Resident Sea Turtle Management Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
La Terre Ne Nous Appartient Pas, Ce Sont Nos Enfants Qui Nous La Prêtent”
Réserve Naturelle Nationale de Saint-Martin Le Journal “La terre ne nous appartient pas, ce sont nos enfants qui nous la prêtent” Trimestriel n°29 juillet 2017 Sommaire Megara 2017 : troisième édition: 4/5 Megara 2017: Mission #3 Un atelier en faveur des récifs et 6 A workshop In Support of Reefs des herbiers and Plant Beds Une thèse en faveur des herbiers 7 A Thesis About Plant Beds Un plan structuré contre la 8 A Solid Plan To Fight Hydrocarbon pollution aux hydrocarbures Pollution Des données conservées 9 Conserving Data Forever and Ever Des échasses clandestines 10 Clandestine Birds Nesting Sauvetage d’une tortue fléchée 11 Saving An Injured Turtle Un filet au Galion 12 Fishnet at Galion Saisie d’un filet de 300 mètres 12 300-meter Fishnet Seized Double saisie pour deux pêcheurs 13 Double Trouble For Two Fishermen Quads dans la Réserve 14 Quads in the Réserve: Poisson-lion et ciguatera 15 Lionfish and Ciguatera: Le centre équestre déménagera 16 Galion Equestrian Center To Move 17 bouées de mouillage à Tintamare 17 17 Buoys at Tintamare De nouveaux panneaux, interactifs 18 New Interactive Signage Bye bye Romain Renoux ! 19 Bye bye Romain Renoux! Toutes les réserves en Martinique 20/21 Nature Reserves Met In Martinique Cours de SVT à Pinel 22 Science Classes at Pinel Des régatiers et des baleines 23 Regattas VS Whales Un nouveau parc marin. Bravo Aruba ! 24/25 A New Marine Park. Bravo Aruba! Le Forum UE-PTOM à Aruba 26 UE-PTOM Forum in Aruba BEST : 2 beaux projets à Anguilla 27/30 BEST: 2 Winning Projects in Anguilla Réunion sur les baleines à bosse 31/32 Metting about Humpback Whales BEST : dernier appel à projets 32/33 BEST: Last Call For Projects 2 Edito à nos visiteurs des sites préservés, des plages propres, des eaux de baignade de qualité, ils ne viendront plus ! Le maintien de notre biodiversi- té et la préservation des différents écosystèmes marins et terrestres à Saint Martin sont une pri- orité. -
Distinguishing Characteristics of Sponges
Distinguishing characteristics of sponges Continue Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. You are here: Home / Uncategorized / Characteristics of sponges: BTW, They are animals, NOT plants! Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. Almost all of us are familiar with commercial sponges, which are used for various purposes, such as cleaning. There are several living sponges found in both seawater as well as fresh water. These living species are not plants, but are classified as porifera animals. The name of this branch is derived from the pores on the body of the sponge, and it means the bearer of pores in Greek. It is believed that there are about 5000 to 10,000 species of sponges, and most of them are found in seawater. So sponges are unique aquatic animals with some interesting characteristics. Would you like to write to us? Well, we are looking for good writers who want to spread the word. Get in touch with us and we'll talk... Let's work together! Sponges are mainly found as part of marine life; but, about 100 to 150 species can be found in fresh water. They may resemble plants, but are actually sessile animals (inability to move). Sponges are often found attached to rocks and coral reefs. You can find them in different forms. While some of them are tube-like and straight, some others have a fan-like body. Some are found as crusts on rocks. -
Green Sea Turtle in the New England Aquarium Has Been in Captivity Since 1970, and Is Believed to Be Around 80 Years Old (NEAQ 2013)
Species Status Assessment Class: Reptilia Family: Cheloniidae Scientific Name: Chelonia mydas Common Name: Green turtle Species synopsis: The green turtle is a marine turtle that was originally described by Linnaeus in 1758 as Testudo mydas. In 1868 Marie Firmin Bocourt named a new species of sea turtle Chelonia agassizii. It was later determined that these represented the same species, and the name became Chelonia mydas. In New York, the green turtle can be found from July – November, with individuals occasionally found cold-stunned in the winter months (Berry et al. 1997, Morreale and Standora 1998). Green turtles are sighted most frequently in association with sea grass beds off the eastern side of Long Island. They are observed with some regularity in the Peconic Estuary (Morreale and Standora 1998). Green turtles experienced a drastic decline throughout their range during the 19th and 20th centuries as a result of human exploitation and anthropogenic habitat degradation (NMFS and USFWS 1991). In recent years, some populations, including the Florida nesting population, have been experiencing some signs of increase (NMFS and USFWS 2007). Trends have not been analyzed in New York; a mark-recapture study performed in the state from 1987 – 1992 found that there seemed to be more green turtles at the end of the study period (Berry et al. 1997). However, changes in temperature have lead to an increase in the number of cold stunned green turtles in recent years (NMFS, Riverhead Foundation). Also, this year a record number of nests were observed at nesting beaches in Flordia (Mote Marine Laboratory 2013). 1 I. -
Threats to Sea Turtles Artificial Lighting
Threats to Sea Turtles Artificial Lighting Artificial lighting is a significant sea turtle conservation problem. Sea turtle hatchlings instinctively move towards the brightest light when they hatch – on a natural beach, this is the night sky over the ocean. The artificial lighting causes the hatchlings to become disoriented, and ultimately leads to their death. Below are two maps. The “Artificial Lighting” map is a satellite image of the lights that are visible at night in Florida from space. The “Florida County” map will be used for reference. You will also need your “Sea Turtle Nesting Data” from an earlier lesson. Directions: Using the data provided identify areas where artificial lighting has the greatest impact on sea turtle hatchlings. Artificial Lighting Map Lightly shaded areas (yellow) - Lights visible at night from space Compare the “Artificial Lighting” map with the blank county map below. Color in the counties which have the most visible night lights from space. County Map Compare this data with data you collected earlier of the nesting sites of Green, Leatherback and Loggerhead turtles. Green Nesting Map Leatherback Nesting Map Loggerhead Nesting Map Questions 1. Describe the relationship between the nesting data and the artificial lighting data. ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
Spirorchiidiasis in Stranded Loggerhead Caretta Caretta and Green Turtles Chelonia Mydas in Florida (USA): Host Pathology and Significance
Vol. 89: 237–259, 2010 DISEASES OF AQUATIC ORGANISMS Published April 12 doi: 10.3354/dao02195 Dis Aquat Org OPENPEN ACCESSCCESS Spirorchiidiasis in stranded loggerhead Caretta caretta and green turtles Chelonia mydas in Florida (USA): host pathology and significance Brian A. Stacy1,*, Allen M. Foley2, Ellis Greiner3, Lawrence H. Herbst4, Alan Bolten5, Paul Klein6, Charles A. Manire7, Elliott R. Jacobson1 1University of Florida, College of Veterinary Medicine, Large Animal Clinical Sciences, PO Box 100136, Gainesville, Florida 32610, USA 2Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Jacksonville Field Laboratory, 370 Zoo Parkway, Jacksonville, Florida 32221, USA 3University of Florida, College of Veterinary Medicine, Infectious Diseases and Pathology, PO Box 110880, Gainesville, Florida 32610, USA 4Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA 5Archie Carr Center for Sea Turtle Research, University of Florida, PO Box 118525, Gainesville, Florida 32611, USA 6Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, USA 7Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, USA ABSTRACT: Spirorchiid trematodes are implicated as an important cause of stranding and mortality in sea turtles worldwide. However, the impact of these parasites on sea turtle health is poorly understood due to biases in study populations and limited or missing data for some host species and regions, includ- ing the southeastern United States. We examined necropsy findings and parasitological data from 89 log- gerhead Caretta caretta and 59 green turtles Chelonia mydas that were found dead or moribund (i.e. stranded) in Florida (USA) and evaluated the role of spirorchiidiasis in the cause of death. -
AN INTRODUCTION to Texas Turtles
TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature. -
Background on Sea Turtles
Background on Sea Turtles Five of the seven species of sea turtles call Virginia waters home between the months of April and November. All five species are listed on the U.S. List of Endangered and Threatened Wildlife and Plants and classified as either “Threatened” or “Endangered”. It is estimated that anywhere between five and ten thousand sea turtles enter the Chesapeake Bay during the spring and summer months. Of these the most common visitor is the loggerhead followed by the Kemp’s ridley, leatherback and green. The least common of the five species is the hawksbill. The Loggerhead is the largest hard-shelled sea turtle often reaching weights of 1000 lbs. However, the ones typically sighted in Virginia’s waters range in size from 50 to 300 lbs. The diet of the loggerhead is extensive including jellies, sponges, bivalves, gastropods, squid and shrimp. While visiting the Bay waters the loggerhead dines almost exclusively on horseshoe crabs. Virginia is the northern most nesting grounds for the loggerhead. Because the temperature of the nest dictates the sex of the turtle it is often thought that the few nests found in Virginia are producing predominately male offspring. Once the male turtles enter the water they will never return to land in their lifetime. Loggerheads are listed as a “Threatened” species. The Kemp’s ridley sea turtle is the second most frequent visitor in Virginia waters. It is the smallest of the species off Virginia’s coast reaching a maximum weight of just over 100 lbs. The specimens sited in Virginia are often less than 30 lbs. -
The German Colonization of Southwest Africa and the Anglo-German Rivalry, 1883-1915
University of Nebraska at Omaha DigitalCommons@UNO Student Work 7-1-1995 Doors left open then slammed shut: The German colonization of Southwest Africa and the Anglo-German rivalry, 1883-1915 Matthew Erin Plowman University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Plowman, Matthew Erin, "Doors left open then slammed shut: The German colonization of Southwest Africa and the Anglo-German rivalry, 1883-1915" (1995). Student Work. 435. https://digitalcommons.unomaha.edu/studentwork/435 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. DOORS LEFT OPEN THEN SLAMMED SHUT: THE GERMAN COLONIZATION OF SOUTHWEST AFRICA AND THE ANGLO-GERMAN RIVALRY, 1883-1915. A Thesis Presented to the Department of History and the Faculty of the Graduate College University of Nebraska In Partial Fulfillment of the Requirements for the Degree Master of Arts University of Nebraska at Omaha by Matthew Erin Plowman July 1995 UMI Number: EP73073 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Blsaartalibn Publish*rig UMI EP73073 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. -
'Camouflage' Their Nests but Avoid Them and Create a Decoy Trail
Buried treasure—marine turtles do not ‘disguise’ or royalsocietypublishing.org/journal/rsos ‘camouflage’ their nests but avoid them and create a Research Cite this article: Burns TJ, Thomson RR, McLaren decoy trail RA, Rawlinson J, McMillan E, Davidson H, Kennedy — MW. 2020 Buried treasure marine turtles do not † ‘disguise’ or ‘camouflage’ their nests but avoid Thomas J. Burns , Rory R. Thomson, Rosemary them and create a decoy trail. R. Soc. Open Sci. 7: 200327. A. McLaren, Jack Rawlinson, Euan McMillan, http://dx.doi.org/10.1098/rsos.200327 Hannah Davidson and Malcolm W. Kennedy Institute of Biodiversity, Animal Health and Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, Received: 27 February 2020 University of Glasgow, Glasgow G12 8QQ, UK Accepted: 6 April 2020 TJB, 0000-0003-0408-8014; MWK, 0000-0002-0970-5264 After laying their eggs and refilling the egg chamber, sea Subject Category: turtles scatter sand extensively around the nest site. This is presumed to camouflage the nest, or optimize local conditions Organismal and Evolutionary Biology for egg development, but a consensus on its function is Subject Areas: lacking. We quantified activity and mapped the movements of hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys behaviour coriacea) turtles during sand-scattering. For leatherbacks, we also recorded activity at each sand-scattering position. Keywords: For hawksbills, we recorded breathing rates during nesting as hawksbill turtle, Eretmochelys imbricata, leatherback an indicator of metabolic investment and compared with turtle, Dermochelys coriacea, nesting behaviour published values for leatherbacks. Temporal and inferred metabolic investment in sand-scattering was substantial for both species. -
Incidence and Identity of Photosynthetic Symbionts in Caribbean Coral Reef Sponge Assemblages
J. Mar. mz. A». KA! (2007), 87, 1683-1692 doi: 10.1017/S0025315407058213 Printed in the United Kingdom Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages Patrick M. Erwin and Robert W. Thacker* University of Alabama at Birmingham, 109 Campbell Hall, 1300 University Boulevard, Birmingham, Alabama 35294-1170, USA. Corresponding author, e-mail: [email protected] Marine sponges are abundant and diverse components of coral reefs and commonly harbour photosynthetic symbionts in these environments. The most prevalent symbiont is the cyanobacterium, Synechococcus spongiarum, isolated from taxonomically diverse hosts from geographically distant regions. We combined analyses of chlorophyll-a (chl-a) concentrations with line-intercept transect surveys to assess the abundance and diversity of reef sponges hosting photosymbionts on Caribbean coral reefs in the Bocas del Toro Archipelago, Panama. To identify symbionts, we designed PCR primers that specifically amplify a fragment of the 16S ribosomal RNA gene from S. spongiarum and used these primers to screen potential host sponges for the presence of this symbiont. Chlorophyll-a data divided the sponge community into two disparate groups, species with high (>125 Mg/g, N=20) and low (<50 Mg/g, N=38) chl-a concentrations. Only two species exhibited intermediate (50— 125 (Jg/g) chl-a concentrations; these species represented hosts with reduced symbiont populations, including bleached Xestospongia muta and the mangrove form of Chondrilla nucula (C. nucula f. hermatypicd). Sponges with high and intermediate chl-a concentrations accounted for over one-third of the species diversity and abundance of sponges in these communities. Most (85%) of these sponges harboured S. -
The Central Kwazulu-Natal Climate Change Compact, South Africa
The Central KwaZulu-Natal Climate Change Compact, South Africa A platform fostering multi-level governance for climate change Created in 2014, the Central KwaZulu-Natal Climate Change Compact (Compact KZN) is a unique model of collaboration between cities of different sizes in the region of KwaZulu-Natal, South Africa. This platform fosters both the vertical (across different levels of government) and horizontal (across different organisations at the same government level) integration of climate change governance in South Africa. ICLEI Case Studies February 2020 Summary Compact KZN demonstrates that regional platforms for climate change are key places to foster cooperation between actors from different levels of government and different sectors in South Africa. The sharing of existing good practices that distinguishes this kind of cooperation supports the objective of the Urban-LEDS II project, which is to enhance multi-level climate change governance in all pilot countries. This case study provides an in-depth look at the institutional arrangements, effectiveness, and replicability of one such example in South Africa. Ultimately, this case study is intended to be a valuable resource for other governments looking to implement institutional arrangements that support multi-level governance for climate action. Facts & Figures Definitions Creation January 2014 Multi-level climate change governance: refers to the ways in which different tiers of government work together to achieve their climate objectives. It is the mix Municipal budget of policies, laws, mandates, finance, dialogue, reporting, coordination and eThekwini (Durban), Msunduzi, capacity that govern how climate change response is implemented at all tiers of uGu, iLembe District government and across all sectors.