Advanced Placement Biology

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Placement Biology Advanced Placement Biology Summer Assignment Textbook: Biology 5th & 8th edition and by Campbell, Reece and Mitchell. The 8th edition book must be checked out from the library by June 8th. Assignment: Read chapters 50-53. Define the Key Terms and answer the Objective Questions for each chapter. All 3 chapters (6 assignments) are due the 1st day of school. There will be a quiz on the 2st day of school covering chapters 50-53. Join Google Classroom with the code “mexeu8” and access the pdf. Eventually the Key Terms and Objectives can be found at the Haiku website. Click on “AP Biology” and then click on “Ch. 33-55 lecture notes”. Scroll down to Ch.50. The homework will be found on the 1st or 2nd page of each chapter. Please DO NOT type any homework assignments due to rampant plagiarisms in previous years and place each of the 6 assignments on separate pages. Any questions about the assignments can be asked through my email: [email protected]. Please note that online homework chapter numbers do not align with new textbook chapter numbers due to the author dying before publishing new homework. Please realize that Advance Placement Biology is a University level biology class for biology majors. It requires a very significant commitment of time, energy, maturity and dedication to the class to succeed. I hope you have fun and safe summer, see you in September. Mr. Reta CHAPTER 33 INVERTEBRATES OUTLINE I. The Parazoa A. Phylum Porifera: sponges are sessile with porous bodies and choanocytes II. The Radiata A. Phylum Cnidaria: cnidarians have radial symmetry, a gastrovascular cavity, and cnidocytes B. Phylum Ctenophora: comb jellies possess rows of ciliary plates and adhesive colloblasts III. The Acoelomates A. Phylum Platyhelminthes: flatworms are dorsoventrally flattened acoelomates IV. The Pseudocoelomates A. Phylum Rotifera: rotifers have jaws and a crown of cilia B. Phylum Nematoda: roundworms are unsegmented and cylindrical with tapered ends V. The Coelomates: Protostomes A. Phylum Nemertea: The phylogenetic position of proboscis worms is uncertain B. The lophophorate phyla: bryozoans, phoronids, and brachiopods have ciliated tentacles around their mouths C. Phylum Mollusca: mollusks have a muscular foot, a visceral mass, and a mantle D. Phylum Annelida: annelids are segmented worms E. Phylum Arthropoda: arthropods have regional segmentation, jointed appendages, and an exoskeleton VI. The Coelomates: Deuterostomes A. Phylum Echinodermata: Echinoderms have a water vascular system and secondary radial symmetry B. Phylum Chordata: the chordates include two invertebrate subphyla and all vertebrates OBJECTIVES After reading this chapter and attending lecture, the student should be able to: 1. From a diagram, identify the parts of a sponge and describe the function of each including the spongocoel, porocyte, epidermis, choanocyte, mesohyl, amoebocyte, osculum, and spicule. 2. List characteristics of the phylum Cnidaria that distinguish it from the other animal phyla. 3. Describe the two basic body plans in Cnidaria and their role in Cnidarian life cycles. 4. List the three classes of Cnidaria and distinguish among them based upon life cycle and 476 Unit V The Evolutionary History of Biological Diversity morphological characteristics. 5. List characteristics of the phylum Ctenophora that distinguish it from the other animal phyla. 6. List characteristics that are shared by all bilaterally symmetrical animals. 7. List characteristics of the phylum Platyhelminthes that distinguish it from the other animal phyla. 8. Distinguish among the four classes of Platyhelminthes and give examples of each. 9. Describe the generalized life cycle of a trematode and give an example of one fluke that parasitizes humans. 10. Describe the anatomy and generalized life cycle of a tapeworm. 11. List distinguishing characteristics descriptive of the phylum Nemertea. 12. Explain why biologists believe proboscis worms evolved from flatworms. 13. Describe features of digestive and circulatory systems that have evolved in the Nemertea and are not found in other acoelomate phyla. 14. Describe unique features of rotifers that distinguish them from other pseudocoelomates. 15. Define parthenogenesis and describe alternative forms of rotifer reproduction. 16. List characteristics of the phylum Nematoda that distinguish it from other pseudocoelomates. 17. Give examples of both parasitic and free-living species of nematodes. 18. List characteristics that distinguish the phylum Mollusca from the other animal phyla. 19. Describe the basic body plan of a mollusk and explain how it has been modified in the Polyplacophora, Gastropoda, Bivalvia, and Cephalopoda. 20. Distinguish among the following four Molluscan classes and give examples of each: a. Polyplacophora c. Bivalvia b. Gastropoda d. Cephalopoda 21. Explain why some zoologists believe the mollusks evolved from ancestral annelids while others propose that mollusks arose from flatworm-like ancestors. 22. List characteristics that distinguish the phylum Annelida from the other animal phyla. 23. Explain how a fluid-filled septate coelom is used by annelids for burrowing. 24. Distinguish among the classes of annelids and give examples of each. 25. List characteristics of arthropods that distinguish them from the other animal phyla. 26. Describe advantages and disadvantages of an exoskeleton. 27. Distinguish between hemocoel and coelom. 28. Provide evidence for an evolutionary link between the Annelida and Arthropoda. 29. Describe major independent arthropod lines of evolution represented by the subphyla: a. Trilobitomorpha c. Crustacea b. Cheliceriformes d. Uniramia 30. Explain what arthropod structure was a preadaptation for living on land. 31. Distinguish among the following arthropod classes and give an example of each: a. Arachnida d. Chilopoda b. Crustacea e. Insecta c. Diplopoda 32. Distinguish between incomplete metamorphosis and complete metamorphosis. 33. Define lophophore and list three lophophorate phyla. 34. Explain why lophophorates are difficult to assign as protostomes or deuterostomes. 35. List at least four characteristics shared by the deuterostome phyla that distinguish them from protostomes. Chapter 33 Invertebrates 477 36. List characteristics of echinoderms that distinguish them from other animal phyla. 37. Describe the structures and function of a water vascular system, including ring canal, radial canal, tube feet and ampulla. 38. Distinguish among the classes of echinoderms and give examples of each. KEY TERMS invertebrates parthenogenesis cuticle Class Insecta spongocoel closed circulatory exoskeleton entomology osculum system molting Malpighian tubules choanocyte lophophorate animals open circulatory system tracheal system mesohyl lophophore trilobite incomplete amoebocyte bryozoans Chelicerates metamorphosis hermaphrodites phoronids Uniramians complete gastrovascular cavity brachiopods Crustaceans metamorphosis polyp foot chelicerae echinoderms medusa visceral mass mandibles water vascular system cnidocytes mantle antennae tube feet cnidae mantle cavity compound eyes nematocysts radula eurypterids colloblasts trochophore Class Arachnida planarian torsion book lungs complete digestive ammonites Class Diplodia metanephridia tract Class Chilopodia LECTURE NOTES Over one million species of animals are living today; 95% of these are invertebrates. • Most are aquatic. • The most familiar belong to the subphylum Vertebrata of the phylum Chordata. This is only about 5% of the total. I. The Parazoa A. Phylum Porifera: sponges are sessile with porous bodies and choanocytes The sponges, in the phylum Porifera, are the only members of the subkingdom Parazoa due to their unique development and simple anatomy (see Campbell, Figure 33.1). • Approximately 9000 species, mostly marine with only about 100 in fresh water • Lack true tissues and organs, and contain only two layers of loosely associated unspecialized cells • No nerves or muscles, but individual cells detect and react to environmental changes • Size ranges from 1 cm to 2 m • All are suspension-feeders (= filter-feeders) • Possibly evolved from colonial choanoflagellates Parts of the sponge include (see Campbell, Figure 33.2): • Spongocoel = Central cavity of sponge • Osculum = Larger excurrent opening of the spongocoel • Epidermis = Single layer of flattened cells which forms outer surface of the sponge 478 Unit V The Evolutionary History of Biological Diversity • Porocyte = Cells which form pores; possess a hollow channel through the center which extends from the outer surface (incurrent pore) to spongocoel • Choanocyte = Collar cell, majority of cells which line the spongocoel; possess a flagellum which is ringed by a collar of fingerlike projections. Flagellar movement moves water and food particles which are trapped on the collar and later phagocytized. • Mesohyl = The gelatinous layer located between the two layers of the sponge body wall (epidermis and choanocytes) • Amoebocyte = Wandering, pseudopod bearing cells in the mesohyl; function in food uptake from choanocytes, food digestion, nutrient distribution to other cells, formation of skeletal fibers, gamete formation • Spicule = Sharp, calcium carbonate or silica structures in the mesohyl which form the skeletal fibers of many sponges • Spongin = Flexible, proteinaceous skeletal fibers in the mesohyl of some sponges Most sponges are hermaphrodites, but usually cross-fertilize. • Eggs and sperm form in the mesohyl from differentiated amoebocytes or choanocytes. • Eggs remain in
Recommended publications
  • Chapter 14 1. Specialization of Regions of the Body for Specific
    Chapter 14 1. Specialization of regions of the body for specific functions, as seen in arthropods, is called A) tagmatization. B) metamerism. C) truncation. D) differentiation. E) cephalization. 2. Members of class __________ are among the most numerous crustaceans, and are both marine and freshwater in distribution. A) Cirripedia B) Copepoda C) Branchiopoda D) Malacostraca E) Isopoda 3. Which type of crustacean do many zoologists believe to have the greatest number of individuals of any type of animal on the planet? A) isopods B) fairy shrimp C) brine shrimp D) copepods E) barnacles 4. Which of the following phyla of animals are not ecdysozoan? A) Arthropoda B) Nematoda C) Gastrotricha D) Nematomorpha E) Kinorhyncha 5. Which of the following is not a synapomorphy that unites the members of the ecdysozoan clade? A) the blastopore develops into the anus B) loss of epidermal cilia C) possession of a cuticle D) shedding of cuticle through ecdysis E) all of the above are synapomorphies shared by ecdysozoans Page 1 6. The __________ is the outer layer of the arthropod exoskeleton, and it is composed of a waterproofing waxy lipoprotein. A) lipocuticle B) mesocuticle C) epicuticle D) endocuticle E) sclerocuticle 7. The tough, leathery polysaccharide in the arthropod procuticle is A) lipoprotein. B) calcium carbonate. C) scleroprotein. D) chitin. E) glycogen. 8. The arthropod skeleton hardens by __________, which is a formation of chemical bonds between protein chains. A) carbonization B) tagmatization C) calcification D) chitinization E) sclerotization 9. Sensory receptors called __________ occur in the arthropod exoskeleton in the form of pegs, bristles, and lenses.
    [Show full text]
  • Research Interests Related to the Cambridge-MIT Institute
    Nanoscale Structural Design Principles of Biocomposite Exoskeletons As a Guide for New Energy-Absorbing Materials Technologies Team 1 : Energy Absorbing Materials : Multiscale Design and Evaluation of Nanostructured Materials for Ballistic and Blast Protection MIT Institute for Soldier Technologies (ISN) Christine Ortiz, Assistant Professor Massachusetts Institute of Technology, Department of Materials Science and Engineering WWW : http://web.mit.edu/cortiz/www/ August 2002 I. Background : Structural Design Principles and Energy Absorbing Mechanisms From millions of years of evolution, nature has ingeniously figured out innumerate structural design principles to produce multifunctional, and in many cases stimulus-responsive, materials with superior mechanical properties[1-6]. Examples of these include exoskeletons of many invertebrate animals such as mollusks, arthropods (e.g. crustaceans such as crabs, insects), cnidaria (e.g. corals), and structural components of mammals such as turtle shell, rhinocerous horn, bovine hoof horn, deer antlers, elephant tusks, and teeth. Most tough biological materials are complex, hierarchical, multilayered nanocomposites that undergo a wide variety of different energy-absorbing toughening mechanisms at many length scales. Some of these mechanisms in both biological and synthetic composite materials [7-10] are shown in Figure 1 and include; 1) rupture of "sacrificial" weaker bonds in the macromolecular component (e.g. Mollusk shell nacre), 2) extension, pull-out, and/or ligament formation of a macromolecular component bridging an interface (e.g. Mollusk shell nacre), 3) void formation (e.g. via cavitation of rubber particles in a thermoset composite or stress whitening in semicrystalline polymers) leading to bulk plastic deformation, crack blunting, pinning and branching, 4) localized plastic deformation ahead of a crack tip (e.g.
    [Show full text]
  • The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain
    Reprinted with permission from CRC Press. 2000 NW Corporate Blvd. Boca Raton, FL 33431, USA Tel: 1(800)272-7737 http://www.crcpress.com 2.1. Reviews in Fisheries Science, 10(1): 1–38 (2002) The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain James D. Rose Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071 * Send correspondence to: Dr. James D. Rose, Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071. e-mail: [email protected] 1064-1262 /02/$.50 ©2002 by CRC Press LLC ABSTRACT: This review examines the neurobehavioral nature of fishes and addresses the question of whether fishes are capable of experiencing pain and suffering. The detrimental effects of anthropomorphic thinking and the importance of an evolutionary perspective for understanding the neurobehavioral differences between fishes and humans are discussed. The differences in central nervous system structure that underlie basic neurobehavioral differences between fishes and humans are described. The literature on the neural basis of consciousness and of pain is reviewed, showing that: (1) behavioral responses to noxious stimuli are separate from the psychological experience of pain, (2) awareness of pain in humans depends on functions of specific regions of cerebral cortex, and (3) fishes lack these essential brain regions or any functional equivalent, making it untenable that they can experience pain. Because the experience of fear, similar to pain, depends on cerebral cortical structures that are absent from fish brains, it is concluded that awareness of fear is impossible for fishes. Although it is implausible that fishes can experience pain or emotions, they display robust, nonconscious, neuroendocrine, and physiological stress responses to noxious stimuli.
    [Show full text]
  • Development and Structure of the Excretory System the Nephron
    Biology 224 Human Anatomy and Physiology II Week 7; Lecture 1; Monday Dr. Stuart S. Sumida Development and Structure of the Excretory System The Nephron DEVELOPMENT AND STRUCTURE OF EXCRETORY SYSTEM EXCRETORY SYSTEM REVIEW • Kidneys derived from INTERMEDIATE MESODERM. • Kidney starts out as a SEGMENTAL STRUCTURE. • Bladder, as part of embryonic gut tube: lining derived from endoderm. • Note, this is EXCRETION, NOT “ELIMINATION.” EARLY KIDNEY DEVELOPMENT • There is a segment of intermediate mesoderm for every body segment. • Earliest kidney appears in the cervical region of the body! (About week 3.) Called the PRONEPHROS. • Develop very close to the gonads. (They battle it out for the nearby ducts.) THE PRONEPHROS • The early anteriorly developed kidney parts. • Has NO EXCRETORY FUNCTION. • Functions to INDUCE DEVELOPMENT of middle segments of intermediate meosderm into the MESONEPHROS. THE MESONEPHROS • Some think it is the functioning embryonic kidney. Some think is has no excretory function. • WE DO KNOW that the duct that attaches to it (THE MESONEPHRIC DUCT) is very important in INDUCING DEVELOPMENT OF THE CAUDAL KIDNEY SEGMENTS (the METANEPHROS). Mesonephric Duct reaches all the way to end of gut tube (cloaca). We need to... • Attach the ducts to the hindend kidney (the metanephros). • Split the bladder away from the gut tube. After the mesonephric duct attaches to cloaca, the embryonic URETER grows from caudal to cranial to attach to mass of metanephric kidney. A septum, the URORECTAL SEPTUM, grows between the more dorsal part of the gut tube and the more ventral part that will become the bladder. Note that attached to the bladder are right and left ueters, the allantois (an extraembryonic membrane).
    [Show full text]
  • Biology in the Modern World Study Guide Southwest Minnesota State University Chapter 1
    Biology in the Modern World Study Guide Southwest Minnesota State University Chapter 1 Chapter Objectives Biology and Society: Biology All Around Us 1. Describe three examples of how biology is woven into the fabric of society. The Scope of Life 2. Describe seven properties or processes we associate with life. 3. List and give an example of each level of biological organization, starting with an ecosystem and ending with atoms. 4. Describe the two main dynamic processes in an ecosystem. 5. Compare the structure of prokaryotic and eukaryotic cells. 6. Distinguish between the three domains and four eukaryotic kingdoms of life. Evolution: Biology’s Unifying Theme 7. Describe the two main points that Darwin made in his book The Origin of Species. 8. Describe the two observations that led Darwin to his inescapable conclusion. State this conclusion. 9. Compare artificial and natural selection, noting similarities and differences. The Process of Science 10. Compare discovery science and hypothesis-driven science. Provide examples of each regarding the study of trans fats in the human diet. 11. Distinguish between a hypothesis and a theory. Explain why natural selection qualifies as a scientific theory. 12. Distinguish science from other styles of inquiry. 13. Describe examples of the interdependence of technology and science. Evolution Connection: Evolution in Our Everyday Lives 14. Explain how changes in the effectiveness of antibiotics illustrate natural selection. Key Terms biology hypothesis-driven science case study life controlled experiment natural selection discovery science scientific method ecosystem theory hypothesis Chapter 2 Chapter Objectives Biology and Society: Fluoride in the Water 1. Explain how fluoride prevents tooth decay.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    PROCEEDINGS of the Indiana Academy of Science Founded December 29, 1885 Volume 67 1957 Richard A. Laubengayer, Editor Wabash College Crawfordsville, Indiana Spring Meeting- May 10-11 Turkey Run State Park Fall Meeting October 17-19, 1957 DePauw University Published at Indianapolis, Indiana 1958 1. The permanent address of the Academy is the Indiana State Library. 2. Instructions for Authors appear at end of this volume, p. 324. 3. Exchanges. Items sent in exchange for the Proceedings and corre- spondence concerning- exchange arrangements should be addressed: John Shepard Wright Memorial Library of the Indiana Academy of Science. c/o Indiana State Library Indianapolis 4, Indiana, 4. Proceedings may be purchased through the State Library at $3.00 per volume. 5. Reprints of technical papers can often be secured from the authors. They cannot be supplied by the State Library nor by the officers of the Academy. 6. The Constitution and By-Laws reprinted from v. (J 2 and the Member- ship List reprinted from v. 61, are available to members upon application to the Secretary. Necrologies reprinted from the various volumes can be supplied relatives anl friends of deceased members by the Secretary. 7. Officers whose names and addresses are not known to correspondents may be addressed care the State Library. The address of the editor of the present volume is Biology Department, Wabash College, Crawfordsville, Ind. Papers published in the Proceedings of the Indiana Academy of Science are abstracted or indexed in appropriate services listed here: Annotated
    [Show full text]
  • A Non-Bilaterian Perspective on the Development and Evolution of Animal Digestive Systems
    Cell and Tissue Research (2019) 377:321–339 https://doi.org/10.1007/s00441-019-03075-x REVIEW A non-bilaterian perspective on the development and evolution of animal digestive systems Patrick R. H. Steinmetz 1 Received: 22 March 2019 /Accepted: 8 July 2019 /Published online: 7 August 2019 # The Author(s) 2019 Abstract Digestive systems and extracellular digestion are key animal features, but their emergence during early animal evolution is currently poorly understood. As the last common ancestor of non-bilaterian animal groups (sponges, ctenophores, placozoans and cnidarians) dates back to the beginning of animal life, their study and comparison provides important insights into the early evolution of digestive systems and functions. Here, I have compiled an overview of the development and cell biology of digestive tissues in non-bilaterian animals. I will highlight the fundamental differences between extracellular and intracellular digestive processes, and how these are distributed among animals. Cnidarians (e.g. sea anemones, corals, jellyfish), the phylogenetic outgroup of bilaterians (e.g. vertebrates, flies, annelids), occupy a key position to reconstruct the evolution of bilaterian gut evolution. A major focus will therefore lie on the development and cell biology of digestive tissues in cnidarians, especially sea anemones, and how they compare to bilaterian gut tissues. In that context, I will also review how a recent study on the gastrula fate map of the sea anemone Nematostella vectensis challenges our long-standing conceptions on the evolution of cnidarian and bilaterian germ layers and guts. Keywords Cnidaria . Porifera . Placozoa . Ctenophora . Gastrovascular system . Gut evolution . Extracellular digestion . Intracellular digestion . Germ layer evolution Introduction ester bonds.
    [Show full text]
  • The Contribution of Nasal Countercurrent Heat Exchange to Water Balance in the Northern Elephant Seal, Mirounga Angustirostris
    J. exp. Biol. 113, 447-454 (1984) 447 Printed in Great Britain © The Company of Biologists Limited 1984 THE CONTRIBUTION OF NASAL COUNTERCURRENT HEAT EXCHANGE TO WATER BALANCE IN THE NORTHERN ELEPHANT SEAL, MIROUNGA ANGUSTIROSTRIS BY ANTHONY C. HUNTLEY, DANIEL P. COSTA Long Marine Laboratory, Center for Marine Studies, University of California, Santa Cruz, U.SA. AND ROBERT D. RUBIN Department of Life Sciences, Santa Rosa Junior College, Santa Rosa, California, U.SA Accepted 29 May 1984 SUMMARY 1. Elephant seals fast completely from food and water for 1-3 months during terrestrial breeding. Temporal countercurrent heat exchange in the nasal passage reduces expired air temperature (Te) below body temperature (Tb)- 2. At a mean ambient temperature of 13'7°C, Te is 20*9 °C. This results in the recovery of 71-5 % of the water added to inspired air. 3. The amount of cooling of the expired air (Tb~Te) and the percentage of water recovery varies inversely with ambient temperature. 4. Total nasal surface area available for heat and water exchange, located in the highly convoluted nasal turbinates, is estimated to be 720 cm2 in weaned pups and 3140 cm2 in an adult male. 5. Nasal temporal countercurrent heat exchange reduces total water loss sufficiently to allow maintenance of water balance using metabolic water production alone. INTRODUCTION Northern elephant seals, Mirounga angustirostis (Gill), are exceptional among pin- nipeds in the duration of their terrestrial breeding fast. During this time, they volun- tarily forgo both food and water while remaining active on the rookery. The length of these fasts varies with age, sex and social status.
    [Show full text]
  • The Use of Inflammation by Tumor Cells
    223 COMMENTARY The Use of Inflammation by Tumor Cells 1 Jose-Ignacio Arias, M.D., Ph.D. 2 Marı´a-Angeles Aller, M.D., Ph.D. 2 Jaime Arias, M.D., Ph.D. 1 Servicio de Cirugı´a General, Hospital Monte Naranco, Oviedo, Asturias, Spain. 2 Ca´tedra de Cirugı´a, Departamento de Cirugı´a I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain. ancer is malignant, because tumor cells invade neighboring tis- Csues and survive in these ectopic sites. This invasion permits them to enter into the circulation, from which they can reach distant organs and, eventually, form secondary tumors, called metastases.1 The classical metastatic cascade encompasses intravasation by tumor cells, circulation of these cells in lymph and blood vascular systems, arrest in distant organs, extravasation, and growth into met- astatic foci.1,2 However, the tumor cells can adopt a great variety of phenotypes; and, due to this plasticity of the malignant cells; it has been proposed that a more dynamic view is needed for the metastatic cascade.2,3 Invasion and metastases are not unique for cancer, because they also occur during embryonic development, in adult tissue mainte- nance, and in many noncancerous diseases, such as in repair pro- cesses.1,2 In relation to the latter, tumor cells have been described as wounds that do not heal.4 Both tissue repair, a beneficial process, and tumor formation, a harmful process, share some molecular mechanisms that can be ascribed to inflammation.1,2,5 Therefore, in one sense, it is possible that inflammation is shared by both processes: tissue repair and tumor formation.
    [Show full text]
  • A Review of Biological Fluid Power Systems and Their Potential Bionic Applications
    The University of Manchester Research A review of biological fluid power systems and their potential bionic applications DOI: 10.1007/s42235-019-0031-6 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Liu, C., Wang, Y., Ren, L., & Ren, L. (2019). A review of biological fluid power systems and their potential bionic applications. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-019-0031-6 Published in: Journal of Bionic Engineering Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 A review of biological fluid power systems and their potential bionic applications Chunbao Liu1,2, Yingjie Wang 1,2, Luquan Ren 2, Lei Ren2,3 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China 2 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 3 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Abstract Nature has always inspired human achievements in industry, and biomimetics is increasingly being applied in fluid power technology.
    [Show full text]
  • Chapter 1 and 2
    CHAPTER 1 AND 2 Life is a unique, complex organization of molecules that expresses it self though chemical reactions which lead to growth, development, responsiveness, adaptation & reproduction. Unique features of living organesim: Growth- reproduction- metabolism- consciousness-life span. Living organisims are therefore, self- replicating, evolving & self-regulatory interactive systems capable of responding to external stimuli. Currently 1.7-1.8 billion living organisms known to science. Out of which 1.25 are animals and abut 0.5 millions are plants. Systematic is branch of biology that deals with cataloguing plants, animals and other organism into categories that can be named, compared & studied. Biology : father of biology- Aristotle,Biology (Bio-life form, logy-study) -Father of Zoology ( Aristotle ) Father of Botany ( Theophrastus ) Taxonomy: study of rules & procedure to classify organisms. Cell contains - Cytoplasm and Nucleoplasm Collectively called Protoplasm (Physical bas is of life ) given by purkinje Taxonomic categories (7 obligate ) - Kingdom (less similarities) - Phylum ( animal ) / Division (plant ) - Class - Order - Family - Genus - Species ( More similarity ) basic unit of classification Bionomical nomenclature given by C.linneaus Taxonomic AIDS: Herbarium : It is a place where dried and pressed specimens, mounted on sheets are kept systematically according bentham to bantams & hooker classification. It carries a label on right corner which provide. Information for future use. It provides a quick refer back system and is quite useful for people involved in taxonomic studies. All institutes leading with baotanical studies maintain their herbaria. HISTORY OF HERBARIA : Majority of the world’s famous herbaria originated from the botanical gardens. The first herbarium was set up at Pisa in Italy by a professor of botany Luca Ghini.
    [Show full text]
  • The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition
    This PDF includes a chapter from the following book: The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition © 2002 Massachusetts Institute of Technology License Terms: Made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License https://creativecommons.org/licenses/by-nc-nd/4.0/ OA Funding Provided By: The open access edition of this book was made possible by generous funding from Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin. The title-level DOI for this work is: doi:10.7551/mitpress/1885.001.0001 Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/677472/9780262268028_f000000.pdf by guest on 29 September 2021 Introduction There are as many approaches to studying ani- and The Expression of the Emotions in Man and mal cognition as there are definitions of cogni- Animals (1872). Consequently, both disciplines tion itself. This diversity is reflected in the essays are almost inextricably linked to the concept of that follow, to a degree that we believe is un- instinct. Darwin viewed instinct primarily in be- paralleled in any other volume that has been havioral terms and considered his ability to ex- produced on this subject. This diversity is philo- plain instinct through natural selection to be one sophical and methodological, with contributors of the most critical tests of his theories. Thus he demonstrating various degrees of acceptance or compared closely related species of bees to ex- disdain for terms such as ‘‘consciousness’’ and plain the evolution of hive building and closely various degrees of concern for the rigors of lab- related species of ants to explain the origins of oratory experimentation versus the validity of slave making.
    [Show full text]