Hookworm Infection in the Australian Sea Lion

Total Page:16

File Type:pdf, Size:1020Kb

Hookworm Infection in the Australian Sea Lion Hookworm infection in the Australian sea lion (Neophoca cinerea) Alan David Marcus A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Veterinary Science The University of Sydney 2015 Statement of authentication This thesis is submitted to the University of Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy. The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. Alan David Marcus June 2015 i Summary of the thesis Parasites are integral components of biodiverse ecosystems and profoundly impact the health and population dynamics of many free-ranging species. The sequelae of parasitic infection fluctuate along a continuum from beneficial to detrimental host effects, mediated by the dynamic interaction of host, pathogen, and environment factors. Understanding the effects of parasitic infection, and the fundamental factors influencing the epidemiology of disease, is essential to determining the need for, and approach to, control strategies to conserve complex ecosystems. For the Australian sea lion (Neophoca cinerea), an endangered keystone predator that demonstrates high rates of pup mortality and limited population recovery, an understanding of the role of infectious disease in influencing pup health, and how it may contribute towards shaping population demography, is a key knowledge gap. Preliminary investigations indicated that hookworm (Uncinaria sp.) infection is an important cause of disease and mortality in Australian sea lion pups. These findings were the impetus for this thesis to investigate the taxonomy, epidemiology, clinical impact, and management of hookworm infection in the Australian sea lion. Chapter 1 of this thesis describes the natural history of the Australian sea lion and outlines the key threats and knowledge gaps pertaining to the species’ survival. The state of knowledge regarding hookworm infection in pinnipeds is reviewed and the aims of this thesis are presented. Field work for this study was undertaken at two major colonies of the Australian sea lion in South Australia – Seal Bay, Kangaroo Island, and Dangerous Reef, Spencer Gulf – during consecutive breeding seasons in 2010–2013. These colonies were selected primarily for their disparate biogeographical features and opposite seasonal patterns of variation in pup mortality, facilitating investigation of the role of host, pathogen, and ii environment factors in influencing the epidemiology and clinical impact of hookworm infection in this species. Hookworms collected from Australian sea lion pups were identified and described in Chapter 2 as a single, novel species (Uncinaria sanguinis). Substantial inter-host morphometric variation in both juvenile and adult specimens of U. sanguinis was identified, demonstrating the limited utility of quantitative morphometrics to discriminate between different Uncinaria species, which engenders caution when delimiting new species. However, morphological features and differences in nuclear ribosomal DNA sequences clearly delineated U. sanguinis from named congeners. By determining the taxonomic identity of hookworms parasitising Australian sea lion pups, this study provided a solid foundation to investigate the epidemiology, clinical impact, and management of this parasite. Findings presented in Chapters 2, 3, and 5 indicate that, as for hookworm infection in other otariid species, transmammary transmission in the immediate post-parturient period is likely the predominant route leading to patent hookworm infection in Australian sea lion pups. However, in contrast to the fundamental role that colony substrate appears to play in shaping the epidemiology of hookworm infection in these other hosts, the findings of Chapter 3 demonstrate that 100 % of Australian sea lion pups are infected with U. sanguinis irrespective of the type of colony substrate, and that the intensity of hookworm infection (mean intensity of 2138 hookworms per pup) appears to be influenced by colony- specific seasonal differences in host behaviour. Seasonal fluctuations in the intensity of hookworm infection corresponded to oscillations in the magnitude of colony pup mortality; higher hookworm infection intensity was associated with higher colony pup mortality as well as reduced pup body condition. This study implicates U. sanguinis as a key factor shaping the population demography of the Australian sea lion and provides a new iii perspective to understanding the fundamental factors that influence the dynamics of hookworm infection in otariids. Chapter 4 of this thesis improves the understanding of the impact of infectious disease on the health status of Australian sea lion pups by estimating the effects of pathogen, host, and environment factors on the values of haematological parameters. In addition, haematological reference intervals were developed for free-ranging Australian sea lion pups within the context of endemic hookworm infection to facilitate health assessment. Uncinaria sanguinis was identified as a significant agent of disease, with infection causing regenerative anaemia, hypoproteinaemia, and a predominantly lymphocytic-eosinophilic systemic inflammatory response. Further evidence that U. sanguinis causes intensity-dependent disease in pups was provided by the findings of higher eosinophil counts and lower total plasma protein values during high hookworm infection intensity seasons compared to low hookworm infection intensity seasons at both colonies. Interestingly, the degree of eosinophilia observed in this study was markedly higher than that previously reported for other otariid pups, possibly reflective of the higher intensity and pathogenicity of hookworm infection in Australian sea lion pups. This study demonstrated the significant adverse impact that U. sanguinis has on the health status of Australian sea lion pups and, by demonstrating that the occurrence of neonatal anaemia is not solely a benign physiological response to host-environment changes in this species, challenges assumptions about the non-pathological nature of neonatal anaemia in other pinnipeds. Chapter 4 also presents findings on the epidemiology and clinical impact of sucking lice (Antarctophthirus microchir) infestation in Australian sea lion pups. This parasite was identified commonly on pups (> 70 % prevalence) but, in contrast to hookworm infection, the clinical impact of infestation was less severe, associated only with mild anaemia and iv hyperproteinaemia, and is considered unlikely to be having a significant impact on the health status of Australian sea lion pups. In addition, findings in Chapters 4 and 5 indicate that the prevalence and intensity of lice infestation may increase secondary to hookworm infection, suggesting that some of the effects attributed to A. microchir are correlatively, rather than causatively, associated with their occurrence. Chapter 5 reports the results of investigations at Dangerous Reef to test the association of U. sanguinis with disease in Australian sea lion pups by experimentally manipulating the host-parasite relationship via anthelmintic administration. Ivermectin was found to be highly effective (97.9 %) at eliminating U. sanguinis from pups and was also effective (91.4 %) at removing A. microchir for up to 2 months. As such, it was not possible to definitively distinguish between the independent effects of these parasites, however, given that U. sanguinis was otherwise identified to have greater pathological impact than A. microchir, it is likely that the changes observed in clinical parameters in treated pups were predominantly due to the elimination of hookworm infection. Pups administered ivermectin had significantly higher erythrocyte counts and significantly lower eosinophil counts relative to saline-treated control pups at 1–2 months post-treatment. Unexpectedly, ivermectin treatment was not significantly associated with beneficial effects on pup growth and survival, highlighting the challenges associated with treating pups of this species shortly after birth at a remote colony. This study contributes towards understanding the utility of anthelmintic treatment as a tool for the conservation management of free-ranging wildlife and outlines essential steps to further the development of strategies to ensure the effective conservation of the Australian sea lion and its parasitic fauna. Chapter 6 discusses the significance of the major findings of the studies in this thesis and their implications for the conservation management of the Australian sea lion. v Limitations of the studies are also discussed and directions for future research are proposed. The baseline epidemiological data and the haematological reference intervals described in this thesis can facilitate the implementation of long-term health surveillance in this species, which is critical for the early recognition of emerging disease and changes in disease impact so that interventional strategies can be implemented. This thesis determined that U. sanguinis is an important cause of disease in the Australian sea lion and implicated this parasite as a major factor contributing towards pup mortality. As such, this body of work contributes towards an improved understanding of the role of infectious disease in influencing the health status and population demography of this endangered
Recommended publications
  • Review of the Systematics, Biology and Ecology of Lice from Pinnipeds and River Otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae)
    Zootaxa 3630 (3): 445–466 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3630.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D8DEB0C1-81EF-47DF-9A16-4C03B7AF83AA Review of the systematics, biology and ecology of lice from pinnipeds and river otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae) MARIA SOLEDAD LEONARDI1 & RICARDO LUIS PALMA2 1Laboratorio de Parasitología, Centro Nacional Patagónico (CONICET), Puerto Madryn, Provincia de Chubut, Argentina 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract We present a literature review of the sucking louse family Echinophthiriidae, its five genera and twelve species parasitic on pinnipeds (fur seals, sea lions, walruses, true seals) and the North American river otter. We give detailed synonymies and published records for all taxonomic hierarchies, as well as hosts, type localities and repositories of type material; we highlight significant references and include comments on the current taxonomic status of the species. We provide a summary of present knowledge of the biology and ecology for eight species. Also, we give a host-louse list, and a bibliography to the family as complete as possible. Key words: Phthiraptera, Anoplura, Echinophthiriidae, Echinophthirius, Antarctophthirus, Lepidophthirus, Proechi- nophthirus, Latagophthirus, sucking lice, Pinnipedia, Otariidae, Odobenidae, Phocidae, Mustelidae, fur seals, sea lions, walruses, true seals, river otter Introduction Among the sucking lice (Anoplura), the family Echinophthiriidae is the only family with species adapted to live on pinnipeds—a mammalian group that includes fur seals and sea lions (Otariidae), walruses (Odobenidae), and true seals (Phocidae) (Durden & Musser 1994a 1994b)—as well as on the North American river otter (Kim & Emerson 1974).
    [Show full text]
  • Biology; of the Seal
    7 PREFACE The first International Symposium on the Biology papers were read by title and are included either in of the Seal was held at the University of Guelph, On­ full or abstract form in this volume. The 139 particip­ tario, Canada from 13 to 17 August 1972. The sym­ ants represented 16 countries, permitting scientific posium developed from discussions originating in Dub­ interchange of a truly international nature. lin in 1969 at the meeting of the Marine Mammals In his opening address, V. B. Scheffer suggested that Committee of the International Council for the Ex­ a dream was becoming a reality with a meeting of ploration of the Sea (ICES). The culmination of such a large group of pinniped biologists. This he felt three years’ organization resulted in the first interna­ was very relevant at a time when the relationship of tional meeting, and this volume. The president of ICES marine mammals and man was being closely examined Professor W. Cieglewicz, offered admirable support as on biological, political and ethical grounds. well as honouring the participants by attending the The scientific session commenced with a seven paper symposium. section on evolution chaired by E. D. Mitchell which The programme committee was composed of experts showed the origins and subsequent development of representing the major international sponsors. W. N. this amphibious group of higher vertebrates. Many of Bonner, Head, Seals Research Division, Institute for the arguments for particular evolutionary trends are Marine Environmental Research (IMER), represented speculative in nature and different interpretations can ICES; A. W. Mansfield, Director, Arctic Biological be attached to the same fossil material.
    [Show full text]
  • Spotted Seals, Phoca Largha, in Alaska
    Spotted Seals, Phoca largha, in Alaska Item Type article Authors Rugh, David J.; Shelden, Kim E. W.; Withrow, David E. Download date 09/10/2021 03:34:27 Link to Item http://hdl.handle.net/1834/26448 Spotted Seals, Phoca largha, in Alaska DAVID J. RUGH, KIM E. W. SHELDEN, and DAVID E. WITHROW Introduction mine the abundance, distribution, and lar), a 2-month difference in mating sea­ stock identification of marine mammals sons (effecting reproductive isolation), Under the reauthorization of the Ma­ that might have been impacted by com­ the whitish lanugo on newborn P largha rine Mammal Protection Act (MMPA) mercial fisheries in U.S. waters (Bra­ that is shed in utero in P vitulina, dif­ in 1988, and after a 5-year interim ex­ ham and DeMaster1). For spotted seals, ferences in the adult pelage of P largha emption period ending September 1995, Phoca largha, there were insufficient and P vitulina, and some differences in the incidental take of marine mammals data to determine incidental take lev­ cranial characteristics (Burns et aI., in commercial fisheries was authorized els. Accordingly, as a part of the MMAP, 1984). However, hybridization may if the affected populations were not ad­ the NMFS National Marine Mammal occur, based on evidence from morpho­ versely impacted. The Marine Mammal Laboratory (NMML) conducted a study logical intermediates and overlaps in Assessment Program (MMAP) of the of spotted seals in Alaska. The objec­ range (Bums et aI., 1984). As such, dif­ National Marine Fisheries Service tives of this study were to: I) provide a ferentiation of these two species in the (NMFS), NOAA, provided funding to review of literature pertaining to man­ field is very difficult.
    [Show full text]
  • Monk Seals in Post-Classical History
    Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1
    [Show full text]
  • Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
    Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth.
    [Show full text]
  • List of Marine Mammal Species and Subspecies Written by The
    List of Marine Mammal Species and Subspecies Written by the Committee on Taxonomy The Ad-Hoc Committee on Taxonomy , chaired by Bill Perrin, has produced the first official SMM list of marine mammal species and subspecies. Consensus on some issues was not possible; this is reflected in the footnotes. This list will be revisited and possibly revised every few months reflecting the continuing flux in marine mammal taxonomy. This list can be cited as follows: “Committee on Taxonomy. 2009. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/ . The cetaceans genetically and morphologically fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved -- e.g., see Spaulding et al ., 2009) 1.
    [Show full text]
  • Walrus: Wildlife Notebook Series
    Walrus Pacific walruses (Odobenus rosmarus divergens) belong to a group of marine mammals known as pinnipeds (pinna, a wing or fin; and pedis, a foot), this group also includes the seals and sea lions. Walruses are most commonly found in relatively shallow water areas, close to ice or land. In Alaska, their geographic range includes the Bering and Chukchi Seas. General description: Walruses are the largest pinnipeds in arctic and subarctic seas. The genus name Odobenus means “tooth-walker.” Walrus tusks are elongated upper canine teeth both males and females have tusks. Walruses and sea lions can rotate their hind flippers forward to ‘walk’ on them but seals cannot and drag their hind limbs when moving on land or ice. Walruses are large pinnipeds and adult males (bulls) may weigh 2 tons and the females (cows) may exceed 1 ton. Bulls can be identified by their larger size, broad muzzle, heavy tusks, and the presence of numerous large bumps, called bosses, on the neck and shoulders. Food habits: Walruses feed mainly on invertebrates such as clams and snails found on the bottom of the relatively shallow and rich Bering and Chukchi Seas. Walruses find food by brushing the sea-bottom with their broad, flat muzzles using their sensitive whiskers to locate food items. Tusks are not used for finding food. Walruses feed using suction formed by pulling back a thick piston-like tongue inside their narrow mouth. Walruses are able to suck the soft parts out of the shells; few hard parts are ingested. The rejected shells of clams and snails can be found on the sea floor near the furrows made during feeding.
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • 2019 # the Author(S) 2019
    Parasitology Research https://doi.org/10.1007/s00436-019-06273-2 ARTHROPODS AND MEDICAL ENTOMOLOGY - ORIGINAL PAPER Antarctophthirus microchir infestation in synanthropic South American sea lion (Otaria flavescens) males diagnosed by a novel non-invasive method David Ebmer1 & Maria José Navarrete2 & Pamela Muñoz2 & Luis Miguel Flores2 & Ulrich Gärtner3 & Anja Taubert1 & Carlos Hermosilla1 Received: 29 December 2018 /Accepted: 18 February 2019 # The Author(s) 2019 Abstract Antarctophthirus microchir is a sucking louse species belonging to the family Echinophthiriidae and has been reported to parasitize all species of the subfamily Otariinae, the sea lions. Former studies on this ectoparasite mainly required fixation, immobilization, or death of host species and especially examinations of adult male sea lions are still very rare. Between March and May 2018, adult individuals of a unique Burban^ bachelor group of South American sea lions (Otaria flavescens)living directly in the city of Valdivia, Chile, were studied regarding their ectoparasite infestation status. For first time, a non-invasive method in the form of a lice comb screwed on a telescopic rod and grounded with adhesive tape was used for sample taking process. Overall, during combing different stages of A. microchir were detected in 4/5 O. flavescens individuals, especially at the junction between the back and hind flippers. Our findings represent the first report of A. microchir infesting individuals of this synanthropic colony and fulfilling complete life cycle in a sea lion group despite inhabiting freshwater and in absence of females/ pups. Our Btelescopic lice comb apparatus^ offers a new strategy to collect different stages of ectoparasites and a range of epidermal material, such as fur coat hair and superficial skin tissue for a broad spectrum of research fields in wildlife sciences in an unmolested and stress reduced manner.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 16: 149–163, 2012 ENDANGERED SPECIES RESEARCH Published online February 29 doi: 10.3354/esr00392 Endang Species Res Age estimation, growth and age-related mortality of Mediterranean monk seals Monachus monachus Sinéad Murphy1,*, Trevor R. Spradlin1,2, Beth Mackey1, Jill McVee3, Evgenia Androukaki4, Eleni Tounta4, Alexandros A. Karamanlidis4, Panagiotis Dendrinos4, Emily Joseph4, Christina Lockyer5, Jason Matthiopoulos1 1Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK 2NOAA Fisheries Service/Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East-West Highway, Silver Spring, Maryland 20910, USA 3Histology Department, Bute Medical School, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK 4MOm/Hellenic Society for the Study and Protection of the Monk Seal, 18 Solomou Street, 106 82 Athens, Greece 5Age Dynamics, Huldbergs Allé 42, Kongens Lyngby, 2800, Denmark ABSTRACT: Mediterranean monk seals Monachus monachus are classified as Critically Endan- gered on the IUCN Red List, with <600 individuals split into 3 isolated sub-populations, the largest in the eastern Mediterranean Sea. Canine teeth collected during the last 2 decades from 45 dead monk seals inhabiting Greek waters were processed for age estimation. Ages were best estimated by counting growth layer groups (GLGs) in the cementum adjacent to the root tip using un - processed longitudinal or transverse sections (360 µm thickness) observed under polarized light. Decalcified and stained thin sections (8 to 23 µm) of both cementum and dentine were inferior to unprocessed sections. From analysing patterns of deposition in the cementum of known age- maturity class individuals, one GLG was found to be deposited annually in M.
    [Show full text]
  • UPDATE MARINE MAMMALS Circumpolar Marine Mammal Expert Group, CBMP-Marine
    State of the Arctic Marine Biodiversity Report UPDATE MARINE MAMMALS Circumpolar Marine Mammal Expert Group, CBMP-Marine 2021 Polar bear with northern lights, Canada. Photo credit: Ondrej Prosicky/Shutterstock.com In 2017, the State of the Arctic Marine Biodiversity Report (SAMBR) synthesized data about biodiversity in Arctic marine ecosystems around the circumpolar Arctic. SAMBR highlighted observed changes The Circumpolar Biodiversity and relevant monitoring gaps. This document provides an update on Monitoring Program (CBMP) is the status of marine mammals in the circumpolar Arctic from 2015– an adaptive monitoring 2020 (scientific references for factual information and a more detailed program based on an version of the text herein can be found in Kovacs et al. 2021). international network of scientists, government Arctic endemic marine mammals are one focal group of the Circumpolar agencies, Indigenous Biodiversity Monitoring Program’s (CBMP) Arctic Marine Biodiversity organizations and conservation Monitoring Plan (CBMP-Marine Plan), along with sea ice biota, plankton, groups working together to benthos, marine fishes and seabirds. Networks of experts have harmonize and integrate efforts identified key elements, called Focal Ecosystem Components (FECs), to monitor the Arctic’s living within the Arctic marine ecosystem. Changes in the status of FECs resources. The CBMP organizes indicate changes in the broader marine environment. its efforts around the major This update was prepared by the Marine Mammals Expert Network, ecosystems of the Arctic: which works to coordinate monitoring and report scientific findings marine, freshwater, terrestrial regarding trends and their drivers in marine mammal populations and coastal. around the Arctic. In 2011, the CBMP Marine Expert Monitoring Group BACKGROUND published a circumpolar monitoring plan that describes Arctic endemic marine mammals live in close association with sea how Arctic states will compile, ice.
    [Show full text]
  • Electrophoretic Variation in Large Mammals. III. the Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata
    University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 1982 Electrophoretic Variation in Large Mammals. III. The Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata V. Simonsen Fred W. Allendorf University of Montana - Missoula, [email protected] W. F. Eanes F. O. Kapel Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Simonsen, V.; Allendorf, Fred W.; Eanes, W. F.; and Kapel, F. O., "Electrophoretic Variation in Large Mammals. III. The Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata" (1982). Biological Sciences Faculty Publications. 63. https://scholarworks.umt.edu/biosci_pubs/63 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Hereditas 97: 87-90 (1982) Electrophoretic variation in large mammals 111. The ringed seal, Pusa hispida, the harp seal, Pagophilus groenlandicus, and the hooded seal, Cystophora cristata. V. SIMONSEN', F. W. ALLENDORF, W. F. EANES3 and F. 0. KAPEL4 ' Institute of Ecology and Genetics, University of Aarhus, Denmark Department of Zoology, University of Montana, USA ' Department of Ecology and Evolution, State University of New York, Stony Brook, USA Greenland Fisheries Investigations, Charlottenlund, Denmark SIMONSEN, V., ALLENDORF, F. W.,EANES, W.
    [Show full text]