Journal of Clinical Medicine Article Exploring Obscurin and SPEG Kinase Biology Jennifer R. Fleming 1,*,† , Alankrita Rani 2,†, Jamie Kraft 2, Sanja Zenker 3, Emma Börgeson 2,4,* and Stephan Lange 2,3,* 1 Department of Biology, University of Konstanz, 78457 Konstanz, Germany 2 Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden;
[email protected] (A.R.);
[email protected] (J.K.) 3 Department of Medicine, University of California, San Diego, CA 92093, USA;
[email protected] 4 Department of Clinical Physiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden * Correspondence: jennifer.fl
[email protected] (J.R.F.);
[email protected] (E.B.);
[email protected] (S.L.) † These authors contributed equally to this work. Abstract: Three members of the obscurin protein family that contain tandem kinase domains with important signaling functions for cardiac and striated muscles are the giant protein obscurin, its obscurin-associated kinase splice isoform, and the striated muscle enriched protein kinase (SPEG). While there is increasing evidence for the specific roles that each individual kinase domain plays in cross-striated muscles, their biology and regulation remains enigmatic. Our present study focuses on kinase domain 1 and the adjacent low sequence complexity inter-kinase domain linker in obscurin and SPEG. Using Phos-tag gels, we show that the linker in obscurin contains several phosphorylation sites, while the same region in SPEG remained unphosphorylated. Our homology modeling, mutational analysis and molecular docking demonstrate that kinase 1 in obscurin harbors all key amino acids Citation: Fleming, J.R.; Rani, A.; important for its catalytic function and that actions of this domain result in autophosphorylation of Kraft, J.; Zenker, S.; Börgeson, E.; the protein.