P> TEST YOUR KNOWLEDGE Chapter 32: Introduction to Animal Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Biological Fluid Power Systems and Their Potential Bionic Applications
The University of Manchester Research A review of biological fluid power systems and their potential bionic applications DOI: 10.1007/s42235-019-0031-6 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Liu, C., Wang, Y., Ren, L., & Ren, L. (2019). A review of biological fluid power systems and their potential bionic applications. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-019-0031-6 Published in: Journal of Bionic Engineering Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 A review of biological fluid power systems and their potential bionic applications Chunbao Liu1,2, Yingjie Wang 1,2, Luquan Ren 2, Lei Ren2,3 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China 2 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 3 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Abstract Nature has always inspired human achievements in industry, and biomimetics is increasingly being applied in fluid power technology. -
Chapter 1 and 2
CHAPTER 1 AND 2 Life is a unique, complex organization of molecules that expresses it self though chemical reactions which lead to growth, development, responsiveness, adaptation & reproduction. Unique features of living organesim: Growth- reproduction- metabolism- consciousness-life span. Living organisims are therefore, self- replicating, evolving & self-regulatory interactive systems capable of responding to external stimuli. Currently 1.7-1.8 billion living organisms known to science. Out of which 1.25 are animals and abut 0.5 millions are plants. Systematic is branch of biology that deals with cataloguing plants, animals and other organism into categories that can be named, compared & studied. Biology : father of biology- Aristotle,Biology (Bio-life form, logy-study) -Father of Zoology ( Aristotle ) Father of Botany ( Theophrastus ) Taxonomy: study of rules & procedure to classify organisms. Cell contains - Cytoplasm and Nucleoplasm Collectively called Protoplasm (Physical bas is of life ) given by purkinje Taxonomic categories (7 obligate ) - Kingdom (less similarities) - Phylum ( animal ) / Division (plant ) - Class - Order - Family - Genus - Species ( More similarity ) basic unit of classification Bionomical nomenclature given by C.linneaus Taxonomic AIDS: Herbarium : It is a place where dried and pressed specimens, mounted on sheets are kept systematically according bentham to bantams & hooker classification. It carries a label on right corner which provide. Information for future use. It provides a quick refer back system and is quite useful for people involved in taxonomic studies. All institutes leading with baotanical studies maintain their herbaria. HISTORY OF HERBARIA : Majority of the world’s famous herbaria originated from the botanical gardens. The first herbarium was set up at Pisa in Italy by a professor of botany Luca Ghini. -
FISH310: Biology of Shellfishes
FISH310: Biology of Shellfishes Lecture Slides #3 Phylogeny and Taxonomy sorting organisms How do we classify animals? Taxonomy: naming Systematics: working out relationships among organisms Classification • All classification schemes are, in part, artificial to impose order (need to start some where using some information) – Cell number: • Acellular, One cell (_________), or More than one cell (metazoa) – Metazoa: multicellular, usu 2N, develop from blastula – Body Symmetry – Developmental Pattern (Embryology) – Evolutionary Relationship Animal Kingdom Eumetazoa: true animals Corals Anemones Parazoa: no tissues Body Symmetry • Radial symmetry • Phyla Cnidaria and Ctenophora • Known as Radiata • Any cut through center ! 2 ~ “mirror” pieces • Bilateral symmetry • Other phyla • Bilateria • Cut longitudinally to achieve mirror halves • Dorsal and ventral sides • Anterior and posterior ends • Cephalization and central nervous system • Left and right sides • Asymmetry uncommon (Porifera) Form and Life Style • The symmetry of an animal generally fits its lifestyle • Sessile or planktonic organisms often have radial symmetry • Highest survival when meet the environment equally well from all sides • Actively moving animals have bilateral symmetry • Head end is usually first to encounter food, danger, and other stimuli Developmental Pattern • Metazoa divided into two groups based on number of germ layers formed during embryogenesis – differs between radiata and bilateria • Diploblastic • Triploblastic Developmental Pattern.. • Radiata are diploblastic: two germ layers • Ectoderm, becomes the outer covering and, in some phyla, the central nervous system • Endoderm lines the developing digestive tube, or archenteron, becomes the lining of the digestive tract and organs derived from it, such as the liver and lungs of vertebrates Diploblastic http://faculty.mccfl.edu/rizkf/OCE1001/Images/cnidaria1.jpg Developmental Pattern…. -
Animal Diversity Notes
Animal Diversity Notes Key Biology Concepts Protostomes/Deuterostomes Difference based on: type of embryo cleavage fate of blastopore ontogeny of coelom (schizocely vs enterocely) Tradeoffs of Ectothermy Disadvantages: o Activity limited by external temperature o Requires behavioural adaptations for finding thermal microenvironments (basking in sun or finding cool refuge) o Become inactive for part of the year o Limitations on latitudinal range (not as far north or south as endotherms) 1 Advantages: o High efficiency of converting ingested food to biomass o Can thrive in ecosystems of low productivity (deserts, hot and dry) o Can survive with low metabolic rate Purposes of Migration broadens the resource base, tracks available food high latitudes have longer days in summer, allowing extended foraging maintains relatively constant temperature by going tropics as winter sets in prevents permanent predation pressure in one location Advantages of the Coelomate Body Plan Cavity can function for circulation, waste disposal, and gamete storage and release Enables the development of a hydrostatic skeleton Provides cushioning for the digestive tract Muscular movements of the digestive tract isolated from the outer body wall and skeletal muscular movements Advantages of Metamerism Improved efficiency of motion using hydrostatic skeleton Independent nervous control and movement of segments Architectural redundancy allows specialisation of segments as well as survival/regeneration when segments are lost Modes of Development 2 3 Timeline of Evolution 4 Essential Diagrams Cladograms 5 6 7 8 9 10 Key Animal Diagrams 11 12 13 14 15 16 17 18 19 20 21 22 23 Animal Phyla Porifera Calcarea: calcareous sponges, mostly small Hexactinellida: possess six-rayed siliceous spicules, have continuous syncytial tissue called trabecular reticulum Demospongiae: Over 80% of sponge species, all are leuconoid, can have siliceous spicules or spongin fibres Cnidaria Hydrozoa: generally have asexual polyp and sexual medusa stages (e.g. -
Glossary.Pdf
Glossary Pronunciation Key accessory fruit A fruit, or assemblage of fruits, adaptation Inherited characteristic of an organ- Pronounce in which the fleshy parts are derived largely or ism that enhances its survival and reproduc- a- as in ace entirely from tissues other than the ovary. tion in a specific environment. – Glossary Ј Ј a/ah ash acclimatization (uh-klı¯ -muh-tı¯-za -shun) adaptive immunity A vertebrate-specific Physiological adjustment to a change in an defense that is mediated by B lymphocytes ch chose environmental factor. (B cells) and T lymphocytes (T cells). It e¯ meet acetyl CoA Acetyl coenzyme A; the entry com- exhibits specificity, memory, and self-nonself e/eh bet pound for the citric acid cycle in cellular respi- recognition. Also called acquired immunity. g game ration, formed from a fragment of pyruvate adaptive radiation Period of evolutionary change ı¯ ice attached to a coenzyme. in which groups of organisms form many new i hit acetylcholine (asЈ-uh-til-ko–Ј-le¯n) One of the species whose adaptations allow them to fill dif- ks box most common neurotransmitters; functions by ferent ecological roles in their communities. kw quick binding to receptors and altering the perme- addition rule A rule of probability stating that ng song ability of the postsynaptic membrane to specific the probability of any one of two or more mu- o- robe ions, either depolarizing or hyperpolarizing the tually exclusive events occurring can be deter- membrane. mined by adding their individual probabilities. o ox acid A substance that increases the hydrogen ion adenosine triphosphate See ATP (adenosine oy boy concentration of a solution. -