Sir David and Lady Clary Chemistry Fund Sir David and Lady Clary Chemistry Fund

Total Page:16

File Type:pdf, Size:1020Kb

Sir David and Lady Clary Chemistry Fund Sir David and Lady Clary Chemistry Fund Sir David and Lady Clary Chemistry Fund Sir David and Lady Clary Chemistry Fund Chemistry at Magdalen and the University of Oxford Chemistry has a long history at the University of Oxford. The Department of Chemistry is the largest chemistry department in the UK and one of the largest in the western world. Oxford chemists have won at least nine Nobel prizes including Magdalen Fellow Sir Robert Robinson (Chemistry, 1947, for investigations of plant products), Frederic Soddy (Physics, 1921, for his discovery of isotopes), and Dorothy Hodgkin (Chemistry, 1964, for the x-ray structure of penicillin). One of the earliest notable Magdalen chemists was Charles Daubeny (1795–1867). After studying at Magdalen under John Kidd, Daubeny simultaneously held Chairs in Chemistry, Botany, and Geology. However, interest in the sciences can be traced back to the Magdalen’s founder, William of Waynflete, and it was in his honour that the highly distinguished Waynflete Professorships (in Metaphysical Philosophy, Chemistry, Physiology and Pure Mathematics) were established in 1857. The Waynflete Professor of Chemistry has been the University’s most distinguished Chair in Organic Chemistry ever since, and holders have included Professors Sir Benjamin Brodie, William Odling, William Henry Perkin, Sir Robert Robinson (Nobel Laureate, 1947), Sir Jack Baldwin and the current incumbent, Stephen G Davies. The present day Of the 28 Colleges offering Chemistry, Magdalen is one of only five fortunate enough to have a full complement of three Tutorial Fellows in Chemistry: Professors Tim Donohoe (Organic), Andrew Weller (In- organic) and Stuart Mackenzie (Physical and Theoretical Chemistry). Each of these also runs an internation- ally–leading research group in the Department of Chemistry. Magdalen students benefit greatly from the fact that all of their tutorial teaching is performed by College Fellows. Further support comes in the form of a stipendiary lecturer in Maths for Chemistry in recognition of the important role of the first year course. Very few other colleges support their Chemistry undergraduates as well as Magdalen does. Magdalen typically accepts seven to eight undergraduate chemists per year onto the four-year MChem degree course. The high quality of applicants results in a high–performing and richly diverse cohort of Sir David and Lady Clary Chemistry Fund students. In the last five years, 16 Magdalen chemists have been awarded first-class degrees and another 24, 2.1s. Of these, seven have been placed in the top ten in the University cohort of 180, and of the Magdalen cohort who sat Finals in 2018, three currently lie in the top ten going into their Masters research year. 43% of Magdalen chemists have been women, in line with the University average, and well over half (c. 60% in recent years) arrive from state schools either in the UK or from around the world. The rigours of the Oxford undergraduate Chemistry course, widely acknowledged as the most challenging anywhere, require high levels of organisation which stand students in good stead in other aspects of University life. It is no accident then, that Magdalen chemists also excel in other spheres: as sporting blues (at least five in the last five years including three University team captains), as Captains of Boats (two since 2010), or as University Challenge finalists (three since 2014). One current student has just returned to Oxford from competing in the U23 World Rowing Championship. Graduate Chemistry at Magdalen The graduate funding horizon has changed significantly in the last five years as the Engineering and Physical Sciences Research Council (EPSRC) had adopted a model of research training based on Centres for Doctoral Training. This works well in some fields of science but is ill–suited to curiosity driven, blue skies research of the type Professor Clary has performed over his illustrious career. Magdalen has an annual quota of just four places for graduate-level Chemistry and attracts extremely strong applications from around the world. However, opportunities for funding overseas students are difficult and the absence of funding prevents the College from taking on students undertaking exciting research projects but which do not fall neatly under the doctoral research centres. Since 2008 we have welcomed: 36 graduate students, from 12 different countries, and 16 different universities Sir David and Lady Clary Chemistry Fund The President, Professor Sir David Clary, FRS Professor Sir David Clary, FRS is one of the most distinguished and decorated quantum chemists of his generation. Following degrees in Sussex and Cambridge, Sir David was a postdoc at IBM in California and then in Manchester where he started his independent research career as a lecturer at the University of Manchester Institute of Science and Technology (UMIST). He moved to Cambridge in 1983 as a lecturer, then reader, in Theoretical Chemistry and Fellow at Magdalene College. In 1996 he moved to University College London as Director of Theoretical and Computational Chemistry and then to Oxford as Head of the Mathematical, Physical, and Life Sciences Division. He was appointed President of Magdalen College in 2005 and was the first Chief Scientific Advisor to the Foreign and Commonwealth Office in 2009-13. Sir David’s research involves applications of quantum mechanics to the understanding of the rates of chemical reactions, energy transfer and molecular dynamics. The high quality, intellectually-demanding, blue skies research and theories Sir David has developed find applications in the unusual chemistry of the interstellar medium where low temperatures and infrequent collisions would normally choke off reactivity. Given the importance of quantum mechanics in all of Sir David’s work, it is a beautiful quirk of fate that the President’s private office in Magdalen is the very room in which Erwin Schrödinger, one of Sir David’s scientific heroes, took the telephone call informing him that he’d won the 1933 Nobel Prize for Physics for his famous wave equation. Very appropriately, the latest building at our Science Park is named after Schrödinger. Sir David’s work has been recognised with many awards and prizes. He was elected a Fellow of the Royal Society in 1997 at an unusually young age, and in the same year Cambridge University bestowed a Doctorate of Science on him. He has won numerous Royal Society of Chemistry Awards, including the distinguished Tilden Prize, the Liversidge Award, the Polanyi Medal and the Chemical Dynamics Award, and is a Foreign Honorary Member of the US National Academy of Arts and Sciences. In 1989 he received the medal of the International Academy of Quantum Molecular Science, and was knighted for services to international science in the 2016. Sir David with current and former members of his chemistry research group. Sir David and Lady Clary Chemistry Fund Our aim The College wishes now to establish, in the names of Sir David and Lady Clary, a fund to endow graduate studentships enabling the very brightest students to undertake intellectually-demanding, blue skies research at Magdalen. It would provide graduate research scholarships in the first instance and would allow us to select from among the very best Chemistry students working on projects that fall outside the usual narrowly-defined fields and might change how we think about science. The fund could also provide for undergraduate fourth-year research bursaries for Chemistry students whose projects extend well beyond traditional Oxford terms. The annual spend each year would be determined by the Chemistry Fellows in consultation with the Senior Tutor. Our aim would be to secure an endowment of £1-2 million. Currently, around £25k per annum is necessary to fully fund a graduate scholarship in Chemistry. This fund will ideally provide 2-3 scholarships at any one time. If we achieve our aspirational £2 million goal, it would generate around £70k each year and provide the flexibility to offer several awards for students. Most importantly, this fund will allow alumni and friends of the College a wonderful opportunity not only to support students but to recognise and honour the contributions Sir David and Lady Clary have made to the life of Magdalen College over the past 15 years. In numbers: £2,000,000 - our fundraising goal £70,000- amount generated each year from £2m endowment £25,000 - cost to fund a graduate scholarship 2-3 - the number of graduate scholarships we hope to support each year Sir David and Lady Clary Chemistry Fund.
Recommended publications
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Crystal Vision Dorothy Hodgkin & the Nobel Prize “Few Were Her Equal in Generosity of Spirit, Breadth of Mind, Cultivated Humaneness, Or Gift for Giving
    Crystal Vision Dorothy Hodgkin & the Nobel Prize “Few were her equal in generosity of spirit, breadth of mind, cultivated humaneness, or gift for giving. She should be remembered not only for a lifetime’s succession of brilliantly achieved structures. While those who knew her, experienced her quiet and modest and extremely powerful influence, learned from her more than the positioning of atoms in the three-dimensional molecule, she will be remembered not only with respect, and reverence, and gratitude, but more than anything else, with love. Let that be her lasting memorial.” Anne Sayre, in the Autumn 1995 Newsletter of the American Crystallographic Association Cover image © Emilio Segre Visual Archives/American Institute of Physics/Science Photo Library Letter from the Principal Dr Alice Prochaska, Somerville College Many remarkable woman scientists have passed through Somerville, but few rival Dorothy Hodgkin, whose path-breaking work in crystallography showed a mind not only attuned to high science but one also able to envision a crystal structure from the pattern made by its X-ray diffraction. Her ability to ‘see’ molecules such as cholesterol, penicillin, vitamin B and insulin transformed her field. 2014 sees the fiftieth anniversary of Professor Hodgkin’s Nobel prize. It is also the International Year of Crystallography, marking the 100th anniversary of Max von Laue’s Nobel Prize for Physics, awarded for his discovery that X-rays could be diffracted by crystals. That discovery underpinned Dorothy Hodgkin’s work. We are proud that Somerville supported her at a time when there was widespread opposition to married women pursuing academic careers.
    [Show full text]
  • CV Majed Chergui 2020
    Curriculum Vitae of Majed CHERGUI Born 8.5.1956 in Casablanca (Morocco), Swiss and French citizen Married, three children born 1981, 1988 and 1990 Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Faculty of Basic Sciences, ISIC CH H1 625, Station 6, CH-1015 Lausanne, Switzerland. Phone: ++41-21-693 0457/2555 (office); ++41-76-569 5566 (cell), Fax:++-41-21-693 0365 [email protected]; http://lsu.epfl.ch; http://LACUS.epfl.ch Higher Education 1977 Chelsea College, University of London. BSc. in Physics and Mathematics 1978 Université Paris-Sud, Orsay. MSc in Atomic and Molecular Physics 1981 Université Paris-Sud, Orsay. PhD in Physics. Supervisor : Professor Jacques Bauche 1986 Université Paris-Nord, Villetaneuse. Doctorat d'État (Habilitation) in Physics. Supervisor : Professor Venkataraman Chandrasekharan 1987-1988 Postdoc at the Physics Dept of the Freie Universität Berlin. Supervisor : Professor Nikolaus Schwentner. Professional experience 1980-1982 Assistant lecturer of Physics (Université Paris-Nord) 1982-1990 Research assistant at the National Centre for Scientific Research (C.N.R.S) at Univ. Paris-Nord, then Univ. Paris-sud 1987-1988 Fellow of the Alexander von Humboldt Foundation at the Freie Universität Berlin (Germany). 1990-1993 Senior research Assistant at the Inst. for Experimental Physics of the Freie Universität Berlin 1993-2003 Full Professor of Experimental Condensed Matter Physics at the Université de Lausanne (Switzerland) 1996 Guest Professor, National University of Quilmes-Buenos Aires (Argentina) 1999-2000 Research Associate, American University of Beirut (Lebanon) 2003- Professor of Physics and Chemistry, Ecole Polytechnique Fédérale de Lausanne, Switzerland 2009-2010 Guest A.
    [Show full text]
  • RSC Branding
    Royal Society of Chemistry National Chemical Landmarks Award Honouree Location Inscription Date The Institute of Cancer Research, Chester ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Institute of Cancer Beatty Laboratories, 237 the 1950s until the present day – including the discovery of chemotherapy drug December Research Fulham Road, Chelsea carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Road, London, SW3 ovarian and breast cancer. 6JB, UK The Institute of Cancer ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Research, Royal Institute of Cancer the 1950s until the present day – including the discovery of chemotherapy drug December Marsden Hospital, 15 Research carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Cotswold Road, Sutton, ovarian and breast cancer. London, SM2 5NG, UK Ape and Apple, 28-30 John Dalton Street was opened in 1846 by Manchester Corporation in honour of 26 October John Dalton Street, famous chemist, John Dalton, who in Manchester in 1803 developed the Atomic John Dalton 2016 Manchester, M2 6HQ, Theory which became the foundation of modern chemistry. President of Manchester UK Literary and Philosophical Society 1816-1844. Chemical structure of Near this site in 1903, James Colquhoun Irvine, Thomas Purdie and their team found 30 College Gate, North simple sugars, James a way to understand the chemical structure of simple sugars like glucose and lactose. September Street, St Andrews, Fife, Colquhoun Irvine and Over the next 18 years this allowed them to lay the foundations of modern 2016 KY16 9AJ, UK Thomas Purdie carbohydrate chemistry, with implications for medicine, nutrition and biochemistry.
    [Show full text]
  • A Catalogue of the Fellows, Candidates, Licentiates [And Extra
    MDCCCXXXVI. / Od- CATALOGUE OF THE FELLOWS, CANDIDATES, AND LICENTIATES, OF THE ftogal College of LONDON. STREET. PRINTED 1!Y G. WGOUFAM., ANGEL COURT, SKINNER A CATALOGUE OF THE FELLOWS, CANDIDATES, AND LICENTIATES, OF THE Ittojjal College of ^ijpstrtans, LONDON. FELLOWS. Sir Henry Halford, Bart., M.D., G.C.IL, President, Physician to their Majesties , Curzon-street . Devereux Mytton, M.D., Garth . John Latham, M.D., Bradwall-hall, Cheshire. Edward Roberts, M.D. George Paulet Morris, M.D., Prince s-court, St. James s-park. William Heberden, M.D., Elect, Pall Mall. Algernon Frampton, M.D., Elect, New Broad- street. Devey Fearon, M.D. Samuel Holland, M.D. James Franck, M.D., Bertford-street. Park- lane. Sir George Smith Gibbes, Knt., M.D. William Lambe, M.D., Elect, Kings-road, Bedford-row. John Johnstone, M.D., Birmingham. Sir James Fellowes, Knt., M.D., Brighton. Charles Price, M.D., Brighton. a 2 . 4 Thomas Turner, M.D., Elect, and Trea- Extraordinary to surer, Physician the Queen , Curzon-street Edward Nathaniel Bancroft, M.D., Jamaica. Charles Dalston Nevinson, M.D., Montagu- square. Robert Bree, M.D., Elect, Park-square , Regent’s-park. John Cooke, M.D., Gower-street Sir Arthur Brooke Faulkner, Knt., M.D., Cheltenham. Thomas Hume, M.D., Elect, South-street , Grosvenor-square. Peter Rainier, M.D., Albany. Tristram Whitter, M.D. Clement Hue, M.D., Elect, Guildford- street. John Bright, M.D., Manchester-square. James Cholmeley, M.D., Bridge-street Henry , Blackfriars. Sir Thomas Charles Morgan, Knt., M.D., Dublin. Richard Simmons, M.D. Joseph Ager, M.D., Great Portland-st.
    [Show full text]
  • Biography of Sir Benjamin Collins Brodie
    Short Biographies of Philosophizing Chemists Sir Benjamin Collins Brodie (1817-1880) by William H. Brock The English chemist Benjamin Collins Brodie, who was regarded by Kekulé as “definitely one of the most philosophical minds in chemistry” (R. An- schütz, August Kekulé , Berlin, 1929, I, p. 187), was the eldest son of Britain’s leading physiologist and surgeon, Sir Benjamin Collins Brodie (1783-1862). Brodie père , who was president of the Royal Society from 1858 to 1861, had been made a baronet in 1834 for his medical services to the Royal family, and his son inherited the baronetcy in 1862. A theist and anti-materialist, Brodie senior was profoundly interested in metaphysical questions. He published two volumes of Psychological enquiries (1854 and 1862), a series of dialogues between a country gentleman, a doctor and a lawyer, that were much influ- enced by Humphry Davy’s posthumous Consolations in travel (1830). These well-meaning, but turgid, dialogues were concerned with unfashionable topics such as dualism, natural theology, and the problems of pain and immortality. They seem to have made little impact on Brodie’s contemporaries, who were finding Herbert Spencer’s psychological and evolutionary writings more ex- citing. However, their publication suggests that the younger Brodie was brought up in an atmosphere of philosophical inquiry in which the metaphys- ical foundations of scientific beliefs were critically questioned. The younger Brodie was educated at Harrow School from where he won a classics scholarship to Caius College, Cambridge. However, his father, pre- ferring him to be educated as a commoner, sent him to Balliol College, Ox- ford in 1835.
    [Show full text]
  • Bilkent-Graduate Catalog 0.Pdf
    ISBN: 978-605-9788-11-3 bilkent.edu.tr ACADEMIC OFFICERS OF THE UNIVERSITY Ali Doğramacı, Chairman of the Board of Trustees and President of the University CENTRAL ADMINISTRATION DEANS OF FACULTIES Abdullah Atalar, Rector (Chancellor) Ayhan Altıntaş, Faculty of Art, Design, and Architecture (Acting) Adnan Akay, Vice Rector - Provost Mehmet Baray, Faculty of Education (Acting) Kürşat Aydoğan, Vice Rector Ülkü Gürler, Faculty of Business Administration (Acting) Orhan Aytür, Vice Rector Ezhan Karaşan, Faculty of Engineering Cevdet Aykanat, Associate Provost Hitay Özbay, Faculty of Humanities and Letters (Acting) Hitay Özbay, Associate Provost Tayfun Özçelik, Faculty of Science Özgür Ulusoy Associate Provost Turgut Tan, Faculty of Law Erinç Yeldan, Faculty of Economics, Administrative, and Social Sciences (Acting) GRADUATE SCHOOL DIRECTORS Alipaşa Ayas, Graduate School of Education [email protected] Halime Demirkan, Graduate School of Economics and Social Sciences [email protected] Ezhan Karaşan, Graduate School of Engineering and Science [email protected] DEPARTMENT CHAIRS and PROGRAM DIRECTORS Michelle Adams, Neuroscience [email protected] Adnan Akay, Mechanical Engineering [email protected] M. Selim Aktürk, Industrial Engineering [email protected] Orhan Arıkan, Electrical and Electronics Engineering [email protected] Fatihcan Atay, Mathematics [email protected] Pınar Bilgin, Political Science and Public Administration [email protected] Hilmi Volkan Demir, Materials Science and Nanotechnology [email protected] Oğuz Gülseren, Physics [email protected] Ahmet Gürata, Communication and Design [email protected] Meltem Gürel, Architecture [email protected] Refet Gürkaynak, Economics [email protected] Ülkü Gürler, Business Administration (Acting) [email protected] H.
    [Show full text]
  • Volume 2: Prizes and Scholarships
    Issue 16: Volume 2 – Prizes, Awards & Scholarships (January – March, 2014) RESEARCH OPPORTUNITIES ALERT! Issue 16: Volume 2 PRIZES, AWARDS AND SCHOLARSHIPS (QUARTER: JANUARY - MARCH, 2014) A Compilation by the Research Services Unit Office of Research, Innovation and Development (ORID) December 2013 1 A compilation of the Research Services Unit of the Office of Research, Innovation & Development (ORID) Issue 16: Volume 2 – Prizes, Awards & Scholarships (January – March, 2014) JANUARY 2014 RUCE WASSERMAN YOUNG INVESTIGATOR AWARD American Association of Cereal Chemists Foundation B Description: Deadline information: Call has not yet been The American Association of Cereal Chemists announced by sponsor but this is the Foundation invites nominations for the Bruce approximate deadline we expect. This call is Wasserman young investigator award. This repeated once a year. award recognises young scientists who have Posted date: 12 Nov 10 made outstanding contributions to the field of Award type: Prizes cereal biotechnology. The work can either be Award amount max: $1,000 basic or applied. For the purposes of this Website: award, cereal biotechnology is broadly http://www.aaccnet.org/divisions/divisionsd defined, and encompasses any significant etail.cfm?CODE=BIOTECH body of research using plants, microbes, genes, proteins or other biomolecules. Eligibility profile Contributions in the disciplines of genetics, ---------------------------------------------- molecular biology, biochemistry, Country of applicant institution: Any microbiology and fermentation engineering are all included. Disciplines ---------------------------------------------- Nominees must be no older than 40 by July 1 Grains, Food Sciences, Cereals, Biotechnology, 2010, but nominations of younger scientists Biology, Molecular, Fermentation, are particularly encouraged. AACC Microbiology, Plant Genetics, Plant Sciences, international membership is not required for Biochemistry, Biological Sciences (RAE Unit nomination.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 69 Winter 2016 Registered Charity No. 207890 COMMITTEE Chairman: Dr John A Hudson ! Dr Noel G Coley (Open University) Graythwaite, Loweswater, Cockermouth, ! Dr Christopher J Cooksey (Watford, Cumbria, CA13 0SU ! Hertfordshire) [e-mail: [email protected]] ! Prof Alan T Dronsfield (Swanwick, Secretary: Prof. John W Nicholson ! Derbyshire) 52 Buckingham Road, Hampton, Middlesex, ! Prof Ernst Homburg (University of TW12 3JG [e-mail: [email protected]] ! Maastricht) Membership Prof Bill P Griffith ! Prof Frank James (Royal Institution) Secretary: Department of Chemistry, Imperial College, ! Dr Michael Jewess (Harwell, Oxon) London, SW7 2AZ [e-mail: [email protected]] ! Dr David Leaback (Biolink Technology) Treasurer: Dr Peter J T Morris ! Mr Peter N Reed (Steensbridge, 5 Helford Way, Upminster, Essex RM14 1RJ ! Herefordshire) [e-mail: [email protected]] ! Dr Viviane Quirke (Oxford Brookes Newsletter Dr Anna Simmons ! University) Editor Epsom Lodge, La Grande Route de St Jean, !Prof Henry Rzepa (Imperial College) St John, Jersey, JE3 4FL ! Dr Andrea Sella (University College) [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group NewsletterNo. 69 Winter 2016 Contents From the Editor 2 Message from the Chair 3 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP MEETINGS 3 “The atom and the molecule”: celebrating Gilbert N. Lewis 3 RSCHG NEWS 4 MEMBERS’ PUBLICATIONS 4 PUBLICATIONS OF INTEREST 5 CAN YOU HELP? - Update from the summer 2015 newsletter 6 Feedback from the summer 2015 newsletter 6 NEWS AND UPDATES 7 SOCIETY NEWS 8 SHORT ESSAYS 8 175 Years of Institutionalised Chemistry and Pharmacy – William H.
    [Show full text]
  • Annual Report 2016
    Contents 1 About the ACN 3 Directors’ Report 5 At a Glance 7 Research 8 2016 New Grant Funding 10 2016 New Research Projects 14 High Impact Papers 15 Engagement 16 Media 19 Events 20 Presentation 25 Collaborating Organisations 26 Awards, Prizes and Achievements 28 Governance, Our People & Visitors 29 Steering Committee 30 Organisational Chart 31 ACN Staff and Students 33 Visitors to the ACN 34 Publications 42 Cover Gallery 43 Financial Report About the ACN The ACN was established in mid-2011 as a national innovator in NanoMedicine, bringing together a diverse team of leading researchers in Medicine, Science and Engineering to deliver the next generation of health innovations, and is dedicated to providing new solutions for therapeutics and diagnostics enabled by nanotechnology. The key science that underpins all the activities of the Centre is to fully understand and exploit the unique properties of nanomaterials for various applications (eg. Contrast agents for cell imaging and therapeutics for treating cancer). The Centre’s strategic vision is to create teams focused on particular diseases using Team ACN’s skills in drug delivery, diagnostics and imaging. To succeed in this, it requires an integrated team of researchers coming from diverse backgrounds and we have assembled a remarkable team of highly distinguished scientists and engineers covering nanotechnology, polymer science, cancer biology, chemical engineering, microfluidic, chemistry, sensors and imaging, social science and experimental arts (3D imaging) from five UNSW faculties: Medicine, Science, Engineering, Arts & Social Sciences, and Arts and Design. Dr Friederike Mansfeld, Senior Research Officer at Children's Cancer Institute 1 Dr. Robert Utama setting up a RAFT polymerization reaction with PhD student Kelly Zong.
    [Show full text]