CEMP Annex E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Downloaded 09/28/21 10:59 AM UTC 1 76 MONTHLY WEATHER REVIEW Vol
March 1965 Gordon E. Dunn and Staff 175 THEHURRICANE SEASON OF 1964 GORDON E. DUNN AND STAFF* U.S. Weather Bureau Office, Miami, Fla. 1. GENERALSUMMARY spondvery well withthe composite chart for atverage Twelvetropical cyclones,six of hurricaneintensity, departures from nornml for seasons of maxinlum tropical developedover tropical Atlantic waters during 1964. cycloneincidence inthe southeastern United States as This is the largest number since 1955 and compares with developed by Ballenzweig [a]. an average of 10during the past three decades. The September was aneven more active month and cor- centers of four hurricanes penetrated the mainland of the respondence between Ballenzweig'scomposite chrt and United States, the largest number to do so since the five theobserved values was better, particularly south of in 1933. There have been only four other years with four latitude 40' W. According toGreen [3] thesubtropical or more since 1900; four in 1906, 1909, and 1926, and six High was abnornlallystrong and displacedslightly in 1916.While none of thefour renching the mainland northwardfrom normal (favorable for tropical cyclone in 1964 wits :L major hurricane at the time of landfall, formation) while the 700-mb. jet was slightlysouth of three-Cleo, Dora, and EIi1da"were severe. normal (unfavorable). The long-wave position fluctuated Florida was struck by three hurricanes in addition to back and forth from the Rockies and Great Plains east- dyinghurricane Hilda and one tropical cyclone of less ward and the tropical cyclones experienced considerable than hurricane intensity; thus ended an unequalled rela- difficulty in penetrating the westerlies. During the major tively hurricane-free period of 13 years from 1951 through hurricanemonths in 1964 the long-wavetrough failed 1963. -
Tornado Outbreak June 23-24, 2012
NOAA, NATIONAL WEATHER SERVICE, WEATHER FORECAST OFFICE Miami, Florida 33165 http://weather.gov/southflorida Summary of Tornado Reports over South Florida: June 23-24, 2012 A total of ten tornadoes were reported in south Florida on the weekend of June 23-24 as a result of the outer circulation associated with Tropical Storm Debby in the northeastern Gulf of Mexico. Two were noted on June 23 and eight on June 24. The total of eight tornadoes in a four-hour period on June 24 is the most in one day over the southern Florida peninsula since October 14, 1964 when Hurricane Isbell also spawned eight tornadoes. The tornadoes of this past weekend were of EF0 intensity (of those that were rated). A total of 27 tornado warnings were issued by the National Weather Service Miami Forecast Office over the weekend. Following is a summary of the reported tornadoes. June 23, 2012 Tornado 1: East Naples (Collier County) tornado. Path length 1.7 miles. EF0. 335 PM – 337 PM EDT. Naples Municipal Airport Survey of damage in revealed mainly broken tree branches, uprooted small trees and a palm tree split in half. A pool lanai was heavily damaged, but only minor roof damage to structures was noted. Well-defined damage path suggests low-end EF0 tornado with winds likely no more than 70-75 mph. Discontinuous path length approximately 1.7 miles with width likely no more than 20 yards. This tornado was first observed as a waterspout just east of Isle of Capri on the southern shoreline of the Collier County mainland, then likely tracked unobserved over the unpopulated mangrove areas of Rookery Bay and Henderson Creek before reaching the East Naples area. -
Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team
SUMMARY OF 2000 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHORS' SEASONAL ACTIVITY FORECAST A Successful Forecast of an Active Hurricane Season - But (Fortunately) Below Average Cyclone Landfall and Destruction (as of 21 November 2000) By William M. Gray,* Christopher W. Landsea**, Paul W. Mielke, Jr., Kenneth J. Berry***, and Eric Blake**** [with advice and assistance from Todd Kimberlain and William Thorson*****] * Professor of Atmospheric Science ** Meteorologist with NOAA?AOML HRD Lab., Miami, Fl. *** Professor of Statistics **** Graduate Student ***** Dept. of Atmospheric Science [David Weymiller and Thomas Milligan, Colorado State University Media Representatives (970-491- 6432) are available to answer questions about this forecast.] Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Phone Number: 970-491-8681 Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team Front Row - left to right: John Knaff, Ken Berry, Paul Mielke, John Scheaffer, Rick Taft. Back Row - left to right: Bill Thorson, Bill Gray, and Chris Landsea. SUMMARY OF 2000 SEASONAL FORECASTS AND VERIFICATION Sequence of Forecast Updates Tropical Cyclone Seasonal 8 Dec 99 7 Apr 00 7 Jun 00 4 Aug 00 Observed Parameters (1950-90 Ave.) Forecast Forecast Forecast Forecast 2000 Totals* Named Storms (NS) (9.3) 11 11 12 11 14 Named Storm Days (NSD) (46.9) 55 55 65 55 66 Hurricanes (H)(5.8) 7 7 8 7 8 Hurricane Days (HD)(23.7) 25 25 35 30 32 Intense Hurricanes (IH) (2.2) 3 3 4 3 3 Intense Hurricane Days (IHD)(4.7) 6 6 8 6 5.25 Hurricane Destruction Potential (HDP) (70.6) 85 85 100 90 85 Maximum Potential Destruction (MPD) (61.7) 70 70 75 70 78 Net Tropical Cyclone Activity (NTC)(100%) 125 125 160 130 134 *A few of the numbers may change slightly in the National Hurricane Center's final tabulation VERIFICATION OF 2000 MAJOR HURRICANE LANDFALL Forecast Probability and Climatology for last Observed 100 years (in parentheses) 1. -
Analysis of the Deconstruction of Dyke Marsh, George Washington
Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios Dyke Marsh image credit: NASA Open-File Report 2010-1269 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Hurricane Isabel approaching landfall, September 17, 2003. The storm’s travel path is shaded, and trends from southeast to north-northwest. The initial cloud bands from Isabel are arriving at Dyke Marsh in this image. Base imagery taken from a LANDSAT 5 visible image; see appendix 3A. Analysis of the Deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia: Progression, Geologic and Manmade Causes, and Effective Restoration Scenarios By Ronald J. Litwin, Joseph P. Smoot, Milan J. Pavich, Helaine W. Markewich, Erik Oberg, Ben Helwig, Brent Steury, Vincent L. Santucci, Nancy J. Durika, Nancy B. Rybicki, Katharina M. Engelhardt, Geoffrey Sanders, Stacey Verardo, Andrew J. Elmore, and Joseph Gilmer Prepared in cooperation with the National Park Service Open-File Report 2010–1269 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8. -
Before the Federal Communications Commission Washington D.C. 20554 in the Matter of ) ) 2002 Biennial Regulatory Review
Before the Federal Communications Commission Washington D.C. 20554 In the matter of ) ) 2002 Biennial Regulatory Review − Review of ) MB Docket No. 02-277 the Commission’s Broadcast Ownership Rules and ) Other Rules Adopted Pursuant to Section 202 of ) the Telecommunications Act of 1996 ) ) Cross-Ownership of Broadcast Stations and ) MM Docket No. 01-235 Newspapers ) ) Rules and Policies Concerning Multiple Ownership ) MM Docket No. 01-317 of Radio Broadcast Stations in Local Markets ) ) Definition of Radio Markets ) MM Docket No. 00-244 COMMENTS OF THE NATIONAL ASSOCIATION OF BROADCASTERS AND THE NETWORK AFFILIATED STATIONS ALLIANCE ATTACHMENTS Henry L. Baumann Jonathan D. Blake Jack N. Goodman Robert A. Long, Jr. Jerianne Timmerman Jennifer A. Johnson NATIONAL ASSOCIATION OF Raymond A. Atkins BROADCASTERS Heidi C. Doerhoff 1771 N Street, NW COVINGTON & BURLING Washington, DC 20036 1201 Pennsylvania Avenue, NW 202-429-5430 (Phone) Washington, DC 20004-2401 202-775-3526 (Fax) 202-662-6000 (Phone) 202-662-6291 (Fax) Wade H. Hargrove Mark J. Prak Brooks, Pierce, McLendon, Humphrey & Leonard, L.L.P. P. O. Box 1800 Raleigh, NC 27602 919-839-0300 (Phone) 919-839-0304 (Fax) Counsel for Network Affiliated Stations Alliance January 2, 2003 LIST OF ATTACHMENTS Attachment 1 Marius Schwartz & Daniel R. Vincent, The Television National Ownership Cap and Localism (2003) Attachment 2 NAB/NASA Joint Survey of Broadcast Stations Affiliated with ABC, CBS, and NBC Attachment 3 NAB/NASA Request for Collection of Data By FCC and FCC Order Denying Request -
Atlantic Basin Tropical Cyclone Evasion by United States Navy Ships Via Optimum Track Ship Routing (Otsr)
10A.4 ATLANTIC BASIN TROPICAL CYCLONE EVASION BY UNITED STATES NAVY SHIPS VIA OPTIMUM TRACK SHIP ROUTING (OTSR) Atlantic Basin tropical cyclones pose significant challenges to the operational readiness and safety of United States ships and afloat personnel. During tropical events, the Naval Atlantic Meteorology and Oceanography Center applies a broad range of meteorology products and skills, in consultation with the National Hurricane Center, to recommend appropriate evasive actions for assets afloat. Even though a tropical cyclone may be hundreds of miles from land, or perhaps, not threatening coastal interests at all, platforms afloat (including ships of the U.S. Navy, NOAA, Coast Guard, Army, in addition to Allied Navies) may well be threatened. Due to relatively slow speeds and vulnerability in heavy winds and seas, tropical cyclone warnings and evasion recommendations must be developed, coordinated, and promulgated well ahead of the onset of destructive weather. During Hurricane Alberto, two groups of U.S. Navy ships were transiting the Atlantic; one group returning home after deployment, and the second group proceeding eastward to meet scheduled commitments. Forecasting potential hurricane impact on the two groups required the entire suite of forecast tools and models reaching out to at least 144 hours. This because the expected recurvature of the hurricane had the potential to impact ship tracks over the course of the next 6 – 7 days. Through nearly continuous communications with the afloat staffs, together with consideration of all available and pertinent meteorological data, beneficial evasion actions were accomplished. The eastbound group increased speed along their track and outran the Alberto threat while the westbound group initiated various track/speed diverts to successfully evade. -
October No Time to Stop Watching for Storms Updated: 11:43 A.M
October no time to stop watching for storms Updated: 11:43 a.m. Saturday, Oct. 10, 2015 | Posted: 8:00 a.m. Saturday, Oct. 10, 2015 By Kimberly Miller - Palm Beach Post Staff Writer South Florida breezed through the statistical peak of this year’s hurricane season with nary a scratch and only one mad dash for bottled water when Tropical Storm Erika seemed intent on an August visit. But while Sept. 10 is marked as the height of the Atlantic hurricane season, October is the true pinnacle for Florida, with more landfalls than any other month in the six-month storm stretch. Between 1851 and 2014, 23 October hurricanes have trekked across South Florida, or taken a swipe at the Keys. That’s compared to 17 in September, 13 in August and two in both June and July, according to an analysis by Brian McNoldy, a senior research associate at the University of Miami Rosenstiel School of Marine and Atmospheric Science. A single November hurricane was recorded, “September is when most of the really strong hurricanes hit, but October is when the most hurricanes of any intensity have hit,” McNoldy said. “During October, not only are we more likely to get a hurricane than during any other month, they typically will come from the south or southwest, not from the east.” These so-called “backdoor storms” often brew up in the western Caribbean Sea or Gulf of Mexico in October as opposed to the eastern tropical Atlantic, which is a more typical hurricane incubator early in the season. This year, strong westerly wind shear fortified by a brawny El Nino cut down most of the tropical waves exiting western Africa before they could become hurricanes. -
Atlantic Major Hurricanes, 1995–2005—Characteristics Based on Best-Track, Aircraft, and IR Images
VOLUME 20 JOURNAL OF CLIMATE 15DECEMBER 2007 Atlantic Major Hurricanes, 1995–2005—Characteristics Based on Best-Track, Aircraft, and IR Images RAYMOND M. ZEHR AND JOHN A. KNAFF NOAA/NESDIS, Fort Collins, Colorado (Manuscript received 28 August 2006, in final form 1 May 2007) ABSTRACT The Atlantic major hurricanes during the period of 1995–2005 are examined using best-track data, aircraft-based observations of central pressure, and infrared (IR) satellite images. There were 45 Atlantic major hurricanes (Saffir–Simpson category 3 or higher) during this 11-yr period, which is well above the long-term average. Descriptive statistics (e.g., average, variability, and range) of various characteristics are presented, including intensity, intensification rate, major hurricane duration, location, storm motion, size, and landfall observations. IR images are shown along with IR-derived quantities such as the digital Dvorak technique intensity and IR-defined cold cloud areas. In addition to the satellite intensity estimates, the associated component IR temperatures are documented. A pressure–wind relationship is evaluated, and the deviations of maximum intensity measurements from the pressure–wind relationship are discussed. The Atlantic major hurricane activity of the 1995–2005 period distinctly exceeds the long-term average; however, the average location where major hurricanes reach maximum intensity has not changed. The maximum intensity for each 1995–2005 Atlantic major hurricane is given both as the highest maximum surface wind (Vmax) and the lowest minimum sea level pressure (MSLP). Comparisons are made to other Atlantic major hurricanes with low MSLP back to 1950. Maximum 24-h intensification rates average 21.1 m sϪ1 dayϪ1 and range up to 48.8 m sϪ1 dayϪ1 in terms of Vmax. -
Florida Commission on Hurricane Loss Projection Methodology
Florida Commission on Hurricane Loss Projection Methodology Professional Team Report 2019 Hurricane Standards Hurricane Matthew Hurricane Michael CoreLogic, Inc. Remote Review April 5 – 8, 2021 CL Professional Team Report April 5-8, 2021 On April 5-8, 2021, the Professional Team conducted a remote review of the CoreLogic, Inc. (CL), CoreLogic Florida Hurricane Model 2021a in platform Risk Quantification and Engineering™ Version 21. The following individuals participated in the remote review. CoreLogic Amin Ilia, Ph.D., Coastal Scientist and Engineer Branimir Betov, M.S., Director, Model Development Daniel Betten, Ph.D., Atmospheric Scientist Justin Brolley, Ph.D., Principal Research Scientist Annes Haseemkunju, Ph.D., Atmospheric Scientist Mahmoud Khater, Ph.D., P.E., Chief Science and Engineering Officer Howard Kunst, FCAS, MAAA, Actuary Ilyes Meftah, Research Scientist Sergey Pasternak, Software Architect David Smith, Senior Director, Model Development Amanuel Tecle, Ph.D., Research Scientist Professional Team Paul Fishwick, Ph.D., Computer and Information Scientist Tim Hall, Ph.D., Meteorologist Mark Johnson, Ph.D., Statistician, Team Leader Stu Mathewson, FCAS, MAAA, Actuary Masoud Zadeh, Ph.D., P.E., Structural Engineer Donna Sirmons, Staff Due to the COVID-19 pandemic and State Board of Administration travel restrictions, the Professional Team conducted the review remotely rather than on-site. The remote review followed the on-site review process as detailed in the Report of Activities and the remote review procedures adopted by -
Frequency Analysis of Daily Rainfall Maxima for Central and South Florida
TECHNICAL PUBLICATION EMA # 390 Frequency Analysis of Daily Rainfall Maxima For Central and South Florida January 2001 by Chandra S. Pathak Hydro Information Systems & Assessment Department Environmental Monitoring & Assessment Division South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406 EXECUTIVE SUMMARY Rainfall frequency analysis and rainfall maps for short storm durations and various return periods pertaining to Central and South Florida are used for design, regulatory and hydrologic applications. Periodic updating of these analyses and maps is essential when additional data and new technologies become available. The objective of this study is to update the existing rainfall frequency analysis by using up-to-date data and detailed analysis, and to prepare maps showing contours of rainfall depths (isohyetal maps) for selected durations and return periods. The South Florida Water Management District collects and archives rainfall data from various rain gages. The daily rainfall data collected between January 1, 1900 to December 31, 1999, a period of 100 years, were used for this study. Three sets of rainfall gage records for one-day, three-day and five-day durations were used in determining the maximum rainfall over their respective period-of-record. The maximum recorded rainfall varied from four to 18 inches for the one-day duration; six to 20 inches for the three-day duration; and eight to 22 inches for the five-day duration. Central and South Florida was affected by 38 hurricanes and 23 tropical storms from 1900 to 1999. Of these 61 rainfall events, 59 were recorded in the District's database.