Global Analysis of a Tubed Structural System for an Inclined Slender Tall Building
Total Page:16
File Type:pdf, Size:1020Kb
Global analysis of a tubed structural system for an inclined slender tall building Paulina Chojnicka and Lydia-Foteini Marantou June 2017 TRITA-BKN. Master Thesis 519, 2017 KTH School of ABE ISSN 1103-4297 SE-100 44 Stockholm ISRN KTH/BKN/EX--519--SE SWEDEN Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering Division of Concrete Structures Abstract Building engineering is called upon to keep up with the pace and challenges of modern design, which aims not only to build higher and greener, but also to fulfill the demands of the growing population and simple human curiosity. The main purpose of this study was to examine the global behavior of a slender and inclined (V-shaped) 300 m high rise building with different structural systems applied. In order to properly evaluate them, four different parametric studies were conducted. These included determining the appropriate inclination angle and the geometry of a simple beam system and later comparing fourteen different structural systems, namely trusses, diagrids, Tubed Mega Frames and moment frames. Parallel to this, a further investigation was made on a shell and beam element model, in order to assess the simplifications made and to control the obtained results. This study was based on various simulations in Finite Element Analysis programs, primarily ETABS, but also SAP2000 and Autodesk Robot Structural Analysis. The modelling included the definition of geometry and applied loads and results in extracting the desirable forces and deformations. Additionally, the automatic design for structural members was used for the purpose of a comprehensive study of the chosen structural systems. The designed structures were subjected to static analysis (dead, live, wind, seismic load), dynamic analysis (response spectrum and time history function) and nonlinear P-delta effect. A buckling analysis was also performed to determine the modes and associated load factors for buckling. In the end, the structural response in terms of displacement and acceleration was compared. The inclination angle study set the defining angle at 10° from vertical, with respect to the serviceability limit deflection. Comparing alternative truss geometries in a 2D parametric study resulted in the choice of four different systems (X, N, K and W trusses). In the 3D analysis, the chosen truss systems, together with three variations of diagrid systems, and seven Tubed Mega Frames with two moment frame structures were further analyzed. In both groups, the mass and the material of the systems were kept similar and the comparison was basically based on the obtained maximum displacement and natural periods of the buildings. The shell and frame model comparison gave a difference in displacements between 0 and 12%. Finally, the comprehensive study of the Tubed Mega Frame, X truss and diagrid structures showed that these buildings were performing similarly to vertical buildings with a top story displacement within the suggested limits (less than 673 mm). Further investigation should be made concerning the acceleration under synthetic earthquake, which exceeded the suggested norms, as well as the connecting nodes between the trusses and the inclined columns. The outcome of this study implied the possibility of construction and usability of inclined, slender, tall buildings with respect to the Ultimate Limit State and the Service Limit State, as specified in the American standard, ASCE 7-10, and opened new possible issues for further research. Keywords: inclined tall building, Tubed Mega Frame, truss system, diagrid, concrete, composite, P-delta i Sammanfattning Byggingenjörskonst ställs idag inför många utmaningar inom modern design som syftar till att inte endast bygga högre och miljövänligare, men även uppfylla kraven från den ökande populationen och den mänskliga nyfikenheten. Huvudsyftet med denna studie var att undersöka det globala beteendet av ett 300 m slank och lutande (V-formad) höghus genom att tillämpa olika strukturella system. För att utvärdera dem så har fyra olika parametriska studier utförts. I dessa bestämdes vinkeln av byggnaden och geometrin genom ett enkelt balk-system. Därefter jämfördes 14 olika strukturella system, huvudsakligen fackverk, diagrids, Tubed Mega Frames och momentramar. Samtidigt genomfördes en analys på en skal- och balkelementmodell i syfte att bedöma de förenklade antaganden och resultaten. Denna studie har baserats på olika simuleringar i Finita Element Analys program, främst i ETABS men även SAP2000 samt Autodesk Robot Structural Analysis. I modelleringen definierades geometrin och laster för att erhålla önskvärda resultat. Dessutom har den automatiserade designfunktionen för de strukturella delar använts för att ge en uppfattning om vilka dimensioner byggnaden kan tänkas ha. Undersökningen har utförts genom en statisk analys (egenvikt, nyttig-, vind- och seismiska laster), en dynamisk analys (response spectrum och time history function) och även med hänsyn till olinjära P-delta analyser. En knäckningsanalys utfördes för att bestämma moderna och tillhörande lastfaktorer för knäckning. Slutligen jämfördes det strukturens förskjutning och acceleration. Den bestämda vinkeln sattes som 10° med hänsyn till bruksgränstillstånd. Genom att jämföra olika fackverkssystem i en 2D parametrisk studie resulterade valet i fyra olika system av X, N, K och W fackverk. I 3D analysen undersöktes de valda fackverkssystemen tillsammans med tre olika diagrid system, och sju olika Tubed Mega Frame system med två olika momentramsstrukturer. I samtliga analyser valdes systemets massa och material så lika som möjligt för att få en representativ jämförelse som baserades på maximala förskjutningar och de naturliga perioderna. Jämförelsen mellan skal- och balkmodellen gav en skillnad i förskjutning mellan 0-12%. Slutligen visade studien med Tubed Mega Frame, X-fackverk och diagrids liknande tendenser som vertikala byggnader med maximal förskjutning inom de föreslagna gränserna på 673 mm. Ytterligare forskning bör göras med hänsyn till accelerationer under syntetiska jordbävningar som överstiger de föreslagna normerna, och de anslutande noderna mellan avstyvningarna och de lutande pelarna. Resultaten från denna studie tyder på möjligheterna av tillämpning och byggandet av lutande, slanka höghus med hänsyn till brottgränstillstånd och bruksgränstillstånd enligt de amerikanska standarderna, ASCE 7-10, och öppnar upp nya möjligheter för ytterligare forskning. Nyckelord: lutande hög byggnad, Tubed Mega Frame, fackverk, diagrid, betong, komposit, P-delta iii Preface This thesis has been conducted during the spring of 2017, as a final part of our two-year studies at the department of Civil and Architectural Engineering at KTH. The research was performed at the headquarters of Tyréns company in Stockholm and it treats the analysis and design of an inclined high rise building. We would like to thank Fritz King, our supervisor in Tyréns, for sharing his knowledge, guidelines and support along the whole process of this work. He gave us the freedom to decide upon research questions and at the same time supervised us, ready to help with any difficulties we came across. We also appreciate the help of our KTH supervisor, Mikael Hallgren, who provided us with comments and advice throughout the project. We are also grateful to Tyréns, which provided us with the necessary software and great working conditions to work on our thesis. Stockholm, June 2017 Chojnicka Paulina & Marantou Lydia-Foteini v Notations Latin letters A Cross section area ASD Allowable strength design C Damping of a structure D Outside diameter of pipes {D} Displacement vector E Modulus of elasticity fcr Flexural buckling stress fe Elastic critical buckling stress fy Yield strength of material G Shear modulus Gf Gust factor gQ Peak factor for background response gR Peak factor for resonance response gv Peak factor for wind response I Moment of inertia Ic Moment of inertia of column section Ig Moment of inertia of girder section Iz Intensity of turbulence i Radius of gyration [K] Global stiffness matrix K Stiffness of a structure K Effective length factor K1 Effective length factor for braced condition K2 Effective length factor for unbraced condition K33, K22 Effective length K-factors in the major and minor directions for appropriate braced (K1) and unbraced (K2) condition Lb Laterally unbraced length of member Lcr Critical buckling length LRFD Load and resistance factor design or limit state design l Length l0 Buckling length M Mass of a structure Mx Moment around x axis My Moment around y axis Pa Maximum axial force pcr Critical buckling stress pel Elastic critical buckling resistance of the member in the plane of bending, calculated based on the assumption of zero side-sway Pn Nominal compressive force based on the controlling buckling mode Q Background response factor R Resonant response factor {R} Global load vector RLLF Reduced live load factor for an element r22 Radius of gyration about 2-2 axis vii r33 Radius of gyration about 3-3 axis r(t) Load function Sa Design earthquake spectral response acceleration SD1 Design earthquake spectral response acceleration parameter at 1 s period SDS Design earthquake spectral response acceleration parameter at short period SLS Serviceability Limit State SM1 MCER spectral response acceleration parameter at 1 s period adjusted for site class effects SMS MCER spectral response acceleration parameter at short period adjusted for site class effects T Fundamental period of the structure