The Atlantic Hurricane Season of 1968

Total Page:16

File Type:pdf, Size:1020Kb

The Atlantic Hurricane Season of 1968 March 1969 225 UDC 551.515.2(261.1)"1968" THE ATLANTICHURRICANE SEASON OF 1968 ARNOLD L. SUGG and PAUL J. HEBERT' National Hurricane Center, Weather Bureau, ESSA, Miami, Fla. ABSTRACT The 1968 hurricane season in the North Atlantic area, considered in its entirety, and synoptic and statistical aspects of individual storms are discussed. 1. GENERAL SUMMARY TABLE1.-Hurricane days, 1954-1968 The two hurricanes and onetropical storm inJune Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Dec. Total Nov. Oct. equaled a record established in 1886.2 While there were __-_________ two other years, 1959 and 1936, with a total of three June 1954 ___.__.__.___._..... _____ ..-.-..... 1 ..". 5 8 16 ___._1 31 tropical cyclones, each is not unique as there were two I955 ___.___...4 ..". .____ _____ ..... ._.._..". 22 28 2 .." ~ _____ 56 1956___._..__. ..-....". ___._ ..... ..". ..-.- 1 9 2 ___..3 ____ ._ 15 storms and one hurricane in those years. Two hurricanes 1957__.____.._ _._._..... ..". __.__..". 3 ..... _.___19 _._._ .._.______ 22 occurring inJune are noteworthy when one considers 1958__.___..._ _.___..... ..". _____ .".. _____ .__._14 16 5 ..____.___ 35 1959 __._....._..... __.._ .-..._.___ ..". 1 2 ..___10 11 .._______. 24 there have only been 20 since 1886. This is approximately 1960___......_ ..-.._._._ .".. .____..___4 2 ____.13 ~ ____ .____ ____. 10 one every 4 yr, rather than two for any one June. In spite 1961 ___......_..... ..-.- ..". ___.._____ ..... 4 ___..'35 9 1 .__._49 1962-...-....- _.__. .-..-..". ___.._____ ..__. _.___ 1 ____. 10 .___~ ._.._ 11 of this beginning, the season ended with a total of only 1963 ___.._.__...________ ..". _._.__.______._ .____ 11 7 23 _____ _____ 41 13hurricane days, except for 1962, the lowest number 1964 __._.___......-..... .____ .__.__.__. _____ ..". 7 33 6 ._________ 46 1965___.._.__. ..... _.___.-..- _._._ _____ .__._ ..-.. 6 '21 3 ___.~ __.__ 30 for two decades and wellbelow the yearly average. See 1966. _________ .__.__.__..____ _._._ _____ 7 8 9 11 10 5 _____ 50 table 1 showing the most recent 15 yr. ____._____ ._.___._.. _____ .____'33 11 ____ ~ _.___44 _._.______ .____ 3 ____. 5 .___. 5 _I___ _____ 13 Synoptic meteorologists areparticularly interested in "" ~"____ why there are deviations in the normal monthly or sea- ..-.-_.__. ..".15 91 23619 111 9 1 486 sonal incidence of tropical cyclones. Wecan, in most situations, recognize planetarycirculation patternsthat 'If two hurricanes arein existenceon 1 day, this is counted as 2 hurricane days are favorable or unfavorable for development. In retro- spect,and aside from the climatology, what transpired in June 1968 is more difficult to explain than the activity unfavorablefor tropical cyclone development,although that occurred in other abnormal months of past years. the May-June change mas a favorable trend. Correlations Specifically, Stark (1968) hasshown negative anomalies duringpast years have been acceptable;this one is for May ranging from 50 to 80 m at 700 mb from the disappointing but certainly not discouraging. Since we GreatLakes eastward to Europe.This anomaly was know so little about pressure change mechanisms in the associated with blocking conditions at higher latitudes Tropics and the causes of cyclogenesis, perhaps June 1968 that resulted in farther-south-than-normal westerlies will provevery revealing to research meteorologists. across the Atlantic. Based upon the work of Ballenzweig The relatively large amount of data and events of this (1957), the preferred pattern for tropical cyclogenesis month shouldbe remembered and studied, not written along the Gulf Coast would depict above-normal 700-mb off without further examination. While this report does heights inthe Great Lakes with astrong positive axis not encompass new basic research on the subject, we will eastward to southwestern Europe. Green's (1968) analyses return to this unusual month with some pertinent obser- of the June datado not show this. Indeed, the June chart vations after some general remarks about the remainder was more similar to what Ballenzweig has described as of the season. ~ Changes in circulation features from June to July were 1 Other contributors include R. €1. Simpson, G. B. Clark, N. L. Frank, J. R. Hope, minor as indicated by Wagner (1968). Since there were R. 11. Kraft, andJ. M. Pelissier of NIIC, and W. C. Conner of the Ncw Orleans Hurricanc Weather Office. no storms, the agreementwith Ballenzweig's typesis 2 Actually, Tannehill (1956) describes the cyclone of June 13-14, 1886,as a hurricane. This would total threehurricanes for the month. Existing data do not prove that it was;very good. however, it may have been a minimal one. The authors choose to accept the judgments The westerlies dippeddeep intothe low latitudes of Of Dum and Millcr (1960), Cry (1965), and Dunwoody (1886). These references indicate theAtlantic in August-frequently below 30°N lat. that this early June cyclone was only of storm intensity. One tropical cyclone in 1959 formed on May 28. This caused geopotential heights in the lower troposphere Unauthenticated | Downloaded 10/03/21 09:30 PM UTC 226 ' REVIEWWEATHER MONTHLY vol. 91, No. 3 Unauthenticated | Downloaded 10/03/21 09:30 PM UTC March 1969 Arnold L. Sugg and Paul J. Hebert 221 to be well below normal over most of the ocean-a pattern the satellite picture shows the presence of isolated and that experience has shown to be unfavorable for develop- tall cumuli nearthe area of minimumpressure which ment. (For example, see Andrews (1968) for an inspection support the research mentioned above. Besides the visual of the anomaly fields.) August produced only one named evidence, figure 3 ispresented to show thevery weak cyclone. This is less than the monthly average for hurri- shear in the vertical at Swan Island, the station nearest canes, not tomention the combination of stormsand the depression. This would certainly seem to support the hurricanes. The relatively quiet month was not surprising. conclusion of Gray (1967)--“. most disturbances from Thepattern remainedunfavorable into September. which storms form are generated from an environment in Posey (1968) states there were below-normal heights at which ahorizontal trade-wind currentis present with 700 mb from the westernAtlantic to the BlackSea. minimum vertical shear.” Similarly, it supports the con- Again, this is not what the forecaster looks for as a favor- clusions of Simpson and Riehl (1958), who had demon- able pattern for the development of the long-trajectory, strated that where “ventilation” exists it acts as a con- Atlantic-Cape Verde-type cyclones so typical of August straintupon the hurricane heat engine (development). and September. In figure 1, note that Ednanever attained Another interesting observation, and surely a clue to hurricane force and failed to hold together long enough the formation of Abby, is presented in figure 4. Here we to make the usual recurvature or landfall. see the unanalyzed data from the so-called “TOE chart” Two conclusions mightbe drawn from thisgeneral (hop of theEkman layer)regularly prepared bythe summary. The first is most obvious and can be stated as a RegionalCenter forTropical Meteorology (RCTM) at good forecasting rule: tropicalcyclone development is not NHC.By inspection,one can easily see the obvious favored by blocking Highs at northern latitudes that produce inflow which is so important. A computation of the radial westerlies and below-normal heights in the midtroposphere at componentwith these data withina radius of 4O lat. midlatitudes and in the subtropi~s.~For the second conclu- produced a speed of 0.8 kt. Thisvalue yields greater sion, we return to the month of June, convergence thanthe threshold radial inflow of 1.5 kt The authors canonly reaffirm what several others have around the Gulf of Mexico (muchlarger radius) which saidbefore, that the environment and its changes near is considered favorable for development by Riehl, Baer, the disturbance or depression are just as important for and Veigas (1962). A second computation was not made; development, if not more so, than the large-scale features however, contrast figure 4 with figure 5. Thelatter is discussed in previous paragraphs.Riehl (1963) has em- the TOE chart for a September depression that persisted phasized that there are two schools of thought and goes for several days;the winds show no net inflow; the on to comment on whether most of the research ‘should depression never developed. For the track of this depres- be done on the “internal factors” or the “external forcing sion and others thereader is referred to the accompanying mechanisms.” In this reference, he apparently thinks the article by Simpson et al. (1969). lattervery important, for he alludes to the influences Damageand casualty figures for the 1968 hurricane produced bythe passing (to thenorth) of midlatitude season are given in table 2. Table 3, presenting hurricane troughs in the westerlies. He postulates external cooling statistics in the United States in less than a century of from this arrangement but is quick to point out “There hurricanes, helps to emphasize the,small amountof damage would be only a few days in each hurricane season when and relatively low loss of life in 1968. formation from external forces was a possibility.’’ The following paragraphs will attempt to flag some of the 2. INDIVIDUAL CASES more obvious internalfeatures of the June storms and HURRICANE ABBY, JUNE 1-13 touch on some of the applied research in progress by hurricane ‘specialists recently assigned to theNational When the 1968 hurricane season officially began on Hurricane Center.
Recommended publications
  • NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE
    NOAA Technical Memorandum NWS HYDR0-20 STORM TIDE FREQUENCY ANALYSIS FOR THE GULF COAST OF FLORIDA FROM CAPE SAN BLAS TO ST. PETERSBURG BEACH Francis P. Ho and Robert J. Tracey Office of Hydrology Silver Spring, Md. April 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretar1 Robert M. White, Administrator George P, Cressman, Director CONTENTS 1. Introduction. • • • • • • • 1 1.1 Objective and scope •• 1 1.2 Authorization •• 1 1.3 Study method •• 2 2. Summary of historical hurricanes •• 2 2.1 Hurricane tracks 2 2.2 Historical notes 3 3. Climatology of hurricane characteristics. 8 3.1 Frequency of hurricane tracks •••. 8 3.2 Probability distribution of hurricane intensity. 8 3.3 Probability distribution of radius of maximum winds. 9 3.4 Probability distribution of speed and direction of forward motion • . • • • • • • • • 9 4. Hurricane surge • • • • 9 4.1 Surge model ••• 9 4.2 Shoaling factor •• 10 5. Tide frequency analysis by joint probability method • 10 5.1 The joint probability method • 10 5.2 Astronomical tides •••••• 11 5.2.1 Reference datum •.•••• 11 Table 1. Tropical storm parameters - Clearwater, Fla 12 Table 2. Tropical storm parameters - Bayport, Fla •• 13 Table 3. Tropical storm parameters - Cedar Key, Fla. 14 Table 4. Tropical storm parameters- Rock ·Islands, Fla .. 15 Table 5. Tropical storm parameters - Carrabelle, Fla • 16 Table 6. Tropical storm parameters - Apalachicola, Fla 17 5.2.2 Astronomical tide • • • •.• 19 5.3 Prestorm water level ••••••. 19 5.4 Tide frequencies • • • • . • ••• 19 5.5 Adjustment along coast ••••••.•••.•••. 19 5.6 Comparison of frequency curves with observed tides and high-water marks • • • • • • • • • • • .
    [Show full text]
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • Hurricane Ike: Do We Need to Change Our Thinking?
    AIRCURRENTS HURRICANE IKE: DO WE NEED TO CHANGE OUR THINKING? EDITor’s noTE: Of the three landfalling U.S. hurricanes in 2008, Hurricane Ike was by far the costliest. Perhaps because it was the largest loss in the last three seasons, it seemed to have captured the imagination of many in the industry, with estimates of as much as $20 billion or more being bandied about in the storm’s early aftermath. In this article, AIR’s Dr. Peter Dailey 12.2008 takes a hard look at the reality of Hurricane Ike. By Dr. Peter S. Dailey, Director of Atmospheric Science INTRODUCTION neither catastrophe modelers—nor the industry—should Hurricane Ike made landfall at Galveston, Texas in the early have been taken by surprise by Ike. While the storm morning hours of September 13, 2008. It was the third displayed some interesting characteristics, and managed and final hurricane to make landfall in the U.S. this year, to cause damage well inland (long after it had been preceded by Hurricane Dolly in late July and Gustav just two downgraded to a tropical depression and was no longer weeks prior to Ike. tracked by the NHC, the AIR model in fact performed very well in capturing the effects of this storm. All three landfalling hurricanes arrived on U.S. shores as Category 2 storms on the Saffir-Simpson scale. Yet according This article traces the history of Hurricane Ike’s brief but to the latest estimates by ISO’s Property Claims Services unit, costly assault on the U.S. It also looks at how the AIR U.S.
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Baseline Assessment Study on Wastewater Management Belize
    Caribbean Regional Fund for Wastewater Management Baseline Assessment Study on Wastewater Management Belize December 2013 Revised January 2015 Baseline Assessment Study for the GEF CReW Project: Belize December 2013 Prepared by Dr. Homero Silva Revised January 2015 CONTENTS List of Acronyms....................................................................................................................................................iii 1. Introduction ........................................................................................................................................................ 1 2. The National Context ....................................................................................................................................... 3 Description of the Country .................................................................................................................. 4 Geographic Characteristics ................................................................................................................. 6 Economy by Sectors ............................................................................................................................ 9 The Environment .............................................................................................................................. 13 Land Use, Land Use Changes and Forestry (LULUCF) ....................................................................... 20 Disasters ..........................................................................................................................................
    [Show full text]
  • Long-Term Development in Post-Disaster Intentional Communities in Honduras
    From Tragedy to Opportunity: Long-term Development in Post-Disaster Intentional Communities in Honduras A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Ryan Chelese Alaniz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ronald Aminzade June 2012 © Ryan Alaniz 2012 Acknowledgements Like all manuscripts of this length it took the patience, love, and encouragement of dozens of people and organizations. I would like to thank my parents for their support, numerous friends who provided feedback in informal conversations, my amazing editor and partner Jenny, my survey team, and the residents of Nueva Esperanza, La Joya, San Miguel Arcangel, Villa El Porvenir, La Roca, and especially Ciudad España and Divina for their openness in sharing their lives and experiences. Finally, I would like to thank Doug Hartmann, Pat McNamara, David Pellow, and Ross MacMillan for their generosity of time and wisdom. Most importantly I would like to express my gratitude to my advisor, Ron, who is an inspiration personally and professionally. I would also like to thank the following organizations and fellowship sponsors for their financial support: the University of Minnesota and the Department of Sociology, the Social Science Research Council, Fulbright, the Bilinski Foundation, the Public Entity Risk Institute, and the Diversity of Views and Experiences (DOVE) Fellowship. i Dedication This dissertation is dedicated to all those who have been displaced by a disaster and have struggled/continue to struggle to rebuild their lives. It is also dedicated to my son, Santiago. May you grow up with a desire to serve the most vulnerable.
    [Show full text]
  • Differential Social Vulnerability and Response to Hurricane Dolly Across
    Differential social vulnerability and response to Hurricane Dolly across the US-Mexico border Isabelle Ruin (NCAR), Cedar League (UCCS), Mary Hayden (NCAR), Barry Goldsmith (NWS), and Jeral Estupiñán (NWS) Introduction Loss reduction of life and property from flooding in the aftermath of hurricanes is dependent not only on adequate preparation and lead time, but also on effective warning dissemination and, more importantly, public response to the warning. Previous research notes that warnings are geared toward the cultural majority and are less likely to reach those who are most vulnerable – the poor, the elderly, and cultural minorities (Burton et al. 1978, Mileti 1999; Perry and Mushkatel, 1986; Lindell and Perry, 2004, Hayden et al. 2007). Mileti et al. (1975) found that appropriate response to warnings was more likely to occur if the warning could be confirmed by a variety of sources including various agencies, government entities, media, family or friends, thereby assuring those in the warning area of the accuracy of the message. Other factors that may influence an individual’s response to warnings include age, education, gender, previous experience with a hazard, environmental cues, perceived risk, source credibility, and message specificity within the warning (Gruntfest 1987; Tobin and Montz 1997; Lindell and Perry 1992). Hayden et al. (2007) found most people continue to receive warning information from home via television, while the internet also plays a small role. Successful warnings are those that are taken seriously and responded to in a timely and effective manner. Recent studies show that public reliance on “official” warnings from traditional sources may be shifting to more private and informal sources such as The Weather Channel and the internet (Baker, l995; Dow and Cutter, 1998; Drabek, 2001).
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Creating a Hurricane Tolerant Community
    H!rt a. * am Hef7%e,,, io94 s~ NtA B.6~ «e ( >15 A Hurt a Comlnl Of+ Venice 19 "I t~Y: Oonald C aillOllette IC' i 2w-;vC p %7 iET ! A. 14- C M-i -r CREATING A HURRICANE TOLERANT COMMUNITY TABLE OF CONTENTS Acknowledgements . 1 .. Author's Notes . 5 Introduction . 6 Geography of Venice . Coastal Area Redevelopment Plan . 26 Venice Compliance Program . 62 Developing a Tolerant Building. 104 Hurricane Damage Prevention Project. .118 Growing Native for Nature ................. 136 Hurricane Defense Squadron . ............... 148 Executive Summary ..................... 157 A C K N O W L E D G E M E N T S This pilot study was contracted through the State of Florida and was made possible by funding provided by the Federal Emergency Management Agency (FEMA). William Massey and Eugene P. Zeizel, Ph.D. of FEMA and Michael McDonald with the Florida Department of Community Affairs were all instrumental in developing the scope of work and funding for this study. Special thanks go to the Venice City Council and City Manager George Hunt for their approval and support of the study. MAYOR: MERLE L. GRASER CITY COUNCIL: EARL MIDLAM, VICE MAYOR CHERYL BATTEY ALAN McEWEN DEAN CALAMARAS BRYAN HOLCOMB MAGGIE TURNER A study of this type requires time for the gathering of information from a variety of sources along with the assembling of these resources into a presentable format. Approximately six months were needed for the development of this study. The Venice Planning Department consisting of Chuck Place, Director, and Cyndy Powers need to be recognized for their encouragement and support of this document from the beginning to the end.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Project STORMFURY: a Scientific Chronicle 1962-1983
    Project STORMFURY: H. E. Willoughby, D. P. Jorgensen1, R. A. Black, and S. L. Rosenthal A Scientific Chronicle Hurricane Research Division, AOML/NOAA 4301 Rickenbacker Causeway 1962-1983 Miami, FL 33149 Abstract of Georgia and North Florida. After seeding, observers aboard the experimental aircraft noted changes in the visual Between 1962 and 1983, research in hurricane modification centered appearance of the clouds, but they could not demonstrate on an ambitious experimental program, Project STORMFURY. any other effects on structure or intensity. The one indisput- The proposed modification technique involved artificial stimulation of convection outside the eye wall through seeding with silver iodide. able change—although apparently not the result of seeding The artificially invigorated convection, it was argued, would compete (Mook et al., 1957)—was a reversal of track toward the west, with the convection in the original eye wall, lead to reformation of which ultimately led to landfall on the coasts of Georgia and the eye wall at larger radius, and thus produce a decrease in the max- South Carolina. Claims by Langmuir (Byers, 1974) that the imum wind. track had been influenced through human intervention were Since a hurricane's destructive potential increases rapidly as its maximum wind becomes stronger, a reduction as small as 10% an embarrassment at the time and left a legacy that had an would have been worthwhile. Modification was attempted in four adverse effect upon political and legal arrangements for later hurricanes on eight different days. On four of these days, the winds hurricane modification efforts. decreased by between 10 and 30%. The lack of response on the other The years 1954 and 1955 each brought three major hurri- days was interpreted to be the result of faulty execution of the exper- iment or poorly selected subjects.
    [Show full text]
  • Hurricane Season Just Getting Started
    Contact For Immediate Release Mark Hanna August 1, 2013 (512) 326-7616 Hurricane Season Just Getting Started Just four named storms make up the 2013 hurricane season thus far. Despite projections of a higher than average number of storms and hurricanes this summer, no hurricanes have formed and short term forecasts don’t call for any tropical storm formations. But a spokesman for the National Weather Service says the hurricane season has actually been more active this year than average and the season is just getting started. “We are still a long way from our peak season for hurricanes which is late August and September, so a lot can happen between now and then,” said Dan Reilly, warning coordination meteorologist with the National Weather Service Office in League City. “On average, we usually have had only two named storms by this time, so we are actually above normal by that measure. We'd expect the hurricane activity to start picking up as we go through August and September.” The tropical storms that have formed this year have been Andrea, Barry, Chantal and Dorian. Tropical Storm Andrea drenched the entire east coast once it made landfall June 6. Tropical Storm Barry plowed into Mexico’s gulf coast on June 20, while Tropical Storms Chantal and Dorian fizzled out in the Caribbean in July. It’s been almost five years since a hurricane has struck Texas. Hurricanes Ike and Dolly along with Tropical Storm Edouard all struck Texas in 2008. Hurricane Ike was the costliest storm in Texas history with $12 billion in insured losses.
    [Show full text]