Biology; of the Seal

Total Page:16

File Type:pdf, Size:1020Kb

Biology; of the Seal 7 PREFACE The first International Symposium on the Biology papers were read by title and are included either in of the Seal was held at the University of Guelph, On­ full or abstract form in this volume. The 139 particip­ tario, Canada from 13 to 17 August 1972. The sym­ ants represented 16 countries, permitting scientific posium developed from discussions originating in Dub­ interchange of a truly international nature. lin in 1969 at the meeting of the Marine Mammals In his opening address, V. B. Scheffer suggested that Committee of the International Council for the Ex­ a dream was becoming a reality with a meeting of ploration of the Sea (ICES). The culmination of such a large group of pinniped biologists. This he felt three years’ organization resulted in the first interna­ was very relevant at a time when the relationship of tional meeting, and this volume. The president of ICES marine mammals and man was being closely examined Professor W. Cieglewicz, offered admirable support as on biological, political and ethical grounds. well as honouring the participants by attending the The scientific session commenced with a seven paper symposium. section on evolution chaired by E. D. Mitchell which The programme committee was composed of experts showed the origins and subsequent development of representing the major international sponsors. W. N. this amphibious group of higher vertebrates. Many of Bonner, Head, Seals Research Division, Institute for the arguments for particular evolutionary trends are Marine Environmental Research (IMER), represented speculative in nature and different interpretations can ICES; A. W. Mansfield, Director, Arctic Biological be attached to the same fossil material. Readers of this Station, Fisheries Research Board of Canada (FRB) volume should be aware of such differences when read­ represented the International Commission for North­ ing the papers in this section. The twelve papers of west Atlantic Fisheries (ICNAF); and K. S. Norris, S. H. Ridgway’s section on functional anatomy illus­ Director, Marine Mammal Council Executive Com­ trated the fundamental structure of the seal, as well mittee, represented the International Biological Pro­ as its associated control mechanisms. R. J. Schusterman gram (IBP). The Food and Agriculture Organization followed this theme by introducing ten papers on be­ of the United Nations (FAO) also offered its support haviour. He established a major focus on social or­ to the programme and ICNAF has contributed to the ganization and communication and their association financing of this volume. with the functional anatomy of the pinnipeds. D. E. Sponsors of national origin were the Fisheries Re­ Sergeant chaired the population dynamics section of search Board of Canada (FRB), the National Re­ seven papers, covering the modelling of populations search Council of Canada (NRCC), the Canadian and method of analysis of seal populations around the National Sportsmen’s Show (CNSS), the World Wild­ world. In the fifth section, J. R. Geraci, by means of life Fund (Canada) (WWF), and the University of papers and a panel discussion dealt with the care and Guelph. management of captive pinnipeds. W. N. Bonner co­ In his preliminary remarks Professor Ronald intro­ ordinated a presentation in the broad area of ecology, duced the representatives of these groups; namely J. R. and was able to bring together studies on environmen­ Weir, Chairman, Fisheries Research Board of Canada; tal factors and their associated behavioural and gene­ S. Bata, International Director and J. S. McCormack, tic control systems. The physiology section was chaired Director, World Wildlife Fund (Canada); and R. T. by H. T. Andersen, his introductory remarks forming D. Birchall, President, Canadian National Sportsmen’s the initial paper of the section. The other six papers Show and a Director of WWF (Canada). of his section emphasized the underwater responses of W. C. Winegard, President of the University of seals. The final and general section, chaired by J. E. Guelph, welcomed participants to the symposium and King, offered a broad coverage of several of the more commented particularly on how pleased he was to interesting areas in various disciplines. welcome representatives from so many countries. Later, A. W. Mansfield acted as rapporteur for the entire at a banquet sponsored by the Department of the En­ programme, and his report stressed the need for con­ vironment, Canada, he offered an invitation to the tinued cooperation by all biologists so that they might group to return in 1975 for a Second International understand seals and their importance to environmen­ Seal Symposium. tal studies. Altogether 62 papers were presented. A further 14 This volume includes with one exception, those pa- 8 K. Ronald pers either presented, read by title, or abstracted, but mammals of the world’ by D. W. Rice and V. B. the continuing discussion on the biology of the seals Scheffer (U.S. Fish and Wildlife Service, Washing­ led to one further paper that is included here. Some ton, 1968) has been used as the standard reference on of the discussion was formal and, where recordable, is nomenclature. included here, but by far the greater part of discussion The work of the chairmen of each of the seven sec­ was informal and hence must remain as extremely tions of this volume is especially recognized. As well, valuable, but merely mental recollections of the par­ the convenor wishes to thank the programme com­ ticipants in the symposium. mittee for their ability to support a somewhat unortho­ The symposium achieved its purpose of bringing dox procedural system, and particularly the sponsors together scientists interested in the Pinnipedia and it ICES, ICNAF, IBP, CNSS, FRB, NRCC, WWF (Ca­ offered leads into the international examination of nada), FAO, and the University of Guelph for their marine mammals. valuable financial assistance. The editors with little apology recognized that they The convenor is most grateful to Mr. H. Tambs- have not reached a completely uniform format in this Lyche, General Secretary of ICES, for his advice and volume since they have allowed use of both English encouragement from the embryonic stages of the sym­ and metric systems of measurement and both English posium to the publication of the proceedings; he also and North American word usage for the sake of har­ recognizes the considerable amount of expert help pro­ mony. The main editorial structure has been the con­ vided by A. W. Mansfield in co-editing this volume. sistency of usage throughout a particular paper. Finally, the effort put into both the symposium and Attempts have also been made to attain a fairly this volume by Mrs. Ginny Bandesen has been beyond uniform taxonomy for the species, but where there has measure, but I hope that she will accept the results of been any doubt caution has not overridden clarity. As the symposium recorded here as tangible proof of her in other mammalian groups, the systematics of the most valuable contribution. To the members of the Pinnipedia are still open to much interpretation. The Dean of the College of Biological Science’s office, the references are cited according to an Annotated Biblio- university support staff and our host Dr. W. C. Wine- praphy on the Pinnipedia*. The ‘List of the marine gard, I express on behalf of the participants and my­ self, our sincerest thanks. * Ronald, K., L. M. Hanly and P. J. Healey, College of Bio­ K. Ronald, logical Science, University of Guelph, Ontario, Canada. Convenor The following have kindly acted as Discussion Care and Management Section Leaders of the different Sections and also assisted in J. R. Geraci the editing of the contributions: Department of Zoology, University of Guelph, Guelph, Ontario, Canada. Evolution Section E. D. Mitchell Ecology Section Arctic Biological Station, Fisheries Research Board W. N. Bonner of Canada, Ste. Anne de Bellevue, Quebec, Canada. Seals Research Division IMER, c/o Fisheries Labora­ tories, Lowestoft, Suffolk, England. Functional Anatomy Section Physiology Section S. H. Ridgway H. T. Andersen School of Anatomy, University of Cambridge, Nutrition Institute, University of Oslo, Blindern, Cambridge, England. Oslo, Norway. Behaviour Section General Session R. J. Schusterman J. E. King Department of Psychology, California State University Department of Zoology, University of New South Hayward, California 94542, U.S.A. Wales, Kensington, N.S.W., Australia. Population Dynamics Section Summary D. E. Sergeant A. W. Mansfield (Rapporteur) Arctic Biological Station, Fisheries Research Board of Arctic Biological Station, Fisheries Research Board Canada, Ste. Anne de Bellevue, Quebec, Canada. of Canada, Ste. Anne de Bellevue, Quebec, Canada. 504 Rapp. P.-v. Réun. Cons. int. Explor. Mer, 169: 504-515. 1975. ECOLOGY AND MORPHOLOGICAL ADAPTATION OF THE SUCKING LICE (ANOPLURA, ECHINOPHTHIRIIDAE) ON THE NORTHERN FUR SEAL1 K . C. K im The Frost Entomological Museum, Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA INTRODUCTION cellent field base for ecological study of the seal and The sucking lice of the Echinophthiriidae (Ano- its ectoparasities. plura) are permanent, obligate parasites exclusive to The paper deals with density and population struc­ the aquatic carnivora, mainly Pinnipedia. Survival of ture, dispersion and transmission, distribution and the obligate ectoparasites of marine carnivores depends microhabitat, and the morphological adaptations of solely upon the host animals
Recommended publications
  • Review of the Systematics, Biology and Ecology of Lice from Pinnipeds and River Otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae)
    Zootaxa 3630 (3): 445–466 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3630.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D8DEB0C1-81EF-47DF-9A16-4C03B7AF83AA Review of the systematics, biology and ecology of lice from pinnipeds and river otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae) MARIA SOLEDAD LEONARDI1 & RICARDO LUIS PALMA2 1Laboratorio de Parasitología, Centro Nacional Patagónico (CONICET), Puerto Madryn, Provincia de Chubut, Argentina 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract We present a literature review of the sucking louse family Echinophthiriidae, its five genera and twelve species parasitic on pinnipeds (fur seals, sea lions, walruses, true seals) and the North American river otter. We give detailed synonymies and published records for all taxonomic hierarchies, as well as hosts, type localities and repositories of type material; we highlight significant references and include comments on the current taxonomic status of the species. We provide a summary of present knowledge of the biology and ecology for eight species. Also, we give a host-louse list, and a bibliography to the family as complete as possible. Key words: Phthiraptera, Anoplura, Echinophthiriidae, Echinophthirius, Antarctophthirus, Lepidophthirus, Proechi- nophthirus, Latagophthirus, sucking lice, Pinnipedia, Otariidae, Odobenidae, Phocidae, Mustelidae, fur seals, sea lions, walruses, true seals, river otter Introduction Among the sucking lice (Anoplura), the family Echinophthiriidae is the only family with species adapted to live on pinnipeds—a mammalian group that includes fur seals and sea lions (Otariidae), walruses (Odobenidae), and true seals (Phocidae) (Durden & Musser 1994a 1994b)—as well as on the North American river otter (Kim & Emerson 1974).
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • 2019 # the Author(S) 2019
    Parasitology Research https://doi.org/10.1007/s00436-019-06273-2 ARTHROPODS AND MEDICAL ENTOMOLOGY - ORIGINAL PAPER Antarctophthirus microchir infestation in synanthropic South American sea lion (Otaria flavescens) males diagnosed by a novel non-invasive method David Ebmer1 & Maria José Navarrete2 & Pamela Muñoz2 & Luis Miguel Flores2 & Ulrich Gärtner3 & Anja Taubert1 & Carlos Hermosilla1 Received: 29 December 2018 /Accepted: 18 February 2019 # The Author(s) 2019 Abstract Antarctophthirus microchir is a sucking louse species belonging to the family Echinophthiriidae and has been reported to parasitize all species of the subfamily Otariinae, the sea lions. Former studies on this ectoparasite mainly required fixation, immobilization, or death of host species and especially examinations of adult male sea lions are still very rare. Between March and May 2018, adult individuals of a unique Burban^ bachelor group of South American sea lions (Otaria flavescens)living directly in the city of Valdivia, Chile, were studied regarding their ectoparasite infestation status. For first time, a non-invasive method in the form of a lice comb screwed on a telescopic rod and grounded with adhesive tape was used for sample taking process. Overall, during combing different stages of A. microchir were detected in 4/5 O. flavescens individuals, especially at the junction between the back and hind flippers. Our findings represent the first report of A. microchir infesting individuals of this synanthropic colony and fulfilling complete life cycle in a sea lion group despite inhabiting freshwater and in absence of females/ pups. Our Btelescopic lice comb apparatus^ offers a new strategy to collect different stages of ectoparasites and a range of epidermal material, such as fur coat hair and superficial skin tissue for a broad spectrum of research fields in wildlife sciences in an unmolested and stress reduced manner.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 16: 149–163, 2012 ENDANGERED SPECIES RESEARCH Published online February 29 doi: 10.3354/esr00392 Endang Species Res Age estimation, growth and age-related mortality of Mediterranean monk seals Monachus monachus Sinéad Murphy1,*, Trevor R. Spradlin1,2, Beth Mackey1, Jill McVee3, Evgenia Androukaki4, Eleni Tounta4, Alexandros A. Karamanlidis4, Panagiotis Dendrinos4, Emily Joseph4, Christina Lockyer5, Jason Matthiopoulos1 1Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK 2NOAA Fisheries Service/Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East-West Highway, Silver Spring, Maryland 20910, USA 3Histology Department, Bute Medical School, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK 4MOm/Hellenic Society for the Study and Protection of the Monk Seal, 18 Solomou Street, 106 82 Athens, Greece 5Age Dynamics, Huldbergs Allé 42, Kongens Lyngby, 2800, Denmark ABSTRACT: Mediterranean monk seals Monachus monachus are classified as Critically Endan- gered on the IUCN Red List, with <600 individuals split into 3 isolated sub-populations, the largest in the eastern Mediterranean Sea. Canine teeth collected during the last 2 decades from 45 dead monk seals inhabiting Greek waters were processed for age estimation. Ages were best estimated by counting growth layer groups (GLGs) in the cementum adjacent to the root tip using un - processed longitudinal or transverse sections (360 µm thickness) observed under polarized light. Decalcified and stained thin sections (8 to 23 µm) of both cementum and dentine were inferior to unprocessed sections. From analysing patterns of deposition in the cementum of known age- maturity class individuals, one GLG was found to be deposited annually in M.
    [Show full text]
  • Chewing and Sucking Lice As Parasites of Iviammals and Birds
    c.^,y ^r-^ 1 Ag84te DA Chewing and Sucking United States Lice as Parasites of Department of Agriculture IVIammals and Birds Agricultural Research Service Technical Bulletin Number 1849 July 1997 0 jc: United States Department of Agriculture Chewing and Sucking Agricultural Research Service Lice as Parasites of Technical Bulletin Number IVIammals and Birds 1849 July 1997 Manning A. Price and O.H. Graham U3DA, National Agrioultur«! Libmry NAL BIdg 10301 Baltimore Blvd Beltsvjlle, MD 20705-2351 Price (deceased) was professor of entomoiogy, Department of Ento- moiogy, Texas A&iVI University, College Station. Graham (retired) was research leader, USDA-ARS Screwworm Research Laboratory, Tuxtia Gutiérrez, Chiapas, Mexico. ABSTRACT Price, Manning A., and O.H. Graham. 1996. Chewing This publication reports research involving pesticides. It and Sucking Lice as Parasites of Mammals and Birds. does not recommend their use or imply that the uses U.S. Department of Agriculture, Technical Bulletin No. discussed here have been registered. All uses of pesti- 1849, 309 pp. cides must be registered by appropriate state or Federal agencies or both before they can be recommended. In all stages of their development, about 2,500 species of chewing lice are parasites of mammals or birds. While supplies last, single copies of this publication More than 500 species of blood-sucking lice attack may be obtained at no cost from Dr. O.H. Graham, only mammals. This publication emphasizes the most USDA-ARS, P.O. Box 969, Mission, TX 78572. Copies frequently seen genera and species of these lice, of this publication may be purchased from the National including geographic distribution, life history, habitats, Technical Information Service, 5285 Port Royal Road, ecology, host-parasite relationships, and economic Springfield, VA 22161.
    [Show full text]
  • Antarctophthirus Microchir Infestation in Synanthropic South American Sea Lion (Otaria Flavescens) Males Diagnosed by a Novel Non-Invasive Method
    Parasitology Research (2019) 118:1353–1361 https://doi.org/10.1007/s00436-019-06273-2 ARTHROPODS AND MEDICAL ENTOMOLOGY - ORIGINAL PAPER Antarctophthirus microchir infestation in synanthropic South American sea lion (Otaria flavescens) males diagnosed by a novel non-invasive method David Ebmer1 & Maria José Navarrete2 & Pamela Muñoz2 & Luis Miguel Flores2 & Ulrich Gärtner3 & Anja Taubert1 & Carlos Hermosilla1 Received: 29 December 2018 /Accepted: 18 February 2019 /Published online: 14 March 2019 # The Author(s) 2019 Abstract Antarctophthirus microchir is a sucking louse species belonging to the family Echinophthiriidae and has been reported to parasitize all species of the subfamily Otariinae, the sea lions. Former studies on this ectoparasite mainly required fixation, immobilization, or death of host species and especially examinations of adult male sea lions are still very rare. Between March and May 2018, adult individuals of a unique Burban^ bachelor group of South American sea lions (Otaria flavescens)living directly in the city of Valdivia, Chile, were studied regarding their ectoparasite infestation status. For first time, a non-invasive method in the form of a lice comb screwed on a telescopic rod and grounded with adhesive tape was used for sample taking process. Overall, during combing different stages of A. microchir were detected in 4/5 O. flavescens individuals, especially at the junction between the back and hind flippers. Our findings represent the first report of A. microchir infesting individuals of this synanthropic colony and fulfilling complete life cycle in a sea lion group despite inhabiting freshwater and in absence of females/ pups. Our Btelescopic lice comb apparatus^ offers a new strategy to collect different stages of ectoparasites and a range of epidermal material, such as fur coat hair and superficial skin tissue for a broad spectrum of research fields in wildlife sciences in an unmolested and stress reduced manner.
    [Show full text]
  • Aqhaliat-2018-EN-Full-Report.Pdf
    POLAR KNOWLEDGE Aqhaliat Table of Contents ECOSYSTEM SCIENCE .....................................................................................................1 Lichens in High Arctic ecosystems: Recommended research directions for assessing diversity and function near the Canadian High Arctic Research Station, Cambridge Bay, Nunavut ........................................................................................................................................ 1 Vascular synphenology of plant communities around Cambridge Bay, Victoria Island, Nunavut, during the growing season of 2015 .............................................................................. 9 The distribution and abundance of parasites in harvested wildlife from the Canadian North: A review .......................................................................................................................... 20 Fire in the Arctic: The effect of wildfire across diverse aquatic ecosystems of the Northwest Territories ................................................................................................................. 31 Arctic marine ecology benchmarking program: Monitoring biodiversity using scuba ............... 39 For more information about Polar Knowledge Canada, or for additional copies of this report, contact: Stratification in the Canadian Arctic Archipelago’s Kitikmeot Sea: Biological and geochemical consequences ........................................................................................................ 46 Polar Knowledge
    [Show full text]
  • Biology; of the Seal
    7 PREFACE The first International Symposium on the Biology papers were read by title and are included either in of the Seal was held at the University of Guelph, On­ full or abstract form in this volume. The 139 particip­ tario, Canada from 13 to 17 August 1972. The sym­ ants represented 16 countries, permitting scientific posium developed from discussions originating in Dub­ interchange of a truly international nature. lin in 1969 at the meeting of the Marine Mammals In his opening address, V. B. Scheffer suggested that Committee of the International Council for the Ex­ a dream was becoming a reality with a meeting of ploration of the Sea (ICES). The culmination of such a large group of pinniped biologists. This he felt three years’ organization resulted in the first interna­ was very relevant at a time when the relationship of tional meeting, and this volume. The president of ICES marine mammals and man was being closely examined Professor W. Cieglewicz, offered admirable support as on biological, political and ethical grounds. well as honouring the participants by attending the The scientific session commenced with a seven paper symposium. section on evolution chaired by E. D. Mitchell which The programme committee was composed of experts showed the origins and subsequent development of representing the major international sponsors. W. N. this amphibious group of higher vertebrates. Many of Bonner, Head, Seals Research Division, Institute for the arguments for particular evolutionary trends are Marine Environmental Research (IMER), represented speculative in nature and different interpretations can ICES; A. W. Mansfield, Director, Arctic Biological be attached to the same fossil material.
    [Show full text]
  • From the North Atlantic, with the Description of Two New
    Diversity of late Neogene Monachinae (Carnivora, rsos.royalsocietypublishing.org Phocidae) from the North Research Atlantic, with the Cite this article: Dewaele L, Peredo CM, description of two Meyvisch P,Louwye S. 2018 Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description new species of two new species. R. Soc. open sci. 5:172437. 1,2 3,4 http://dx.doi.org/10.1098/rsos.172437 Leonard Dewaele , Carlos Mauricio Peredo ,Pjotr Meyvisch1 and Stephen Louwye1 1Department of Geology, Ghent University, Ghent, Belgium Received: 4 January 2018 2Directorate ‘Earth and History of Life’, Royal Belgian Institute of Natural Sciences, Accepted: 2 February 2018 Brussels, Belgium 3Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA 4Department of Paleobiology, Smithsonian National Museum of Natural History, Subject Category: Washington, DC, USA Earth science LD, 0000-0003-1188-2515 Subject Areas: evolution/palaeontology While the diversity of ‘southern seals’, or Monachinae, in the North Atlantic realm is currently limited to the Mediterranean Keywords: monk seal, Monachus monachus, their diversity was much higher during the late Miocene and Pliocene. Although the Neogene, biodiversity, North Atlantic, fossil record of Monachinae from the North Atlantic is mainly Phocidae, Monachinae composed of isolated specimens, many taxa have been erected on the basis of fragmentary and incomparable specimens. The humerus is commonly considered the most diagnostic Author for correspondence: postcranial bone. The research presented in this study limits the selection of type specimens for different fossil Monachinae to Leonard Dewaele humeri and questions fossil taxa that have other types of bones e-mail: [email protected] as type specimens, such as for Terranectes parvus.
    [Show full text]
  • Re-Evaluation of Morphological Characters Questions Current Views of Pinniped Origins
    Vestnik zoologii, 50(4): 327–354, 2016 Evolution and Phylogeny DOI 10.1515/vzoo-2016-0040 UDC 569.5:575.86 RE-EVALUATION OF MORPHOLOGICAL CHARACTERS QUESTIONS CURRENT VIEWS OF PINNIPED ORIGINS I. A. Koretsky¹, L. G. Barnes², S. J. Rahmat¹ ¹Laboratory of Evolutionary Biology, Department of Anatomy, College of Medicine, Howard University, 520 W. St. NW, Washington, DC 20059 E-mail: [email protected] ²Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 Re-evaluation of Morphological Characters Questions Current Views of Pinniped Origins. Koretsky, I. A., Barnes, L. G., Rahmat, S. J. — Th e origin of pinnipeds has been a contentious issue, with opposite sides debating monophyly or diphyly. Th is review uses evidence from the fossil record, combined with comparative morphology, molecular and cytogenetic investigations to evaluate the evolutionary history and phylogenetic relationships of living and fossil otarioid and phocoid pinnipeds. Molecular investigations support a monophyletic origin of pinnipeds, but disregard vital morphological data. Likewise, morphological studies support diphyly, but overlook molecular analyses. Th is review will demonstrate that a monophyletic origin of pinnipeds should not be completely accepted, as is the current ideology, and a diphyletic origin remains viable due to morphological and paleobiological analyses. Critical examination of certain characters, used by supporters of pinniped monophyly, reveals diff erent polarities, variability, or simply convergence. Th e paleontological record and our morphological analysis of important characters supports a diphyletic origin of pinnipeds, with otarioids likely arising in the North Pacifi c from large, bear-like animals and phocids arising in the North Atlantic from smaller, otter-like ancestors.
    [Show full text]
  • Monk Seal Action Plan English Version 2005
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme THIRTEENTH MEETING OF THE CMS SCIENTIFIC COUNCIL Nairobi, Kenya, 16-18 November 2005 CMS/ScC.13/Inf.3 ACTION PLAN FOR THE RECOVERY OF THE MEDITERRANEAN MONK SEAL IN THE EASTERN ATLANTIC Under this cover is reproduced the Action Plan for the Recovery of the Mediterranean Monk Seal in the Eastern Atlantic, elaborated within the Concerted Action for the species. The document is reproduced as received from the Government of Spain, lead country in the development of the Concerted Action, without editing. 2 ACTIOON PPLAANN FOORR TTHHEE RREECOVERRYY OOFF THE MMEDDIITTEERRRAANEEAN MOONNKK SSEAALL IIN TTHHEE EEASSTERRNN ATLAANNTIC CONVENTION O N THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS (BONN CONVENTION) 1 ACTION PLAN FOR THE RECOVERY OF THE MEDITERRANEAN MONK SEAL (Monachus monachus ) IN THE EASTERN ATLANTIC Prepared by the WORKING GROUP OF THE MEDITERRAEAN MONK SEAL IN THE EASTERN ATLANTIC For the CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS (BONN CONVENTION) 2005 2 TABLE OF CONTENTS SUMMARY .....................................................................................................................................................4 MEMBERS OF THE ATLANTIC MONK SEAL WORKING GROUP...............................................5 ACKNOWLEDGEMENTS ..........................................................................................................................6 LIST
    [Show full text]
  • The Effects of Submergence on the Thermal Function of Pinniped Fur
    Notes MARINE MAMMAL SCIENCE, 33(2): 611–620 (April 2017) © 2016 Society for Marine Mammalogy DOI: 10.1111/mms.12372 The effects of submergence on the thermal function of pinniped fur NEHA SHARMA Department of Biology, Adelphi University, 1 South Avenue, Garden 1 City, New York 11530-0701, U.S.A. AND HEATHER E. M. LIWANAG, Department of Biology, Adelphi University, 1 South Avenue, Garden City, New York 11530-0701, U.S.A. and Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave- nue, San Luis Obispo, California, 93407-0401, U.S.A. As endothermic homeotherms, mammals derive their body temperature from internal metabolism and achieve balance by regulating core temperature around a set point that is independent from the environment (Scholander et al. 1950). Ther- moregulation is especially challenging for endotherms in marine environments, because heat loss in water occurs 25 times faster than in air at the same temperature (Dejours et al. 1987). As a result, most marine mammals have evolved physiological and morphological mechanisms for reducing heat loss to the environment (Pabst et al. 1999). Across marine mammal lineages, species have developed specialized insulation in the form of modified fur and/or blubber (Scholander et al. 1950, Pabst et al. 1999, Liwanag et al. 2012a, b). The most recent lineages to reinvade the marine environment, sea otters and polar bears, still rely on fur for their primary insulation (Pabst et al. 1999, Berta et al. 2006). The more derived lineages, cetaceans and sireni- ans, have secondarily lost the characteristic mammalian fur and instead rely on blub- ber as their primary insulator (Hart and Fisher 1964, Ling 1970, Berta et al.
    [Show full text]