Pg62-64 Muir Obituary Junbio06

Total Page:16

File Type:pdf, Size:1020Kb

Pg62-64 Muir Obituary Junbio06 Obituary Obituaries Helen graduated in 1944 and labelled glycine (chemically synthe- stayed on at Oxford to do research sized by Helen), which was injected and a doctorate in the Department of into rabbits; this strategy led to Helen Chemistry. Her first work was on the investigating the labelling of collagen synthesis of antimalarial compounds from glycine, which helped establish Downloaded from http://portlandpress.com/biochemist/article-pdf/28/3/62/6153/bio028030062.pdf by guest on 02 October 2021 under the supervision of Dr F.E. the concept of metabolic pools and King and then with Professor Robert precursors of what were then, these Robinson on the chemical synthesis intractable components of connective of penicillin — it was during World tissues. She also formed friendships War II, and the supply of penicillin to here with others interested in colla- stop wound infection was a high pri- gen, including David Jackson, Robert ority. Unfortunately, the structure of Harkness and Dennis Lowther. penicillin was a source of contro- This began Helen’s interest in versy and the structure favoured by human connective tissues and she Professor Robinson’s team, on which was awarded an Empire Rheumatism Helen was asked to work, later Fellowship with research space at St turned out to be incorrect. However, Mary’s Medical School, London. She she received a sound grounding in found St Mary’s a shock environment organic synthesis in the Dyson after the well-equipped labs at Mill Helen Muir (1920–2005) Perrins Laboratory and she learnt Hill; however, she received strong much from others there at the time, support from the Professor of by Helen Muir had a remarkable life and including John Cornforth, Norman Medicine, Stanley Peart, and she used Tim Hardingham career. She was born in India in 1920, Heatley and Ernst Chain. Helen it as a launch pad to move into even (University of where her father was part of the completed and defended her DPhil more unexplored territories — chon- Manchester, UK) British Administration. Helen only in 1947. droitin sulphate and protein polysac- had formal education when she came After spending a further year at charides. The accepted view at the to school in Europe when she was 10, the Sir William Dunn School of time was that chondroitin sulphate but her father was greatly interested Pathology she was recruited by formed ionic complexes with pro- in natural history and that was a start- Albert Neuberger, who was establish- teins and effects, such as co-acerva- ing point for her interest in science ing a new group in London at the tion, caused the non-ideal physical and nature. At school in Switzerland National Institute for Medical properties. However, with Helen’s and in Berkshire she was “well edu- Research, which was initially based at careful chemical training, she used cated”, but typical of the age, she Hampstead, before moving to Mill rigorous purification methods to received little teaching in Hill in 1949. This also began her show that by all methods, even by science. Undaunted by this handicap, move further into biology, as Albert’s Tiselius electrophoresis, the protein she managed to cram science at a col- interests were in using radioactively and chondroitin sulphate were linked lege in London so as to gain entrance labelled precursors to determine the by an alkali-sensitive bond and her to Somerville College, Oxford. origin of haem biosynthesis, and paper chromatograms showed that Initially, this was to read Helen published her first major serine was the site of linkage. This Medicine, but she quickly changed papers with Albert Neuberger in the was a revolution in the field and the to Chemistry, which, under the guid- Biochemical Journal in 1949 and 1950 data published in the Biochemical ance of her tutor, Dorothy Hodgkin, on the biogenesis of porphyrins1,2. Journal in 19583 showed that chon- she found much more interesting. This work was carried out with 15N- droitin sulphate was covalently 62 The Biochemist — June 2006. © 2005 Biochemical Society Obituary linked to protein. This work lead to property of the protein part of the and osteoarthritis was recognized the recognition that all glycosamino- proteoglycan to bind to hyaluronan internationally and she was given glycans, with the exception of and it provided the first example of many prestigious awards, including hyaluronan, were linked to protein. the family of hyaluronan-binding the Heberden Medal of the British 7 It marked a major change in under- proteins. Other work developed Society for Rheumatology (1976) , Downloaded from http://portlandpress.com/biochemist/article-pdf/28/3/62/6153/bio028030062.pdf by guest on 02 October 2021 standing, as hyaluronan was the first studies of cartilage degeneration in the Feldberg Foundation Award glycosaminoglycan to be character- experimental joint disease with a long (1977), the Bunim Medal of the ized and it was shownto have no collaboration with ICI Pharmaceu- American Arthritis Society (1978), attachment to protein. This had led to ticals. This work was fundamental in the Neil Hamilton Fairley Medal of speculation that other glycosamino- establishing that degenerative joint the Royal College of Physicians glycans were also unattached to diseases were not just caused by (1981), the Ciba Medal of the protein. Having discovered the basis ‘wear-and-tear’, but that an active Biochemical Society (1981)9 and the of this new class of linkage and a new process was involved5–7. Thus Steindler Award of the American family of macromolecules, Helen’s Helen’s major achievement was in Orthopaedic Research Society (1982). reputation was now well established, moving research in joint diseases She was awarded the CBE in 1981 for and with further fellowship support from an era of observational descrip- her contribution to medical research. she developed her work with protein tive pathology to the molecular and She was also elected to become a polysaccharides, which were soon to cellular analysis of the processes Fellow of The Royal Society in 1977 be renamed proteoglycans. underlying these diseases. Basically, and a foreign Member of the Royal Much of Helen’s career was spent this involved using better science to Swedish Academy of Sciences in at The Kennedy Institute of tackle these tough chronic medical 1989. She was also awarded many Rheumatology in Hammersmith, problems. honorary degrees including from the which was the world’s first specialist Helen’s interest in glycosamino- University of Edinburgh, where her rheumatology institute and was glycans also led her to another area of great grandfather had been Principal. funded by the Arthritis Research disease and therapy, the mucopoly- Helen was well-known for speak- Campaign. Helen was recruited to saccharidoses, a range of progres- ing her mind in a clear and objective The Kennedy Institute to head a sively debilitating lysosomal storage way and she did not go out of her way research division in 1966 and she diseases, including Hurler’s and to court influence. Perhaps because of went on to become Director in 1977. Hunter’s syndromes. Through this these qualities, Helen became the first Helen’s group at The Kennedy work, Helen was involved with woman appointed to the Council of Institute carried out fundamental enzyme replacement therapy, as it the Medical Research Council (MRC) work on the structure and functions was established that lysosomal (1973–1977) and was an active partici- of proteoglycans from cartilage and enzymes were released and taken up pant in the strategic development of were the first to establish that the by other cells and therefore delivery the MRC’s activities. She was also supramolecular organization of these of enzymes, or enzyme-making cells, later appointed a Trustee of the proteoglycans involved their binding was a strategy for correction of the Wellcome Trust (1982–1990). This in the extracellular matrix to another medical problem8. Unfortunately this was at a time when the Trust was polysaccharide, hyaluronan4. This was insufficient to reverse the serious evolving to become the major bio- was also heretical at the time, as who pathological changes caused by the medical research funding agency in would predict that one polyanion prolonged lack of functional enzyme the UK; indeed it became even larger would specifically associate with prior to treatment. than the Government’s funding another polyanion? Yet the data Helen’s work at The Kennedy through the MRC. Helen played a stood the test of time, as it was a Institute on cartilage degeneration major part in the expansion of the The Biochemist — June 2006. © 2005 Biochemical Society 63 Obituary Trust and developing the new respon- aged to ride in London and she had London, when she was 70 and a spe- sibilities it had in leading the support the dubious honour of being cau- cial 2-day meeting in Manchester in of UK biomedical research. She was tioned by the police for speeding in 2000 with 65 scientists from around also able to promote the development Richmond Park; the park police that the world to honour her 80th birth- of research on the role of extracellular is… Helen was on her horse on a day. Basically, it was clear from the Downloaded from http://portlandpress.com/biochemist/article-pdf/28/3/62/6153/bio028030062.pdf by guest on 02 October 2021 matrix in biology and in disease. Sunday morning and she was gallop- start that one thing that she would It is a measure of the high regard ing when she shouldn’t. Helen’s never do was retire. Helen was in which Helen was held that she was interest in horse riding was also many things, but she was certainly selected for these prestigious posi- matched by a liking for fast cars and it never dull.
Recommended publications
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Crystal Vision Dorothy Hodgkin & the Nobel Prize “Few Were Her Equal in Generosity of Spirit, Breadth of Mind, Cultivated Humaneness, Or Gift for Giving
    Crystal Vision Dorothy Hodgkin & the Nobel Prize “Few were her equal in generosity of spirit, breadth of mind, cultivated humaneness, or gift for giving. She should be remembered not only for a lifetime’s succession of brilliantly achieved structures. While those who knew her, experienced her quiet and modest and extremely powerful influence, learned from her more than the positioning of atoms in the three-dimensional molecule, she will be remembered not only with respect, and reverence, and gratitude, but more than anything else, with love. Let that be her lasting memorial.” Anne Sayre, in the Autumn 1995 Newsletter of the American Crystallographic Association Cover image © Emilio Segre Visual Archives/American Institute of Physics/Science Photo Library Letter from the Principal Dr Alice Prochaska, Somerville College Many remarkable woman scientists have passed through Somerville, but few rival Dorothy Hodgkin, whose path-breaking work in crystallography showed a mind not only attuned to high science but one also able to envision a crystal structure from the pattern made by its X-ray diffraction. Her ability to ‘see’ molecules such as cholesterol, penicillin, vitamin B and insulin transformed her field. 2014 sees the fiftieth anniversary of Professor Hodgkin’s Nobel prize. It is also the International Year of Crystallography, marking the 100th anniversary of Max von Laue’s Nobel Prize for Physics, awarded for his discovery that X-rays could be diffracted by crystals. That discovery underpinned Dorothy Hodgkin’s work. We are proud that Somerville supported her at a time when there was widespread opposition to married women pursuing academic careers.
    [Show full text]
  • Professor Michael Neuberger: Biochemist Behind Life-Saving
    Professor Michael Neuberger: Biochemist behind life-saving ... http://www.independent.co.uk/news/obituaries/professor-mich... THE INDEPENDENT FRIDAY 08 NOVEMBER 2013 NEWS VOICES SPORT TECH LIFE PROPERTY ARTS + ENTS TRAVEL MONEY INDYBEST BLOGS UK World Business People Science Environment Media Technology Education Obituaries Diary 1 of 15 08/11/2013 10:36 Professor Michael Neuberger: Biochemist behind life-saving ... http://www.independent.co.uk/news/obituaries/professor-mich... News > Obituaries Professor Michael Neuberger: Biochemist behind life-saving work on the immune system He was seen as an outstanding mentor, with his sharp intellect and ability to get to the core issue Friday 01 November 2013 Shares: 28 PRINT A A A FOOD+DRINK Professor Michael Neuberger was pivotal to the ADS BY GOOGLE great advances in biomedical research, with his You Could Be Owed unravelling of the mysteries of human £2400 If You've Ever Had A Loan antibodies. A Fellow of Trinity College, You Could Be Owed A Cambridge where he was a director of studies in Refund Natural Sciences, he was also deputy director of LloydsTSB.BankRefunds.ne t Cambridge’s Medical Research Council FreeWatt Solar PV Laboratory of Molecular Biology (LMB). Biomass Lincs Renewable Energy With the demand for a new class of drugs to Matcha the day: Company of 2012. Heard about the fight diseases, such as cancer, as well as immune Commercial & Domestic soft drink set to be Systems disorders such as rheumatoid arthritis, the the next big thing? www.freewatt.co.uk bio-tech industries have shown rapid growth. Buddhist monks Top10 Broadband in the Over 25 years, Neuberger made significant certainly have – they've UK been enjoying this Broadband From £2.50.
    [Show full text]
  • RSC Branding
    Royal Society of Chemistry National Chemical Landmarks Award Honouree Location Inscription Date The Institute of Cancer Research, Chester ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Institute of Cancer Beatty Laboratories, 237 the 1950s until the present day – including the discovery of chemotherapy drug December Research Fulham Road, Chelsea carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Road, London, SW3 ovarian and breast cancer. 6JB, UK The Institute of Cancer ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Research, Royal Institute of Cancer the 1950s until the present day – including the discovery of chemotherapy drug December Marsden Hospital, 15 Research carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Cotswold Road, Sutton, ovarian and breast cancer. London, SM2 5NG, UK Ape and Apple, 28-30 John Dalton Street was opened in 1846 by Manchester Corporation in honour of 26 October John Dalton Street, famous chemist, John Dalton, who in Manchester in 1803 developed the Atomic John Dalton 2016 Manchester, M2 6HQ, Theory which became the foundation of modern chemistry. President of Manchester UK Literary and Philosophical Society 1816-1844. Chemical structure of Near this site in 1903, James Colquhoun Irvine, Thomas Purdie and their team found 30 College Gate, North simple sugars, James a way to understand the chemical structure of simple sugars like glucose and lactose. September Street, St Andrews, Fife, Colquhoun Irvine and Over the next 18 years this allowed them to lay the foundations of modern 2016 KY16 9AJ, UK Thomas Purdie carbohydrate chemistry, with implications for medicine, nutrition and biochemistry.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Max Perutz (1914–2002)
    PERSONAL NEWS NEWS Max Perutz (1914–2002) Max Perutz died on 6 February 2002. He Nobel Prize for Chemistry in 1962 with structure is more relevant now than ever won the Nobel Prize for Chemistry in his colleague and his first student John as we turn attention to the smallest 1962 after determining the molecular Kendrew for their work on the structure building blocks of life to make sense of structure of haemoglobin, the red protein of haemoglobin (Perutz) and myoglobin the human genome and mechanisms of in blood that carries oxygen from the (Kendrew). He was one of the greatest disease.’ lungs to the body tissues. Perutz attemp- ambassadors of science, scientific method Perutz described his work thus: ted to understand the riddle of life in the and philosophy. Apart from being a great ‘Between September 1936 and May 1937 structure of proteins and peptides. He scientist, he was a very kindly and Zwicky took 300 or more photographs in founded one of Britain’s most successful tolerant person who loved young people which he scanned between 5000 and research institutes, the Medical Research and was passionately committed towards 10,000 nebular images for new stars. Council Laboratory of Molecular Bio- societal problems, social justice and This led him to the discovery of one logy (LMB) in Cambridge. intellectual honesty. His passion was to supernova, revealing the final dramatic Max Perutz was born in Vienna in communicate science to the public and moment in the death of a star. Zwicky 1914. He came from a family of textile he continuously lectured to scientists could say, like Ferdinand in The Tempest manufacturers and went to the Theresium both young and old, in schools, colleges, when he had to hew wood: School, named after Empress Maria universities and research institutes.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • Honorary Graduates – 1966 - 2004
    THE UNIVERSITY OF YORK HONORARY GRADUATES – 1966 - 2004 1966 MR PATRICK BLACKETT, physicist THE RT HON LORD GARDINER, Lord Chancellor SIR PETER HALL, director of plays and operas PRESIDENT KAUNDA, Head of State SIR HENRY MOORE, sculptor SIR ROBERT READ, poet and critic THE RT HON LORD ROBBINS, economist SIR MICHAEL TIPPETT, musician and composer THE RT HON BARONESS WOOTTON OF ABINGER 1967 SIR JOHN DUNNINGTON-JEFFERSON, for services to the University DR ARTHUR GLADWIN. For services to the University PROFESSOR F R LEAVIS, literary critic PROFESSOR WASSILY LEONTIEFF, economist PROFESSOR NIKLAUS PEVSNER, art & architecture critic and historian 1968 AMADEUS QUARTET NORBET BRAININ MARTIN LOVELL SIGMUND NISSELL PETER SCHIDLOF PROFESSOR F W BROOKS, historian LORD CLARK, art historian MRS B PAGE, librarian LORD SWANN, Biologist (and Director-General of the BBC) DAME EILEEN YOUNGHUSBAND, social administrator 1969 PROFESSOR L C KNIGHTS, literacy critic SIR PETER PEARS, singer SIR GEORGE PICKERING, scholar in medicine SIR GEORGE RUSSELL, industrial designer PROFESSOR FRANCIS WORMALD, historian 1969 Chancellor’s installation ceremony THE EARL OF CRAWFORD AND BALCARRES, patron of the arts MR JULIAN CAIN, scholar and librarian PROFESSOR DAVID KNOWLES, historian MR WALTER LIPPMAN, writer & journalist 1970 PROFESSOR ROGER BROWN, social psychologist THE RT HON THE VISCOUNT ESHER, PROFESSOR DOROTHY HODGKIN, chemist PROFESSOR A J P TAYLOR, historian 1971 DAME KITTY ANDERSON, headmistress DR AARON COPLAND, composer DR J FOSTER, secretary-General of the Association
    [Show full text]
  • King's College, Cambridge
    King’s College, Cambridge Annual Report 2014 Annual Report 2014 Contents The Provost 2 The Fellowship 5 Major Promotions, Appointments or Awards 18 Undergraduates at King’s 21 Graduates at King’s 26 Tutorial 36 Research 47 Library and Archives 51 Chapel 54 Choir 57 Bursary 62 Staff 65 Development 67 Appointments & Honours 72 Obituaries 77 Information for Non Resident Members 251 While this incremental work can be accomplished within the College’s The Provost maintenance budget, more major but highly desirable projects, like the refurbishment of the Gibbs staircases and the roof and services in Bodley’s will have to rely on support apart from that provided by the endowment. 2 I write this at the end of my first year at The new Tutorial team under Perveez Mody and Rosanna Omitowoju has 3 THE PROVOST King’s. I have now done everything once begun its work. There are now five personal Tutors as well as specialist and am about to attend Alumni Weekend Tutors, essentially reviving a system that was in place until a few years ago. reunion dinners for the second time. It has It is hoped that the new system will reduce the pastoral pressure on the been a most exciting learning experience THE PROVOST Directors of Studies, and provide more effective support for students. getting to know the College. While I have not had much time for my own research I In the Chapel we have said farewell to our Dean, Jeremy Morris. Jeremy have had the opportunity to learn about came to the College from Trinity Hall in 2010, and after only too short a others’ interests, and have been impressed time returns to his former College as its Master.
    [Show full text]
  • One Million Structures and Counting the Journey, the Insights, and the Future of the CSD
    One Million Structures and Counting The journey, the insights, and the future of the CSD Suzanna Ward The Cambridge Crystallographic Data Centre ECM32 – Wednesday 21st August 2019 2 The Cambridge Structural Database (CSD) 1,013,731 ▪ Every published Structures structure An N-heterocycle published produced by a that year ▪ Inc. ASAP & early view chalcogen-bonding ▪ CSD Communications catalyst. Determined Structures at Shandong published ▪ Patents University in China by previously Yao Wang and his ▪ University repositories team. XOPCAJ - The millionth CSD structure. ▪ Every entry enriched and annotated by experts ▪ Discoverability of data and knowledge ▪ Sustainable for over 54 years 3 Inside the CSD Organic ligands Additional data Organic Metal-Organic • Drugs • 10,860 polymorph families 43% 57% • Agrochemicals • 169,218 melting points • At least one transition metal, Pigments • 840,667 crystal colours lanthanide, actinide or any of Al, • Explosives Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, Po • 700,002 crystal shapes • Protein ligands • 23,622 bioactivity details Polymeric: 11% Polymeric: • 9,740 natural source data Not Polymeric Metal-Organic • > 250,000 oxidation states 89% • Metal Organic Frameworks • Models for new catalysts ligand Links/subsets • Porous frameworks for gas s • Drugbank storage • Druglike • Fundamental chemical bonding • MOFs Single Multi ligands • PDB ligands Component Component • PubChem 56% 44% • ChemSpider • Pesticides 4 1965 The sound of music • Film first released in 1965 • Highest grossing film of 1965 • Set in Austria 5 The 1960s Credits: NASA Credits: Thegreenj 6 The vision • Established in 1965 by Olga Kennard • She and J.D. Bernal had a vision that a collective use of data would lead to new knowledge and generate insights J.D.
    [Show full text]
  • JOHN DESMOND BERNAL – the SAGE by William Reville, University College, Cork
    JOHN DESMOND BERNAL – THE SAGE By William Reville, University College, Cork. I remember excitedly buying a boxed set of 4 books, Science in History by John D. Bernal (Pelican, 1965), when I was an undergraduate. At the time I was an amateur Marxist and Bernal’s work was an encyclopaedic analysis of science and society from a Marxist point of view. I was delighted to learn that Bernal was an Irishman who had spent a brilliant career at the leading edge of UK science, making many notable contributions. John Desmond Bernal was born in Nenagh, Co. Tipperary in 1901. The Bernals were originally Sephardic Jews who came to Ireland in 1840 from Spain via Amsterdam and London. They converted to Catholicism and John was Jesuit-educated. John enthusiastically supported the Easter Rising and, as a boy, he organised a Society for Perpetual Adoration. He moved away from religion as an adult, becoming an atheist. Bernal showed precocious talent right from the start. At the age of two he was taken by his American mother to see his grandmother in California and he amazed passengers on the steamship by talking in both English and French. In later life at Cambridge his fellow students nicknamed him ‘Sage’ because of his great knowledge. Bernal started as a science undergraduate at Cambridge in 1919 where his studies included mineralogy and the mathematics of symmetry. He gained a research position in 1923 at the Royal Institution in London with William Henry Bragg the eminent crystallographer (one who studies crystalline structures using X-rays). He returned to Cambridge in 1927 as the first lecturer in structural crystallography, fully convinced of the enormous potential of his chosen field to elucidate the structure of the technological and biological worlds.
    [Show full text]