Phylogenetic Stability, Tree Shape, and Character Compatibility: a Case Study Using Early Tetrapods

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Stability, Tree Shape, and Character Compatibility: a Case Study Using Early Tetrapods Syst. Biol. 65(5):737–758, 2016 © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syw049 Advance Access publication June 10, 2016 Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods , ,∗ MASSIMO BERNARDI1 2 ,KENNETH D. ANGIELCZYK3,JONATHAN S. MITCHELL4, AND MARCELLO RUTA5 1MUSE—Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy; 2School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; 3Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA; 4Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103, USA; and 5School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK ∗ Correspondence to be sent to: Massimo Bernardi, MuSe—Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy; Email: [email protected] Received 25 October 2014; reviews returned 31 March 2016; accepted 19 May 2016 Associate Editor: Benoit Dayrat Downloaded from Abstract.—Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time. In this study, we examined an empirical phylogeny of fossil tetrapods during several time intervals, and studied how temporal constraints manifested in patterns of tree imbalance and character change. The results indicate that the impact of temporal constraints on tree shape is minimal and highlights the stability through time of the reference tetrapod phylogeny. Unexpected values of imbalance for Mississippian and Pennsylvanian time slices strongly support the hypothesis that the Carboniferous http://sysbio.oxfordjournals.org/ was a period of explosive tetrapod radiation. Several significant diversification shifts take place in the Mississippian and underpin increased terrestrialization among the earliest limbed vertebrates. Character incompatibility is relatively high at the beginning of tetrapod history, but quickly decreases to a relatively stable lower level, relative to a null distribution based on constant rates of character change. This implies that basal tetrapods had high, but declining, rates of homoplasy early in their evolutionary history, although the origin of Lissamphibia is an exception to this trend. The time slice approach is a powerful method of phylogenetic analysis and a useful tool for assessing the impact of combining extinct and extant taxa in phylogenetic analyses of large and speciose clades. [Character compatibility; diversification shifts; Mesozoic; Paleozoic; tetrapod terrestrialization; tree balance; tree distance.] Phylogeny reconstruction is a cardinal component they included both “contemporaneous” taxa and “fossil” of modern evolutionary biology because it provides taxa from an earlier interval (e.g., the Devonian)? What at University of Michigan on September 27, 2016 the fundamental framework for investigating the would a phylogeny look like from the standpoint of a dynamics of evolutionary processes, including tempo systematist living in the Permian, in terms of accuracy and mode of change and models of group diversification. and stability? The significance of these questions goes Tree shape may be substantially altered by different beyond the specific arrangement of taxa on the tree, and regimes of character and taxon inclusion/exclusion, factors such as the rate of character state changes and the and by different character coding, ordering and potential of later-evolving characters to erode the signal weighting schemes. As a result, much interest surrounds of earlier-evolving characters should be considered. phylogenetic stability, namely “the tendency for clades Beginning with the work of the “Woods Hole Group” that are resolved by an analysis to continue to be of paleontologists (Raup et al. 1973; Gould et al. 1977; resolved when either the data or the analytical method Schopf 1979; see summaries by Slowinski and Guyer is altered” (Davis 1993, p. 188). Numerous methods 1989; Mooers and Heard 1997; Huss 2009), tree shape are now available for measuring cladistic stability has been used to analyze the tempo and mode of (e.g., Felsenstein 1985; Bremer 1988; Goloboff 1991; cladogenetic events (e.g., Savage 1983; Heard 1992; Guyer Kållersïo et al. 1992; Davis 1993; Faith and Ballard 1994; and Slowinski 1993; Mooers and Heard 1997; Chan and Farris et al. 1996; Gatesy 2000), that is the amount of Moore 2002; Good-Avila et al. 2006; Heath et al. 2008). statistical support for tree nodes. However, a particularly Despite the important initial role of paleontologists, relevant aspect of stability in a paleontological context some subsequent work has focused on phylogenies of is the impact of taxa from different time intervals extant taxa only (although see Harcourt-Brown et al. on phylogenetic resolution. Because of such factors as 2001; Harcourt-Brown 2002). This “neontological bias” genetic saturation (e.g., Felsenstein 1978; Huelsenbeck is reflected by the fact that some recent applications and Hillis 1993) and morphological exhaustion (Wagner of diversification shift analyses to paleontological trees 2000a), later-evolving taxa might “erode” phylogenetic (e.g., Ruta et al. 2007; Lloyd et al. 2008; Botha-Brink signal among early-evolving taxa. Thus, it is important and Angielczyk 2010) required modifications of available to investigate whether phylogenetic stability (as defined methods to better fit the nature of fossil data (see also above) remains constant with the addition of later- Tarver and Donoghue 2011; Brocklehurst et al. 2015), evolving taxa, or whether it changes over clade even though the importance of fossil data has become history. As a metaphor (Wagner P.J. 2014, personal widely recognized (e.g., time-calibrating trees: Stadler communication), imagine a systematist living in the 2010; Parham et al. 2011; Didier et al. 2012). Harcourt- Pennsylvanian. How accurately could they reconstruct Brown (2002) suggested that analysis of tree balance the phylogeny of tetrapods using just the taxa in that at different time intervals in a group’s history could time period? Would the accuracy of their tree improve if provide insight into diversification patterns, but there 737 738 SYSTEMATIC BIOLOGY VOL. 65 has been little additional work on this topic. Here, we TABLE 1. The five time slices, their ages, and the number of taxa build on Harcourt-Brown’s (2002) study by examining which have their range in those slices changes in tree shape imparted by taxon addition during Time bin Age (Ma) Number of taxa successive time intervals, and discuss the implications of those changes. We focus on three complementary Devonian 419.2–358.9 6 aspects of tree shape: (1) stability, that is, the retrieval Mississippian 358.9–323.2 17 of identical mutual relationships among taxa when new Pennsylvanian 323.2–298.9 34 Permian 298.9–252.2 39 taxa are added to an existing data matrix; (2) balance, Mesozoic 252.2–66.0 7 that is, a measure of how symmetrical or asymmetrical a tree is; and (3) distribution of diversification shifts, Notes: The number of taxa considered in this study is 102: five taxa cross that is, occurrences of significant changes in rates of the boundary between two time slices, and have been considered as lineage splitting through time. In addition, we use belonging to both the time slices (ages from Cohen et al. 2013). character compatibility (e.g., Camin and Sokal 1965; Le Quesne 1969, 1982; Estabrook et al. 1976a, 1976b; presented here in light of future, more encompassing Downloaded from Meacham and Estabrook 1985) to examine how the studies. In that respect, our approach should be seen as structure of the data matrix yielding the trees of interest purely exploratory and the results from our investigation changes through successive time intervals. Empirical ought to be considered exclusively in light of the original work has shown that addition of fossils may alter findings in Ruta and Coates’ (2007). In summary, we hypotheses of relationships based on extant taxa only chose Ruta and Coates’ (2007) because the taxon sample http://sysbio.oxfordjournals.org/ (e.g., Gauthier et al. 1988; Cobbett et al. 2007), and in that study is large enough to allow us to investigate simulation studies have revealed that such altered clade stability over a relatively long time interval. We relationships may improve phylogenetic estimates (e.g., are aware that the study in question is neither the Huelsenbeck 1991; Wagner 2000b; Wagner and Sidor sole hypothesis of tetrapod interrelationships nor an 2000), a conclusion that has been backed up by real exhaustive treatment of taxa. We also note that the case studies (e.g., Cunningham et al. 1998). To build on lissamphibian radiation appears to be conspicuous only the metaphor of systematists living at different times in the Mesozoic, and remains modest at the beginning in the past (see above), strictly extant taxa are simply of that era (Marjanovi´cand Laurin 2014), so its impact is one particular case of “contemporaneous” taxa (i.e., taxa trivial for the case study presented here. from a single time slice). Fossil-based phylogenies allow at University of Michigan on September 27, 2016 us to look at different sets of “contemporaneous” taxa, and permit comparisons between “contemporaneous only”
Recommended publications
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • From the Late Permian of Eastern Europe V
    Paleontological Journal, Vol. 32, No. 3, 1998, pp. 278–287. Translated from Paleontologicheskii Zhurnal, No. 3, 1998, pp. 64–73. Original Russian Text Copyright © 1998 by Golubev. English Translation Copyright © 1998 by åÄàä ç‡Û͇ /Interperiodica Publishing (Russia). Narrow-armored Chroniosuchians (Amphibia, Anthracosauromorpha) from the Late Permian of Eastern Europe V. K. Golubev Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117647 Russia Received January 21, 1997 Abstract—The Permian and Triassic chroniosuchians are revised and the morphology of the dorsal armor scutes is discussed in detail. The first narrow-armored chroniosuchid Uralerpeton tverdochlebovae from the Late Permian Vyazniki faunistic assemblage of Eastern Europe is described and the age of the Vyazniki fauna discussed. INTRODUCTION armor occurred late in the process of decomposition of the animal: the head, the brachial and pelvic girdles and even The chroniosuchians (Chroniosuchia), an unusual the vertebral column became disarticulated sooner. group of Late Permian and Triassic reptiliomorph amphibians, dominated the aquatic tetrapod assem- In horizontal plane the chroniosuchian scutes are blages of Eastern Europe during the Late Tatarian age. rectangular (Figs. 1a and 1b; 2b and 2c; 4a–4d), except Conventionally this group, consisting of two families: for the anteriormost scute, which is shaped like a semi- the Chroniosuchidae and the Bystrowianidae (Tatar- circle or semiellipsis (Fig. 1d). The scute consists of a inov, 1972; Ivakhnenko and Tverdokhlebova, 1980; massive axial part, or the scute body (corpus scutulumi) Shishkin and Novikov, 1992) is included within the and two lateral horizontal plates, or the scute wings order Anthracosauromorpha as suborder. According to (alae scutulumi) (Fig.
    [Show full text]
  • The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations.
    [Show full text]
  • Karpinskiosaurus Ultimus (Seymouriamorpha, Parareptilia) from the Upper Permian of European Russia V
    Paleontological Journal, Vol. 36, No. 1, 2002, pp. 72–79. Translated from Paleontologicheskii Zhurnal, No. 1, 2002, pp. 77–84. Original Russian Text Copyright © 2002 by Bulanov. English Translation Copyright © 2002 by åÄIä “Nauka /Interperiodica” (Russia). Karpinskiosaurus ultimus (Seymouriamorpha, Parareptilia) from the Upper Permian of European Russia V. V. Bulanov Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia e-mail: [email protected] Received April 14, 1999 Abstract—The genus Raphanodon Ivachnenko, 1987 (Leptorophidae, Seymouriamorpha) is not a valid taxon, since its type species Nycteroleter ultimus Tchudinov et Vjuschkov, 1956 is assigned to the genus Karpinskio- saurus. The cranial anatomy of K. ultimus is described in the present paper with newly collected material from the Babintsevo locality. The genus Karpinskiosaurus is assigned to the subfamily Karpinskiosaurinae, which is affiliated to the Lower Permian Discosauriscinae (Discosauriscus and Ariekanerpeton) to form the family Karpinskiosauridae. INTRODUCTION the skull structure of this form will be published in the future. In 1956, Tchudinov and Vjuschkov described a new species of the genus Nycteroleter, N. ultimus based on The genus Karpinskiosaurus was established by jaw material from the Pron’kino locality (Orenburg Sushkin (1925) based on two specimens (an incomplete Region) (Tchudinov and Vjuschkov, 1956). Later, Iva- skeleton and a skull) described by Amalitsky (1921) as khnenko separated this form from the nycteroleters and Kotlassia secunda from the excavations at the Malaya placed it in the family Leptorophidae (Seymouriamor- Severnaya Dvina River (Sokolki locality). Sushkin pha, Parareptilia) under a new name, Raphanodon. This ranked this genus as a new family, Karpinskiosauridae, paper included reconstructions of the skull roof and based on its distinctions from Kotlassia proper (Kotlas- palatal complex of R.
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • New Chroniosuchian Materials from Xinjiang, China
    第58卷 第4期 古 脊 椎 动 物 学 报 pp. 283–292 figs. 1–4 2020年10月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.200415 New chroniosuchian materials from Xinjiang, China LIU Jun1,2,3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044 [email protected]) (3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049) Abstract Chroniosuchians have the earliest representatives in Gansu, China, but the Chinese records were scarcer compared to Russia, especially the Triassic one. In Xinjiang, there was only one specimen reported from the upper part of the Guodikeng Formation. Here three new chroniosuchian specimens are reported from three new stratigraphic horizons: the Quanzijie Formation (middle Permian), the base of the Guodikeng Formation (upper Permian), and the Jiucaiyuan Formation (Lower Triassic). The osteoderm from the Jiucaiyuan Formation represents the first definite Triassic chroniosuchian from China. The new findings increase the chroniosuchian diversity and their time range in China. The bystrowianid chroniosuchian specimens from the Guodikeng and Jiucaiyuan formations demonstrated that this group survived in the end-Permian mass extinction in Xinjiang, China. Key words Xinjiang, China; Permian, Triassic; Quanzijie Formation, Guodikeng Formation, Jiucaiyuan Formation; Bystrowianidae, chroniosuchians Citation Liu J, 2020. New chroniosuchian materials from Xinjiang, China. Vertebrata PalAsiatica, 58(4): 283–292 1 Introduction The chroniosuchians were an enigmatic clade of non-amniotic tetrapods with uncertain phylogenetic position (Clack and Klembara, 2009; Schoch et al., 2010; Buchwitz et al., 2012; Witzmann and Schoch, 2018; Marjanović and Laurin, 2019).
    [Show full text]
  • 1 1 Appendix S1: Complete List of Characters And
    1 1 Appendix S1: Complete list of characters and modifications to the data matrix of RC07, with 2 reports of new observations of specimens. 3 The names, the abbreviations and the order of all characters and their states are 4 unchanged from RC07 unless a change is explained. We renumbered the characters we did 5 not delete from 1 to 277, so the character numbers do not match those of RC07. However, 6 merged characters retain the abbreviations of all their components: PREMAX 1-2-3 (our 7 character 1) consists of the characters PREMAX 1, PREMAX 2 and PREMAX 3 of RC07, 8 while MAX 5/PAL 5 (our ch. 22) is assembled from MAX 5 and PAL 5 of RC07. We did not 9 add any characters, except for splitting state 1 of INT FEN 1 into the new state 1 of INT FEN 10 1 (ch. 84) and states 1 and 2 of the new character MED ROS 1 (ch. 85), undoing the merger 11 of PIN FOR 1 and PIN FOR 2 (ch. 91 and 92) and splitting state 0 of TEETH 3 into the new 12 state 0 of TEETH 3 (ch. 183) and the entire new character TEETH 10 (ch. 190). A few 13 characters have additional states or are recoded in other ways. Deleted characters are retained 14 here, together with the reasons why we deleted them and the changes we made to their scores. 15 All multistate characters mention in their names whether they are ordered, unordered, 16 or treated according to a stepmatrix.
    [Show full text]
  • Postcranial Anatomy and Histology of Seymouria, and the Terrestriality of Seymouriamorphs
    Postcranial anatomy and histology of Seymouria, and the terrestriality of seymouriamorphs Kayla D. Bazzana1,2, Bryan M. Gee1, Joseph J. Bevitt3 and Robert R. Reisz1,4 1 Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada 2 Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada 3 Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Whales, Australia 4 International Center of Future Science, Dinosaur Evolution Research Center, Jilin University, Changchun, Jilin Province, China ABSTRACT Seymouria is the best known of the seymouriamorphs, a group of Permo-Carboniferous reptiliomorphs with both terrestrial and aquatic taxa. The majority of research on Seymouria has focused on cranial anatomy, with few detailed descriptions or illustrations of the postcrania. We utilized neutron computed tomography (nCT) and histological sampling to provide updated, detailed figures that clarify details of the postcranial anatomy and to assess the development and histology of Seymouria through specimens from the early Permian Richards Spur locality. The correlation of morphological and histological data indicate rapid metamorphosis in this terrestrially capable stem amniote, with the youngest specimen being postmetamorphic despite being distinctly younger than premetamorphic individuals of Discosauriscus, the only other seymouriamorph to have been histologically sampled. The microanatomical data (e.g., semi-open medullary cavity) also
    [Show full text]
  • For Peer Review Only
    Systematic Biology For peer review only. Do not cite. ForPhylogenetic Peer stability, Review tree shape, and Only character compatibility: a case study using early tetrapods Journal: Systematic Biology Manuscript ID USYB-2014-243.R1 Manuscript Type: Regular Manuscript Date Submitted by the Author: n/a Complete List of Authors: Bernardi, Massimo; MUSE - Museo delle Scienze, Geology and Palaeontology Angielczyk, Kenneth; Field Museum of Natural History, Integrative Research Center Mitchell, Jonathan; University of Michigan Ruta, Marcello; University of Lincoln, School of Life Sciences Character compatibility, Tree balance, Tree distance, Diversification shifts, Keywords: Tetrapods , Terrestrialization, Paleozoic, Mesozoic http://mc.manuscriptcentral.com/systbiol Page 1 of 85 Systematic Biology 1 Phylogenetic stability, tree shape, and character compatibility: a case study using early 2 tetrapods 3 For Peer Review Only 4 Massimo Bernardi 1,2 , Kenneth D. Angielczyk 3, Jonathan S. Mitchell 4, and Marcello Ruta 5 5 6 1 MuSe – Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy. 7 2 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, 8 BS8 1RJ, United Kingdom. 9 3 Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, 10 Chicago, IL 60605-2496, USA. 11 4 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 12 48103, USA 13 5 School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, 14 Lincoln LN6 7DL, United Kingdom. 15 16 * Corresponding author 17 Massimo Bernardi, MuSe – Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 18 Trento, Italy 19 Email: [email protected] 20 Phone: +39 0461 270344 http://mc.manuscriptcentral.com/systbiol Systematic Biology Page 2 of 85 21 Abstract 22 Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time.
    [Show full text]
  • Of Modern Amphibians: a Commentary
    The origin(s) of modern amphibians: a commentary. D. Marjanovic, Michel Laurin To cite this version: D. Marjanovic, Michel Laurin. The origin(s) of modern amphibians: a commentary.. Journal of Evolutionary Biology, Wiley, 2009, 36, pp.336-338. 10.1007/s11692-009-9065-8. hal-00549002 HAL Id: hal-00549002 https://hal.archives-ouvertes.fr/hal-00549002 Submitted on 7 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The origin(s) of modern amphibians: a commentary By David Marjanović1 and Michel Laurin1* 1Address: UMR CNRS 7207 “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Département Histoire de la Terre, Bâtiment de Géologie, case postale 48, 57 rue Cuvier, F-75231 Paris cedex 05, France *Corresponding author tel/fax. (+33 1) 44 27 36 92 E-mail: [email protected] Number of words: 1884 Number of words in text section only: 1378 2 Anderson (2008) recently reviewed the controversial topic of extant amphibian origins, on which three (groups of) hypotheses exist at the moment. Anderson favors the “polyphyly hypothesis” (PH), which considers the extant amphibians to be polyphyletic with respect to many Paleozoic limbed vertebrates and was most recently supported by the analysis of Anderson et al.
    [Show full text]
  • Dr. Fritsch's Permian Amphibians of Bohemia
    &0 Reviews—Dr. Frikch's Permian Amphibia of Bohemia. which succeed it at Eycott Hill. Anal3'ses of the latter, quoted by Mr. Ward in the paper mentioned above, show the silica percentages of three of them to be respectively 53-3, 52-6 and 51-1. The Falcon Crag rocks are shown by Mr. Ward (though he coined for them the unhappy term felsidolerite) to be in reality andesites, which micro- scopically and chemically ' present only such differences from the modern representatives of that group as we should naturally expect in rocks of such great antiquity. By the kindness of Prof. A. W. Williamson, the silica percentage of the red variety of the Eycott Hill rock has been determined for me by Mr. T. Cooksey in the laboratory of University College. He finds it to be 53-06 (one determination giving 53-40 another 52'73)2 with a specific gravity of 2-754. The rock must therefore remain among the basalts (the glassy condition of its base renders the name dolerite inappropriate). It belongs, however, to the side of the basalt group which is the richer in silica, and is nearly represented among modern rocks by some of the basalts of the Inner Hebrides in Prof. Judd's collection. It. also resembles in certain respects some of the magma basalts described bj' Boricky (Petrogropliische Studien an den Basaltgesteinen Bohmens). The amount of alteration may justify us in naming it now an enstatite-diabase, but I feel no doubt that it was originally, a true basalt rich in glass, containing a variety of enstatite.
    [Show full text]