On Predatory Habits of Atlantic Walrus

Total Page:16

File Type:pdf, Size:1020Kb

On Predatory Habits of Atlantic Walrus lULl.. ~~C'(fh"-<Y.~~\J Stlll~~JW&'VLt.:..l' Olf' PREDATORY HABITS OF ATLANTIC WALRUS c-n p~ ~~ ~ .J IU.K.Timoshenko (SevPINRO), L.A.Popov (VNIRO) n{)AltMti_ jIO.-~ W.JJ\.W'1 -~) WI Predators are known to exist among walruses. There is n~~o~~~O;> ~p tion in literature,however, on any direct observation on the attack I of walruses on other warm-blooded animals, except for the case repor- ted by Pedersen (Pedersen,I962). roo the data available are of particUlar interest. The observations were made on board vessels,helicopters and on ice in the White Sea in the sealing season of the harp seal. Here some examples will be given. ~ young walrus was encountered on the ice in the Nack of the White ~ea at a distance of 34 km west of the Village of Nizhnyaya Zolotitsa on March 4,1983. ~eeing pea.ple it crept down into water. The ice floe was stained with blood. Many traces found on the· snow covering the ice floe evidenced the predator's movements. Some fragments of a white-coat harp seal,e.g. head and fore flippers, were found. A similar caRe when a walrus attacked a harp seal was recorded in March 1976 (Popov,Nazarenko,I977). At that time the observation made on board a helicopter registered a fact that a young male at the age 3 or 4 years emerged from water and trod on a pup of harp seal who stayed on the ice floe without its mother, and disappeared with the pup in water. In March 1984 the observers on board s/v MEZEN saw a walrus chasing a female of harp seal in the Funnel of the White Sea. The female with a pup were lying on a small ice floe and attracted the walrus's attention. The walrus emerged from water from different sides of the floe trying to reach the female. The latter caring after the pup moved from one edge of the floe to another. Unfortunately their behaviour could not be followed any longer because the walrus was frightened by the vessel and disappeared in water. On March 8,1988 a walrus emerged from water attacked a female - 2 - of harp seal lying with a pup on the edge of the ice floe, killed the 'female and pushed her into water. Then the walrus attacked the pup and tore it to pieces. It took place in the north-east of the White Sea proper. It should be noted that a sealer stood near the female and her pup,but it did not affect the aggressive intentions of the predator. One more case, on April 24,1988 a walrus attacked a killed harp seal that lay on an ice floe on the molting ground situated in the south part of the Funnel of the White Sea, and pulled it into water. Experienced sealer~ hunting for marine animals in the south- east part of the B~rents Rea for a long time note that bearded seal and ringed seal leave their areas if walruses approach them. Of interest are cases when sealers found the remains of pups of harp seal (skin with blubber) in the stomachs of walruses in the.past. It is likely that due to these facts and similar cases the sealer6t belief that walruaes feed on seals has been strengthened. While discussing the predatory behaviour of the Atlantic walrus froD the Barents Sea population attention should, be paid to another' circumstance. It seems that the distribution pattern of walruses migrat- ing in the White Sea in sprinR (March-April) coincides by and large with the localities of breeding and molting ground~ of harp seal. In fact, in r.larch walruses occur somewhat further' south than in April,i.e.. in the north-east part of the sea proper,in the Neck and in the south part of the Funnel of the Sea. It is in these areas that pups of harp seal are born. The evidence is also supported by frequent records of the oocurrences of walruses on the breeding groundA of seals. For 'example, three walruses were observed among breeding harp seals in the north-east part of. the sea proper in the first 10- day period of March 1988. They stayed in water,but got sometimes out, onto the ice. Three more walruses were found in the south-west part of the Funnel of the sea - 3 and one walrus was encountered in the south-west part of the I~ck of the sea among pups of the harp seal when the lactation period was ove~' in late March 1988. Besides, one walrus was registered on the pup roockery situated west of the Morzhovets Island in the first 10-day period of March 1989. The evidence of the interrelatiQn~etween the localities of pup roockeries of harp seal and walruseg:~eupported also • I by the fact that when rookeries drift intensively to the nQrth under' the influence of southerly winds,e.g.in 1989, walruses do not; penetrate far in the White Sea and occur' in northern areas. And in contrast to that, in years when roockeries of harp seal are forme~ and stay iru tlie 80uth areas of the White Sea for a long time,as it happened i~ 1988, walruses also penetrate furthe~ south in; the sea. The record indicates one case when a young walrus was enoounterea on the molting ground of harp seal in the Barents Sea in May 1979. Of partioular interest is the faot that walruses occur in the White Sea precisely at the moment when harp seal stay' in the area,i.e_ in March-April-May. According to our obser~ations some part; of the' Barents Sea. population of walrus' spends' winter' in the South-East Ba- rents Sea,that is in the area where migratiom routes of the harp seal are,when they migrate along the ice edge to the breedin~ grounds ift the White Sea. It is likely that this fact iB responsible for' the movement of certain] walruses to the White Sea following schools of harp seals. The data obtained enable us to change somewhat our attitude to- ward the predatory habits of walruses,at least toward. the Atlantic populatio~ It is evident that predation and aggressive behaviour' of the Atlantic walruses toward harp seal and probably to other' species of pinnipedB should be considered as a fairtT common phenomenon rather' than the fate of' individuals aB it seemed earlie~~ One of the reasons of predation in walruses is assumed to be the lack of food in their habitat. o - ~ (t-2 • -3 Fig.1·Location on where wharuses where met in the White Se~.
Recommended publications
  • Monk Seals in Post-Classical History
    Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1
    [Show full text]
  • Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
    Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth.
    [Show full text]
  • Walrus: Wildlife Notebook Series
    Walrus Pacific walruses (Odobenus rosmarus divergens) belong to a group of marine mammals known as pinnipeds (pinna, a wing or fin; and pedis, a foot), this group also includes the seals and sea lions. Walruses are most commonly found in relatively shallow water areas, close to ice or land. In Alaska, their geographic range includes the Bering and Chukchi Seas. General description: Walruses are the largest pinnipeds in arctic and subarctic seas. The genus name Odobenus means “tooth-walker.” Walrus tusks are elongated upper canine teeth both males and females have tusks. Walruses and sea lions can rotate their hind flippers forward to ‘walk’ on them but seals cannot and drag their hind limbs when moving on land or ice. Walruses are large pinnipeds and adult males (bulls) may weigh 2 tons and the females (cows) may exceed 1 ton. Bulls can be identified by their larger size, broad muzzle, heavy tusks, and the presence of numerous large bumps, called bosses, on the neck and shoulders. Food habits: Walruses feed mainly on invertebrates such as clams and snails found on the bottom of the relatively shallow and rich Bering and Chukchi Seas. Walruses find food by brushing the sea-bottom with their broad, flat muzzles using their sensitive whiskers to locate food items. Tusks are not used for finding food. Walruses feed using suction formed by pulling back a thick piston-like tongue inside their narrow mouth. Walruses are able to suck the soft parts out of the shells; few hard parts are ingested. The rejected shells of clams and snails can be found on the sea floor near the furrows made during feeding.
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • THE SUBSISTENCE HARVEST and USE of STELLER SEA LIONS in ALASKA by Terry L Haynes and Craig Mishler Technical Paper No
    THE SUBSISTENCE HARVEST AND USE OF STELLER SEA LIONS IN ALASKA by Terry L Haynes and Craig Mishler Technical Paper No. 198 This research was partially supported by ANILCA Federal Aid funds administered through the U.S. Fish and Wildlife Service, Anchorage, Alaska, SG-1-9 Alaska Department of Fish and Game Division of Subsistence Juneau, Alaska July 1991 EEO STATEMENT The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, igion, color, national origin, age, sex, or handicap Because the de partment receives federal funding, any person who believes he or she has been discriminated against should write to: O.E.O. U.S. Department of the Interior Washington, D.C. 20240 i ABSTRACT Subsequent to the classification of the Steller sea lion as a threatened species in 1990, a Sea Lion Recovery Team was created and charged with preparing a population recovery plan. This report examines the historical literature on subsistence uses, reviews Native oral traditions, and summarizes the limited amount of available information on contemporary harvests and uses of sea lions over a wide range of 25 coastal Alaskan communities. The report is designed to assist in creation of a recovery plan sensitive to subsistence uses. Further research and data needs are identified for consideration in the development of a long-range sea lion management plan. Various strategies of hunting sea lions are described, along with hunting technologies, methods of butchering sea lions, and traditional ways of cooking and serving them. Evidence gathered from prehistoric sites is summarized, and the pervasive symbolic role of Steller sea lions in Koniag and Aleut folktales, folk songs, and folk beliefs is examined in some detail.
    [Show full text]
  • THE PACIFIC WALRUS by KARL W
    332 Oryx THE PACIFIC WALRUS By KARL W. KENYON During recent years there have been repeated reports of extravagant exploitation of the walrus by Eskimos and these have been strengthened by aerial observation of many headless carcasses on beaches of the Bering Sea. So in 1958 the United States Fish and Wildlife Service decided upon an inquiry into the Pacific Walrus, and its hunting and utilization by Eskimo in the Bering Sea region. Biologists from the Department of Health, Education and Welfare, and the Alaska Department of Fish and Game co- operated in the work. Studies were conducted on St. Lawrence Island by Dr. Francis H. Fay and Mr. Averill Thayer, on Little Diomede Island by the late Mr. Stanley S. Fredericksen and the author, and on Round Island of the Walrus Islands in Bristol Bay, by Dr. Fay, Mr. James W. Brooks and the author. Dr. John L. Buckley of the Fish and Wildlife Service counted walruses on the ice of the northern Bering Sea from the air. The Eskimo hunters freely gave us their co-operation and good will, and this alone made the study possible. The economic incentive to exploit pinnipeds for oil and hides decreased after the chaotic slaughter of the eighteenth and nineteenth centuries when many species were seriously depleted. During the present century those which have continued to yield valuable products, such as elephant seals (Mirounga) and fur seals (Callorhinus and Arctocephalus), have been conserved. The Pacific walrus occupies a unique position in that the demand for its ivory, both carved and unworked, or raw, has increased in recent years, whereas measures introduced for conservation of the walrus have not yet been effective.
    [Show full text]
  • UPDATE MARINE MAMMALS Circumpolar Marine Mammal Expert Group, CBMP-Marine
    State of the Arctic Marine Biodiversity Report UPDATE MARINE MAMMALS Circumpolar Marine Mammal Expert Group, CBMP-Marine 2021 Polar bear with northern lights, Canada. Photo credit: Ondrej Prosicky/Shutterstock.com In 2017, the State of the Arctic Marine Biodiversity Report (SAMBR) synthesized data about biodiversity in Arctic marine ecosystems around the circumpolar Arctic. SAMBR highlighted observed changes The Circumpolar Biodiversity and relevant monitoring gaps. This document provides an update on Monitoring Program (CBMP) is the status of marine mammals in the circumpolar Arctic from 2015– an adaptive monitoring 2020 (scientific references for factual information and a more detailed program based on an version of the text herein can be found in Kovacs et al. 2021). international network of scientists, government Arctic endemic marine mammals are one focal group of the Circumpolar agencies, Indigenous Biodiversity Monitoring Program’s (CBMP) Arctic Marine Biodiversity organizations and conservation Monitoring Plan (CBMP-Marine Plan), along with sea ice biota, plankton, groups working together to benthos, marine fishes and seabirds. Networks of experts have harmonize and integrate efforts identified key elements, called Focal Ecosystem Components (FECs), to monitor the Arctic’s living within the Arctic marine ecosystem. Changes in the status of FECs resources. The CBMP organizes indicate changes in the broader marine environment. its efforts around the major This update was prepared by the Marine Mammals Expert Network, ecosystems of the Arctic: which works to coordinate monitoring and report scientific findings marine, freshwater, terrestrial regarding trends and their drivers in marine mammal populations and coastal. around the Arctic. In 2011, the CBMP Marine Expert Monitoring Group BACKGROUND published a circumpolar monitoring plan that describes Arctic endemic marine mammals live in close association with sea how Arctic states will compile, ice.
    [Show full text]
  • Electrophoretic Variation in Large Mammals. III. the Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata
    University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 1982 Electrophoretic Variation in Large Mammals. III. The Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata V. Simonsen Fred W. Allendorf University of Montana - Missoula, [email protected] W. F. Eanes F. O. Kapel Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Simonsen, V.; Allendorf, Fred W.; Eanes, W. F.; and Kapel, F. O., "Electrophoretic Variation in Large Mammals. III. The Ringed Seal, Pusa-Hispida, the Harp Seal, Pagophilus-Groenlandicus, and the Hooded Seal, Cystophora-Cristata" (1982). Biological Sciences Faculty Publications. 63. https://scholarworks.umt.edu/biosci_pubs/63 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Hereditas 97: 87-90 (1982) Electrophoretic variation in large mammals 111. The ringed seal, Pusa hispida, the harp seal, Pagophilus groenlandicus, and the hooded seal, Cystophora cristata. V. SIMONSEN', F. W. ALLENDORF, W. F. EANES3 and F. 0. KAPEL4 ' Institute of Ecology and Genetics, University of Aarhus, Denmark Department of Zoology, University of Montana, USA ' Department of Ecology and Evolution, State University of New York, Stony Brook, USA Greenland Fisheries Investigations, Charlottenlund, Denmark SIMONSEN, V., ALLENDORF, F. W.,EANES, W.
    [Show full text]
  • Pacific Walrus (Odobenus Rosmaurs Divergens) As a Threatened Or Endangered Species Under the Endangered Species Act
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE PACIFIC WALRUS (ODOBENUS ROSMAURS DIVERGENS) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT © BILL HICKEY, USFWS CENTER FOR BIOLOGICAL DIVERSITY FEBRUARY 7, 2008 Notice of Petition____________________________________________________ Dirk Kempthorne, Secretary Department of the Interior 1849 C Street, N.W. Washington. D.C. 20240 Tom Melius, Regional Director U.S. Fish and Wildlife Service Alaska Regional Office 1011 East Tudor Road Anchorage, Alaska 99503 PETITIONER The Center for Biological Diversity 1095 Market Street, Suite 511 San Francisco, CA 94103 ph: (415) 436-9682 ext 301 fax: (415) 436-9683 __________________________ Date: this 7th day of February, 2008 Shaye Wolf, Ph.D. Kassie Siegel Brendan Cummings Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. § 424.14(a), the Center for Biological Diversity hereby petitions the Secretary of the Interior, through the United States Fish and Wildlife Service (“USFWS”), to list the Pacific walrus (Odobenus rosmarus divergens) as a threatened or endangered species and to designate critical habitat to ensure its survival and recovery. The Center for Biological Diversity works through science, law, and policy to secure a future for all species, great or small, hovering on the brink of extinction. The Center has over 40,000 members throughout Alaska and the United States. The Center and its members are concerned with the conservation of endangered species, including the Pacific walrus, and the effective implementation of the ESA.
    [Show full text]
  • Morphometric Measurements and Body Condition of Healthy and Starveling Steller Sea Lion Pups (Eumetopias Jubatus)
    Aquatic Mammals 2000, 26.2, 151–157 Morphometric measurements and body condition of healthy and starveling Steller sea lion pups (Eumetopias jubatus) Andrew W. Trites1* and Remco A. H. Jonker1,2 1Marine Mammal Research Unit, Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, BC, Canada V6T 1Z4 2Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands Abstract Introduction The thickness and weight of skin, blubber, and There is considerable interest in applying simple body core were measured from 12 dead Steller sea methods to assess the general health of individual lion pups (Eumetopias jubatus). These necropsied marine mammals. In the case of pinnipeds, there are pups represented a wide range of body sizes and generally two approaches. The first measures the conditions (small to large, and fat to no-fat), and thickness of the blubber layer or the amount of were chosen to compare the relative body con- body fat, and is premised on the idea that a fat ditions of healthy and starved pups. Seven of the animal is healthy (e.g., Gales & Burton, 1987; Ryg pups lacked blubber and were significantly lighter et al., 1990a; Castellini et al., 1993, Renouf et al., for a given length compared to the five that had 1993; Gales et al., 1994; Arnould, 1995; Jonker & fat at their time of death. Volume exceeded mass Trites, unpublished data). The second approach by a factor of 1.3% with density averaging uses a standardized growth curve to determine how 0.987 g cm"3. Skin and blubber were not uniformly heavy an individual should be, based on its thick over the body surface.
    [Show full text]
  • Remarks on Eskimo Sealing and the Harp Seal Controversy
    SHORT PAPERS,NOTES, AND INSTITUTE NEWS 267 Remarks on Eskimo Sealing and usually much less than that earned from terrestrial animals such as the fox, land otter, and the Harp Seal Controversy muskrat, wolf, wolverine, or polar bear. Beginning in about 1962, advanced tech- Mostinhabitants of the North today are niquesin the preparation of hair-seal pelts employed full time or part time in the har- and the increased use of sealskins in cloth- vesting of biological resources. Until World ing, especially in Europe, combined to create War 11, earnings fromthe production of a rapidlyexpanding market for skins from renewable resourcesin nearly every major all seal species. For the first time, the ringed region of the circumpolar North exceeded seal, or jar, of the far north reached market incomes from nonrenewable-resource based values which made Eskimoseal hunting industries. In general,the most important highly lucrative. For example,in eastern producers have been the commercial fisheries BaRn Island,young ringed sealssold for of subarctic waters, followed by furs of wild $4.00 per skin in 1955 and $17.50 in 1963. and domesticated land mammals, again pre- Mature ringed seals increased in value from dominately from subarcticareas. Since the $1.50 to $12.25 during the same period. Ex- heyday of European and American northern ceptionally good skins often sold for well hunting in the eighteenth and nineteenth cen- over $20.00 in Alaska andCanada during turies, however, the economic importance of 1963 and 1964. Average sealskin prices in marine mammals has often been highly un- Greenland, carefully controlled by the gov- derrated.
    [Show full text]
  • Migration Patterns of Adult Male California Sea Lions (Zalophus Californianus)
    NOAA Technical Memorandum NMFS-AFSC-346 doi:10.7289/V5/TM-AFSC-346 Migration Patterns of Adult Male California Sea Lions (Zalophus californianus) P. J. Gearin, S. R. Melin, R. L. DeLong, M. E. Gosho, and S. J. Jeffries U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center March 2017 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Gearin, P. J., S. R. Melin, R. L. DeLong, M. E. Gosho, and S. J. Jeffries. 2017. Migration patterns of adult male California sea lions (Zalophus californianus). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-346, 29 p. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-346.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-346 doi:10.7289/V5/TM-AFSC-346 Migration Patterns of Adult Male California Sea Lions (Zalophus californianus) P. J.
    [Show full text]