AND APPLICATION OF A SPATIAL HURRICANE CLIMATOLOGY By KELSEY SCHEITLIN A Dissertation submitted to the Department of Geography in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2010 The members of the committee approve the dissertation of Kelsey Scheitlin defended on June 4, 2010. James Elsner Professor Directing Dissertation Robert Hart University Representative Victor Mesev Committee Member Tingting Zhao Committee Member Thomas Jagger Committee Member Approved: Victor Mesev, Chair, Department of Geography David Rasmussen, Dean, College of Social Sciences and Public Policy The Graduate School has verified and approved the above-named committee members. ii To my parents, B and Jude, for supporting me through nine years of college, and my fianc´eJason, who patiently allowed me to put our lives on hold while I produced this document. iii ACKNOWLEDGMENTS First, I would like to acknowledge Dr. Elsner for his level of commitment to these papers and to my success. Dr. E, your mentorship, life lessons, and all of the wonderful opportu- nities you provided me will forever be appreciated. I promise you- I did not forget to put your name on the paper! I also thank my committee members- Dr. Zhao, Dr. Mesev, and Dr. Hart- for their time and effort in this project.
    [Show full text]
  • Downloaded 09/28/21 10:59 AM UTC 1 76 MONTHLY WEATHER REVIEW Vol
    March 1965 Gordon E. Dunn and Staff 175 THEHURRICANE SEASON OF 1964 GORDON E. DUNN AND STAFF* U.S. Weather Bureau Office, Miami, Fla. 1. GENERALSUMMARY spondvery well withthe composite chart for atverage Twelvetropical cyclones,six of hurricaneintensity, departures from nornml for seasons of maxinlum tropical developedover tropical Atlantic waters during 1964. cycloneincidence inthe southeastern United States as This is the largest number since 1955 and compares with developed by Ballenzweig [a]. an average of 10during the past three decades. The September was aneven more active month and cor- centers of four hurricanes penetrated the mainland of the respondence between Ballenzweig'scomposite chrt and United States, the largest number to do so since the five theobserved values was better, particularly south of in 1933. There have been only four other years with four latitude 40' W. According toGreen [3] thesubtropical or more since 1900; four in 1906, 1909, and 1926, and six High was abnornlallystrong and displacedslightly in 1916.While none of thefour renching the mainland northwardfrom normal (favorable for tropical cyclone in 1964 wits :L major hurricane at the time of landfall, formation) while the 700-mb. jet was slightlysouth of three-Cleo, Dora, and EIi1da"were severe. normal (unfavorable). The long-wave position fluctuated Florida was struck by three hurricanes in addition to back and forth from the Rockies and Great Plains east- dyinghurricane Hilda and one tropical cyclone of less ward and the tropical cyclones experienced considerable than hurricane intensity; thus ended an unequalled rela- difficulty in penetrating the westerlies. During the major tively hurricane-free period of 13 years from 1951 through hurricanemonths in 1964 the long-wavetrough failed 1963.
    [Show full text]
  • Summary of 2010 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author's Forecast
    SUMMARY OF 2010 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHOR’S SEASONAL AND TWO-WEEK FORECASTS The 2010 hurricane season had activity at well above-average levels. Our seasonal predictions were quite successful. The United States was very fortunate to have not experienced any landfalling hurricanes this year. By Philip J. Klotzbach1 and William M. Gray2 This forecast as well as past forecasts and verifications are available via the World Wide Web at http://hurricane.atmos.colostate.edu Emily Wilmsen, Colorado State University Media Representative, (970-491-6432) is available to answer various questions about this verification. Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Email: [email protected] As of 10 November 2010* *Climatologically, about two percent of Net Tropical Cyclone activity occurs after this date 1 Research Scientist 2 Professor Emeritus of Atmospheric Science 1 ATLANTIC BASIN SEASONAL HURRICANE FORECASTS FOR 2010 Forecast Parameter and 1950-2000 Climatology 9 Dec 2009 Update Update Update Observed (in parentheses) 7 April 2010 2 June 2010 4 Aug 2010 2010 Total Named Storms (NS) (9.6) 11-16 15 18 18 19 Named Storm Days (NSD) (49.1) 51-75 75 90 90 88.25 Hurricanes (H) (5.9) 6-8 8 10 10 12 Hurricane Days (HD) (24.5) 24-39 35 40 40 37.50 Major Hurricanes (MH) (2.3) 3-5 4 5 5 5 Major Hurricane Days (MHD) (5.0) 6-12 10 13 13 11 Accumulated Cyclone Energy (ACE) (96.2) 100-162 150 185 185 163 Net Tropical Cyclone Activity (NTC) (100%) 108-172 160 195 195 195 Note: Any storms forming after November 10 will be discussed with the December forecast for 2011 Atlantic basin seasonal hurricane activity.
    [Show full text]
  • Tornado Outbreak June 23-24, 2012
    NOAA, NATIONAL WEATHER SERVICE, WEATHER FORECAST OFFICE Miami, Florida 33165 http://weather.gov/southflorida Summary of Tornado Reports over South Florida: June 23-24, 2012 A total of ten tornadoes were reported in south Florida on the weekend of June 23-24 as a result of the outer circulation associated with Tropical Storm Debby in the northeastern Gulf of Mexico. Two were noted on June 23 and eight on June 24. The total of eight tornadoes in a four-hour period on June 24 is the most in one day over the southern Florida peninsula since October 14, 1964 when Hurricane Isbell also spawned eight tornadoes. The tornadoes of this past weekend were of EF0 intensity (of those that were rated). A total of 27 tornado warnings were issued by the National Weather Service Miami Forecast Office over the weekend. Following is a summary of the reported tornadoes. June 23, 2012 Tornado 1: East Naples (Collier County) tornado. Path length 1.7 miles. EF0. 335 PM – 337 PM EDT. Naples Municipal Airport Survey of damage in revealed mainly broken tree branches, uprooted small trees and a palm tree split in half. A pool lanai was heavily damaged, but only minor roof damage to structures was noted. Well-defined damage path suggests low-end EF0 tornado with winds likely no more than 70-75 mph. Discontinuous path length approximately 1.7 miles with width likely no more than 20 yards. This tornado was first observed as a waterspout just east of Isle of Capri on the southern shoreline of the Collier County mainland, then likely tracked unobserved over the unpopulated mangrove areas of Rookery Bay and Henderson Creek before reaching the East Naples area.
    [Show full text]
  • Analysis of the Deconstruction of Dyke Marsh, George Washington
    Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios Dyke Marsh image credit: NASA Open-File Report 2010-1269 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Hurricane Isabel approaching landfall, September 17, 2003. The storm’s travel path is shaded, and trends from southeast to north-northwest. The initial cloud bands from Isabel are arriving at Dyke Marsh in this image. Base imagery taken from a LANDSAT 5 visible image; see appendix 3A. Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios By Ronald J. Litwin, Joseph P. Smoot, Milan J. Pavich, Helaine W. Markewich, Erik Oberg, Ben Helwig, Brent Steury, Vincent L. Santucci, Nancy J. Durika, Nancy B. Rybicki, Katharina M. Engelhardt, Geoffrey Sanders, Stacey Verardo, Andrew J. Elmore, and Joseph Gilmer Prepared in cooperation with the National Park Service Open-File Report 2010–1269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
    3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8.
    [Show full text]