Embryo Sac Formation and Early Embryo Development In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Preliminary Note on the Embryology of <Emphasis Type="Italic">Casuarina Equisetifolia </Emphasis>, Forst
A PRELIMINARY NOTE ON THE EMBRYOLOGY OF CASUARINA EQUISETIFOLIA, FORST BY B. G. L. SWAMs (Bangalore) Received June 27, 1944 (Communicated by Prof. L. S. S. Kumar, r.A.SC.) THE remarkable discovery of Chalazogamy in Casuarina by Treub in 1891 evoked very keen interest and initiated further studies of Casuarinaceae and Amentifera~ fi'om both morphological and anatomical points of view. Certain aspects of the megasporogenesis of Casuarhza stricta was subsequently studied by Frye in 1903 and Juel (1903) recorded his observations on the origin and development of the female archesporium in Casuarina quadrivalvis. In spite of these contributions our present knowledge regarding the develop- mental stages in the life-history are far from being satisfactory. An inves- tigation of several species of the genus has been taken up by the author and a few salient features in the life-history of Casuarina equiset~folia Forst have been embodied in this preliminary note. The archesporiurn of the microsporangium is subepidermal in origin and can be differentiated by rich cell contents and conspicuous nuclei. After the formation of the endothecium, wall layers and tapetum, the microspore mother cells undergo the usual stages of the reduction divisions and form quartets of microspores arranged tetrahedrally. The quartets round off and their nuclei undergo division into tube and generative cells The pollen grains at the shedding stage are binucleate. Each ovary contains two erect ovules which arise laterally from a basal placenta (Fig. 1). The ovules are bitegnmentary, the inner integument differentiating slightly earlier than the outer; these grow upwards and organise a micropyle. -
Ostrich Production Systems Part I: a Review
11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North -
Key to Table Abbreviations
Key to Abbreviations Height Soil Type Height of plant, in feet1 - varies from state to state, A Average moisture, soil type soil, growing season, other factors a mixture of loam, humis D Dry soil, average type Cl Clay soil H1 Smallest average height M Moist soil, average type H2 Largest average height W Wet soil, average type .08' = 1" Wa Water's edge or in water .16' = 2" Wd Well-drained soil .25' = 3" .33' = 4" Tolerance .5' = 6" DT Drought Tolerant .66' = 8" WT Wet Tolerant .75' = 9" .83' = 10" Color Spread A All colors, see description Diameter of full grown plant, B Blue in feet, (see above) - Br Brown varies from state to state, soil, G Green growing season, other factors O Orange Determines spacing needs. Pn Pink Spr1 Smallest average spread Pr Purple Spr2 Largest average spread R Red Y Yellow Sunlight W White Amount of sunlight preferred by plant. Usually has range of Attraction sunlight requirements. Follow B Attracts birds requirements carefully. Usually H Attracts hummingbirds Partial Sun plants prefer afternoon Bt Y, attracts butterflies sun, while Partial Shade plants Y1, attracts moths prefer morning sun. GW Y, attracts general wildlife FS Full Sun N, may repel wildlife PS Partial Sun PSh Partial Shade FSh Full Shade Bloomtime Usual time plant blooms, may vary slightly from state to state Bloomtime listed by Month Page 1 TABLE 1 Partial Listing of Kentucky Wildflowers by Common Name See KEY for abbreviation explanation Common Name Scientific Name H1 H2 Spr1 Spr2 S1 S2 Bl1 Bl2 So1 So2 C1 C2 C3 B H Bt GW Aloe, American, or -
Establishing a Framework for Female Germline Initiation in the Plant Ovule Jorge Lora1, , Xiujuan Yang2, and Mathew R
Journal of Experimental Botany, Vol. 70, No. 11 pp. 2937–2949, 2019 doi:10.1093/jxb/erz212 Advance Access Publication 7 May 2019 Establishing a framework for female germline initiation in the plant ovule Jorge Lora1, , Xiujuan Yang2, and Mathew R. Tucker2,* 1 Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain 2 School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia *Correspondence: [email protected] Received 27 November 2018; Editorial decision 29 April 2019; Accepted 2 May 2019 Editor: Sílvia Coimbra, University of Porto, Portugal Abstract Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNADEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants. -
Protection of Washed and Pasteurized Shell Eggs Against Fungal Growth by Application of Natamycin-Containing Shellac Coating
Protection of Washed and Pasteurized Shell Eggs against Fungal Growth by Application of Natamycin-Containing Shellac Coating THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Yang Song Graduate Program in Food Science and Technology The Ohio State University 2016 Master's Examination Committee: Dr. Ahmed Yousef, Advisor Dr. Dennis R. Heldman Dr. Luis Rodriguez-Saona Copyrighted by Yang Song 2016 Abstract Mold contamination of commercial shell eggs can potentially cause significant economic loss to the egg industry during storage. Studies indicated that molds from varies sources can propagate on commercial eggs when storage condition is less ideal. The current egg processing procedures such as commercial washing and pasteurization can weaken the egg shell, which is the primary defense of egg content, and expose processed eggs to contaminations. Generally, processed eggs are coated with mineral oil to overcome this problem. However, oil application is not very effective when used to protect eggs against mold contamination during storage. The food grade anti-fungal agent natamycin can be used to improve egg defense against mold contamination; however, direct application on egg surface will cause it to lose activity rapidly. Therefore, incorporation of natamycin and a food-grade coating is necessary to extend its anti-fungal effectiveness. As a food-grade coating, shellac can retain egg quality better compare to other coating materials; moreover, it can also serve as a matrix for natamycin to treat egg surface. Research is needed to investigate whether natamycin can remain effective in shellac coating; determine the minimum inhibitory concentration (MIC) of natamycin in shellac coating against typical mold contaminants, and whether the natamycin-shellac coating is effective when used on commercial washed eggs and pasteurized eggs. -
Mind Your Eggs & Veggies
MIND YOUR EGGS & VEGGIES Nutrition for Cognitive Health Presented by Taylor C. Wallace, PhD, CFS, FACN And Chef Abbie Gellman, MS, RD, CDN Spread the Fruit and Veggie Love #haveaplant @fruits_veggies @fruitsandveggies @fruitsandveggies © 2020 Produce for Better Health Foundation 2 Our Purpose The Produce for Better Health Foundation (PBH), a 501(c)3, is the only national non-profit organization committed to helping people live happier, healthier lives by eating more fruits and vegetables in all their glorious forms every day. © 20202019 Produce for Better Health Foundation 3 Our Movement Research shows, rather than a prescriptive recommendation to eat a certain amount of fruits and vegetables each day, consumers (particularly Gen Z and Millennials) want actionable, realistic and FUN approaches that make eating fruits and vegetables easy, helping them feel confident, happy and healthy. That’s where PBH’s Have A Plant® movement comes in. It’s a way to tap into the emotional connection consumers have to the fruit and vegetable eating experience while inspiring long-term, sustainable behavior change. And it does so with a no-nonsense approach that’s simple, understandable, and, importantly for this audience, non-prescriptive. © 2020 Produce for Better Health Foundation 4 Moderator Wendy Reinhardt Kapsak, MS, RDN © 2020 Produce for Better Health Foundation 5 Content Series: Eggs: Veggies’ Reliable BFF © 2020 Produce for Better Health Foundation 6 Adding Eggs to Enhance the Benefits of Produce Taylor C. Wallace, PhD, CFS, FACN Think Healthy Group, Inc. George Mason University © 2020 Produce for Better Health Foundation 7 Disclosures • Think Healthy Group, Inc. • George Mason University • The Dr. -
2020 Front Cover
INDIANA STATE POULTRY ASSOCIATION PRESENTS: 2020 POULTRY INFOMATION BOOKLET THIS BOOKLET CONTAINS: Test Your Knowledge - Poultry Quiz (Inside Front Cover) Poultry Terms Quick Reference Guide (Pg. 1) Getting Started with a Home Poultry Flock (Pg. 2) Common Egg Shell Quality Problems (Pg. 5) Choosing a Chicken Breed: Eggs, Meat or Exhibition (Pg. 6) Stay Healthy When Working with Farm Animals (Pg. 9) Exhibition Poultry (Pg. 10) Proper Handling of Eggs: From Hen to Consumption (Pg. 12) Don’t Get Caught Without These Forms (Pg. 17) Avian Influenza Findings Emphasize the Need for Good Biosecurity (Pg. 18) Backyard Biosecurity Self Evaluation (Pg. 20) Indiana Test Twelve Flock Evaluation (Inside Back Cover) This Booklet is designed to be a quick resource for raising poultry. For additional information go to www.INpoultry.com INDIANA STATE POULTRY ASSOCIATION PURDUE UNIVERSITY, ANIMAL SCIENCES 270 SOUTH RUSSELL STREET • WEST LAFAYETTE, IN 47907 765-494-8517 • [email protected] • WWW.INPOULTRY.COM TEST YOUR KNOWLEDGE - POULTRY QUIZ THINK YOU KNOW POULTRY? ANSWER THESE TEN QUESTIONS FOR A CHANCE TO WIN A PRIZE. ALL ANSWERS CAN BE FOUND THROUGHOUT THIS BOOKLET. 1. If chicks move away from the heat source in their brooding area and appear to be drowsy, then the temperature is most likely too ________ . 2. What might be the cause of a misshapen egg? a. Immature shell gland b. Disease c. Stress d. Overcrowding e. All of the above 3. Chicken breeds with _______ ear lobes lay white eggs while chicken breeds with ______ ear lobes lay brown eggs. 4. Anyone can get sick from farm animals, but what groups of people are more likely to have a serious illness? a. -
Class Monocotyledonae
ACORUS/ACORACEAE 1077 CLASS MONOCOTYLEDONAE Plants usually herbaceous—in other words, lacking regular secondary thickening (except Palmaceae, Smilacaceae, most Agavaceae, and a few Poaceae); seedlings usually with 1 seed leaf or cotyledon; stems or branches elongating by apical growth and also by growth of basal por- tion of internodes; leaves when present alternate, whorled, basal, or rarely opposite, elongating by basal growth (readily seen on spring-flowering bulbs whose leaf-tips have been frozen back); leaf blades usually with parallel or concentrically curved veins, these unbranched or with inconspicuous, short, transverse connectives (leaves net-veined or with prominent midrib and spreading side-veins parallel with each other in Alismataceae, Araceae, Smilacaceae, Marantaceae, and some Orchidaceae); perianth with dissimilar inner and outer whorls (petals and sepals), or all parts about alike (tepals), the parianth parts separate or united, commonly in 3s, less often in 2s, rarely in 5s, or perianth of scales or bristles, or entirely absent. AWorldwide, the Monocotyledonae is a group composed of ca. 55,800 species in 2,652 genera arranged in 84 families (Mabberley 1997); 25 of these families occur in nc TX. The monocots appear to be a well-supported monophyletic group derived from within the monosulcate Magnoliidae group of dicots (Chase et al. 1993; Duvall et al. 1993; Qiu et al. 1993). From the cla- distic standpoint, the dicots are therefore paraphyletic and thus inappropriate for formal recog- nition (see explantion and Fig. 41 in Apendix 6). Within the monocots, Acorus appears to be the sister group to all other monocots, with the Alismataceae (and Potamogeton) being the next most basal group (Duvall et al. -
General Forest Habitat Association
07/15/2003 Viability Assessment Report For General Forest Habitat Association Prepared by Timothy O. Reed Daniel Boone National Forest I. Description of Habitat Association The General Forest Habitat Association encompasses a wide range of forest conditions and can potentially include any soil, forest type, or land type association (LTA) which occurs on the Daniel Boone National Forest (DBNF) (see USDA Forest Service, 1997a). Forested terrain ranges from hilly to rugged in the Cumberland Plateau, which encompasses most of the DBNF and is intersected by cliffs in the higher elevations and by drainages of the Cumberland, Kentucky and Licking Rivers at lower elevations. Steepest terrain occurs in the Cumberland Mountains, which border the southeastern section of the DBNF. This habitat association includes both hardwood and pine trees, as well as stands that are a mixture of both, along with their associated plant and animal species. Hardwood predominates on all districts, with pine more abundant on the southern half of the DBNF (the London, Somerset, and Stearns Districts). Because this is a broad and encompassing habitat association, general forest might best be described as the typical forest scene that comes to mind when one thinks about being out in woods within the DBNF. Many events may have shaped this forest scene including disturbance from storm events, natural tree mortality, wildfires, insect and disease mortality and natural succession. Management activities have also impacted this scene through timber harvest, prescribed burning, timber stand improvement treatments, trails and recreation developments, mineral extraction, and wildlife habitat improvement activities. This is an association in which species are found that utilize a wide range of general forested conditions. -
TAXON:Yucca Gloriosa L. SCORE:11.0 RATING:High Risk
TAXON: Yucca gloriosa L. SCORE: 11.0 RATING: High Risk Taxon: Yucca gloriosa L. Family: Asparagaceae Common Name(s): palmlilja Synonym(s): Yucca acuminata Sweet Spanish dagger Yucca acutifolia Truff. Yucca ellacombei Baker Yucca ensifolia Groenl. Yucca integerrima Stokes Yucca obliqua Haw. Yucca patens André Yucca plicata (Carrière) K.Koch Yucca plicatilis K.Koch Yucca pruinosa Baker Yucca tortulata Baker Assessor: Chuck Chimera Status: Assessor Approved End Date: 15 Nov 2017 WRA Score: 11.0 Designation: H(HPWRA) Rating: High Risk Keywords: Naturalized, Weedy Succulent, Spine-tipped Leaves, Moth-pollinated Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Intermediate tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 y Creation Date: 15 Nov 2017 (Yucca gloriosa L.) Page 1 of 21 TAXON: Yucca gloriosa L. -
Fire in the Southeastern Grasslands, By
Fire in the Southeastern Grasslands RICHARD J. VOGL Department of Biology California State University Los Angeles, CA 90032 INTRODUCTION ~ERE has been more research on the effects of fire in the southeastern United States than in any region of North America. Most studies have been concerned with the effects of fire on the trees, including the role of fire in controlling hardwood suc cession, fire damage to trees, the effects of fire on soils and litter, the influence of fire on conifer growth and reproduction, and the relationships of fire to tree diseases (Garren 1943; Ahlgren and Ahlgren 1960; Cushwa 1968). A lesser, but stilI substantial number of studies have been focused on the effects of fire on forage yields and livestock production (Wahlenberg et al. 1939), and the use of fire in wildlife management in the Southeast. But academic or phy tosociological studies of the vegetational composition and of the effects of fire on the understory vegetation are generally lacking. Except for some range and wildlife research and several general studies (Wells and Shunk 1931; Leukel and St<Jkes 1939; Biswell and Lemon 1943; Burton 1944; Lemon 1949, 1967; Campbell 1955; Biswell1958; Hodgkins 1958; Arata 1959; Cushwa et al. 1966, 1970; Wolters 1972) , most investigators have ignored the herbaceous cover or grassland vegetation under southeastern trees. Even early botanists often became more interested in the unusual botanical features such as the southern extent of Appalachian tree species (Harper 1943, 1952), the description of the silaceous dunes of the 175 RICHARD J. VOGL Gulf Coast (Kurz 1942), the habits of eastern red cedar (Harper 1912), the vegetation of the Okefenokee Swamp (Wright and Wright 1932), or why the Black Belt Prairie of Alabama was treeless (Ranking and Davis 1971), thereby neglecting the widespread and common grassland vegetation and its relationship to fire. -
Landscape Design Guidelines Single Page
Appendix A Approved Plant List T COMMON NAME RATING HEIGHT SPREAD LIGHT EVERGREEN/ DECIDUOUS FLOWER SEASON COLOR WATER MAINTENANCE TEXAS NATIVE WILDLIFE DEER RESISTAN GENERAL COMMENTS LARGE TREES Arizona Cypress 2 25-50' 25-50' Sun E Blue-silver L Prune for shape Triangular shaped foliage; well Cupressus arizonica foliage only suited to limestone soils; attractive peeling red bark; some disease problems Big Tooth Maple 1 20-30' 20-30' Sun/ part D Red and M Prune for shape or + Needs good soil depth; Acer grandidentatum shade gold fall to raise canopy. outstanding fall color foliage Cherry Laurel 2 25'-30' 15-25' Sun/part E Dark M Prune for shape Screening plant, wildlife food; Prunus caroliniana shade green only and/or to raise does not like hot, dry locations; foliage canopy requires deep soil and good drainage or is susceptible to chlorosis; too vigorous to use as a hedge Chinese Pistache 2 25-40' 25-40' Sun D Burgundy M Prune for shape or Compact when older; Pistacia chinensis red fall to raise canopy moderate growth rate; long- foliage lived; can be invasive; tall and lanky when young, but fills out Crape Myrtle 2 4'-25' 4'-20' Sun D Summer White, M Prune for shape or Showy flowers; choose Lagerstroemia indica pink, to raise canopy; do mildew-resistant varieties, lavender not chop tops! many of which are named after flowers; Native American tribes, e.g., varied fall Sioux, Hopi; trees need good foliage air flow; note mature size when selecting variety Cypress, Bald 1 60-100' 25-50+ Sun/ part D Copper H Pruning not + Use western seed source only; Taxodium distichum shade leaves in necessary requires deep, moist soil fall conditions and moisture; foliage dries up in dry, hot location Eastern Walnut 50' 40' sun N Fall Varied M Prune for shape or provides shade; edible nut; Juglans nigra leaves to raise canopy.