Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters

Total Page:16

File Type:pdf, Size:1020Kb

Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus Arapaima Pseudoasthenocormus Stylephorus Orthocormus Gigantura Hoplerythrinus Neoclinus Anarhichas Proacanthodes Pantodon Salmo Snyderidia Ischnacanthus Hydrolycus Ptomacanthus Brochoadmones Chirocentrus Notopterus Xiphactinus Portheus Narcetes Mesacanthus Brycon Climatius Clupea Brachyacanthus Serrasalmus Eurycormus Diplacanthus Hiodon alosoides Notelops Hiodon tergisus Pholidophorus? radians Ticinolepis longaeva Dapedium Petrocephalus Bavarichthys Miguashaia Feroxichthys Gnathonemus Synbranchus Dialipina Mormyrops Anguilla Ticinolepis crassidens Gymnarchus Latimeria Perleidus Xiphias Annaichthys Omosudis Tarrasius Alepisaurus Allenypterus Quebecius Scheenstia Flagellipinna Holoptychius Lepidotes Thunnus Pycnodus Porolepis Lepisosteus Scomber Satanichthys Laccognathus Semionotus Esox Albula Kenichthys Robustichthys Saurichthys Opisthoproctus Youngolepis Hoplosternum Tylosurus Istiphorus Tungsenia Synodontis Scombermorus Elops Stensioella Ictalurus Aphanopus Megalops Styloichthys Rhombichthys Psarolepis KGM 1983 306 Scomberoides Wadeichthys Guiyu Clarias Strunius Wuttagoonaspis Liparis Onychodus Menaspis Pterois Birgeria Platysomus Prionotus Thoracopterus Cheirodus Satyrichthys Coccocephalichthys Austroptyctodus Polydactylus Clupeospis Campbellodus Coryphaenoides Engraulis Eurynotus Zanclus Coilia Scorpis Pomatomus Peltopleurus Dicrolene Beishanichthys Heteronectes Fukangichthys Placodermi Psettodes Aetheretmon Parayunnanolepis Hippoglossus Pteronisculus Microbrachius Gadus Boreosomus Bothriolepis Notothenia Bluefieldius Romundina Coryphaena Cheirolepis Dicksonosteus Rachycentron Gogosardina Qilinyu Opisthomyzon Mimipiscis Entelognathus Remora Moythomasia Minjinia Lunaspis Sphyraena Australosoma Fundulus Cowralepis Massamorichthys Powichthys ANU V244 Labeotropheus Polypterus Coccosteus Monocentris Erpetoichthys Titanichthys Cyprinus Mcnamaraspis Sphenocephalus Janusiscus Dunkleosteus Uranolophus Perca Dipnorhynchus Danio Howidipterus Gasterosteus Aeoliscus - Centriscus Hippocampus Archosauromorpha Gogonasus Eldeceeon 1990.7.1 Colosteus Plectocretacicus Eldeceeon holotype Diplovertebron Aytonerpeton Regalecus glesne Romeriscus Mammalia Deltaherpeton Regalecus argenteus Bystrowiella Megazostrodon Tinodon Pholidogaster Solenodonsaurus Cabonnichthys Sargocentron Westlothiana Shuotherium Barameda Polymixia Chroniosaurus PIN3585/124 Gooloogongia Anomalops Casineria Chroniosaurus Ausktribosphenos Osteolepis Seriola rivoliana Brouffia Chroniosuchus Monotremata Amphitherium Eusthenopteron Seriola zonata Coelostegus Sinodelphys Docodon Eusthenopteron juvenile Lampris Paleothyris Juramaia Exocoetus Hylonomus Dryolestes Tinirau Chaoyangodens Diodon Anthracodromeus Lagocephalus Brasilitherium Koilops Protorothyris MCZ1532 Elpistostege Mola Kuehneotherium Brindabellaspis Balistes Protorothyris CM 8617 Lactodens Tiktaalik Himantolophus Protorothyris MCZ 2149 Fruitafossor Spathicephalus Antennarius Vaughnictis Marsupialia Cifelliodon Periophthalmus Tachyglossus Panderichthys Elacatinus Synapsida Akidolestes Ogcocephalus Ornithorhynchus Tetrapoda Uranoscopus Elliotsmithia Ukhaatherium Lophius Apsisaurus Cabarzia Greererpeton Bathypterois Aerosaurus Patagosmilus Trypanognathus Cetostoma Hadrocodium Henosferos Varanops Morganucodon Laidleria Varanodon Dvinosaurus Volaticotherium Varanosaurus FMNH PR 1760 Eomaia Isodectes Dendromaia (small roommate) Agilodocodon Acroplous Antarctanax Bermanerpeton Varanosaurus BSPHM 1901 XV20 Batrachosuchus Archaeothyris Acristatherium Milosaurus Cronopio Siderops Ophiacodon Gilronia Gerrothorax Didelphis Marmosops Pantelosaurus Ambolestes Plagiosuchus Dasycercus Haptodus Ossinodus Myrmecobius Secodontosaurus Anebodon Parmastega Dimetrodon Docofossor MGUH-VP-8160 Sphenacodon Notoryctes Acanthostega Ianthodon Marmosa Maelestes Ichthyostega Edaphosaurus Asioryctes Proterogyrinus Cutleria Ianthasaurus Asioryctes long rostrum Eoherpeton Hipposaurus Glaucosaurus Perameles Neopteroplax Macrotis Stenocybus Anthracosaurus Dromiciops IVPP V18117 Potorous Baphetes Kenyasaurus Pseudocheirus Megalocephalus Galechirus Adalatherium Pederpes Suminia Paedotherium Whatcheeria Venjukovia Groeberia Ventastega Vintana Crassigyrinus Eodicynodon Balbaroo Dicynodon Phalanger Sclerothorax NMK-S 118A Biarmosuchus Dactylopsia Iberospondylus Petaurus Titanophoneus Thylacoleo Peltobatrachus Procynosuchus Sclerocephalus smns90055 Thrinaxodon Phascolarctos Laosuchus Vombatus Nigerpeton Prozostrodon Diprotodon Saharastega Probainognathus Pyrotherium Cochleosaurus Chiniquodon Propalorchestes Chenoprosopus Castorocauda Palorchestes Zatrachys Haldanodon Eryops Interatherium Pseudotherium Hegetotherium Edops Pachygenelus Archegosaurus Sclerothorax HLD-V608 Mesotherium Rhineceps Adeleobasileus Euygenium Toxodon Mastodonsaurus Therioherpeton Parotosuchus Procoptodon Paracyclotosaurus Sinoconodon Brasilodon Nambaroo Haramiyavia Proargyrolagus Wantzosaurus Dendrolagus Trimerorhachis Trematosaurus long rostrum Macropus Neldasaurus Dendrerpeton-Dendrysokos Microdocodon Perryella Trematosaurus Asiatherium Metoposaurus Fossiomanus Priacodon Vincelestes Huerfanodon Tersomius Chaliminia Trioracodon Caluromys Conoryctes Riograndia Pucadelphys Dissorophus Schowalteria Cacops Diapsida Oligokyphus Thylacosmilus Broiliellus Kayentatherium Dasyuroides Tritylodon Fedexia Heleosaurus Dasyurus Ecolsonia Mesenosaurus OMNH 73209 Sinopa Cimolestes Tambachia Spinolestes Monodelphis Sarcophilus Mycterosaurus FMNH UC169 Jeholodens Acheloma Chironectes Ernanodon Platyhistrix Nikkasaurus Origolestes Mesenosaurus PIN 158/1 Maotherium Thylacinus Georgenthalia Yanoconodon Thylophorops Micromelerpeton Niaftasuchus not Amphicyon Doleserpeton Gobiconodon Apateon Microsauria Anningia Repenomamus robustus Arctocyon Gerobatrachus Archaeovenator Repenomamus giganticus Deltatherium Asaphestera intermedium Deltatheridium Triassurus Orovenator Jueconodon Utaherpeton Liaoconodon Austraolhyaena Triadobatrachus Tuditanus Pyozia Oxyaena Rana Llistrofus Broomia Loxolophus Ascaphus Milleropsis BPI-720 Huskerpeton Mayulestes Chunerpeton Batropetes Erpetonyx Masrasector Andrias Rhynchonkos Borhyaena Proteus Micraroter Ascendonanus MNC-TA0924 Placentalia Hyaenodon Necturus Euryodus primus Callistoe Karaurus Eudibamus Vulpavus palustris Celtedens Didelphodon Joermungandr Aphelosaurus Protictis Asaphestera platyris Petrolacosaurus Nasua Araeoscelis Kirktonecta Genetta Reptilomorpha Spinoaequalis Nandinia Suricata Scincosaurus Galesphyrus Procyon Pantylus CM 81532 - not Anthracodromeus Enaliosauria Youngina BPI 3859 Mephitis Balanerpeton Stegostretus Thadeosaurus Herpestes Caerorhachis Batrachiderpeton Tangasaurus Cryptoprocta Amphibamus Keraterpeton Hovasaurus Plesiorycteropus Platyrhinops Diceratosaurus Claudiosaurus Adelosaurus Eupleres Diplocaulus Acerosodontosaurus Prohesperocyon Utegenia 2 Diploceraspis Talpa Utegenia 1 Sauropleura Atopodentatus Ariekanerprton Ptyonius Sinosaurosphargis Potos Stegops Acherontiscus Largocephalosaurus Ailurus Kotlassia Rileymillerus Omphalosaurus Ailuropoda Seymouria Lethiscus Anarosaurus Mustela Discosauriscus Oestocephalus Lontra Gulo Makowskia Phlegethontia AMNH6966 Diandongosaurus Enhydra Arctodus Phlegethontia CGH129 Palatodonta Puijila FG 596 V 20 Pappochelys Neotherium Tulerpeton Eusauropleura Palacrodon Ursus arctos Eucritta Microbrachis Sauropterygia Majiashanosaurus Ursus maritimus Adelospondylus Paraplacodus Machaeroides Adelogyrinus Pachypleurosaurus Placodus inexpectatus Ectoganus Chinlestegophis Qianxisaurus Placodus gigas Cartorhynchus Henodus Stylinodon Brachydectes Amphicynodon Reptilia Lysorophus Sclerocormus Placochelys Keichousaurus Cyamodus Psittacotherium Eocaecilia Megistotherium Silvanerpeton Dermophis Dianmeisaurus Dawazisaurus Kerberos Palaeosinopa Gephyrostegeus bohemicus Hanosaurus Melivora Phoca Urumqia Lariosaurus Patriofelis Protodobenus Bruktererpeton Bobosaurus Sarkastodon Odobenus Corosaurus Cymatosaurus Miacis Sachicasaurus Hyopsodus Nothosaurus Enaliarctos Wangosaurus Desmatophoca
Recommended publications
  • New Materials of Chalicotherium Brevirostris (Perissodactyla, Chalicotheriidae)
    Geobios 45 (2012) 369–376 Available online at www.sciencedirect.com Original article New materials of Chalicotherium brevirostris (Perissodactyla, Chalicotheriidae) § from the Tunggur Formation, Inner Mongolia Yan Liu *, Zhaoqun Zhang Laboratory of Evolutionary Systematics of Vertebrate, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142, Xizhimenwai Street, PO Box 643, Beijing 100044, PR China A R T I C L E I N F O A B S T R A C T Article history: Chalicotherium brevirostris was named by Colbert based on a skull lacking mandibles from the late Middle Received 23 March 2011 Miocene Tunggur Formation, Tunggur, Inner Mongolia, China. Here we describe new mandibular Accepted 6 October 2011 materials collected from the same area. In contrast to previous expectations, the new mandibular Available online 14 July 2012 materials show a long snout, long diastema, a three lower incisors and a canine. C. brevirostris shows some sexual dimorphism and intraspecific variation in morphologic characters. The new materials differ Keywords: from previously described C. cf. brevirostris from Cixian County (Hebei Province) and the Tsaidam Basin, Tunggur which may represent a different, new species close to C. brevirostris. The diagnosis of C. brevirostris is Middle Miocene revised. Chalicotheriinae Chalicotherium ß 2012 Elsevier Masson SAS. All rights reserved. 1. Abbreviations progress in understanding the Tunggur geology and paleontology (Qiu et al., 1988). The most important result of this expedition so far is
    [Show full text]
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • The Carnivora (Mammalia) from the Middle Miocene Locality of Gračanica (Bugojno Basin, Gornji Vakuf, Bosnia and Herzegovina)
    Palaeobiodiversity and Palaeoenvironments https://doi.org/10.1007/s12549-018-0353-0 ORIGINAL PAPER The Carnivora (Mammalia) from the middle Miocene locality of Gračanica (Bugojno Basin, Gornji Vakuf, Bosnia and Herzegovina) Katharina Bastl1,2 & Doris Nagel2 & Michael Morlo3 & Ursula B. Göhlich4 Received: 23 March 2018 /Revised: 4 June 2018 /Accepted: 18 September 2018 # The Author(s) 2018 Abstract The Carnivora (Mammalia) yielded in the coal mine Gračanica in Bosnia and Herzegovina are composed of the caniform families Amphicyonidae (Amphicyon giganteus), Ursidae (Hemicyon goeriachensis, Ursavus brevirhinus) and Mustelidae (indet.) and the feliform family Percrocutidae (Percrocuta miocenica). The site is of middle Miocene age and the biostratigraphical interpretation based on molluscs indicates Langhium, correlating Mammal Zone MN 5. The carnivore faunal assemblage suggests a possible assignement to MN 6 defined by the late occurrence of A. giganteus and the early occurrence of H. goeriachensis and P. miocenica. Despite the scarcity of remains belonging to the order Carnivora, the fossils suggest a diverse fauna including omnivores, mesocarnivores and hypercarnivores of a meat/bone diet as well as Carnivora of small (Mustelidae indet.) to large size (A. giganteus). Faunal similarities can be found with Prebreza (Serbia), Mordoğan, Çandır, Paşalar and Inönü (all Turkey), which are of comparable age. The absence of Felidae is worthy of remark, but could be explained by the general scarcity of carnivoran fossils. Gračanica records the most eastern European occurrence of H. goeriachensis and the first occurrence of A. giganteus outside central Europe except for Namibia (Africa). The Gračanica Carnivora fauna is mostly composed of European elements. Keywords Amphicyon . Hemicyon .
    [Show full text]
  • A New Species of the Sauropsid Reptile Nothosaurus from the Lower Muschelkalk of the Western Germanic Basin, Winterswijk, the Netherlands
    A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands NICOLE KLEIN and PAUL C.H. ALBERS Klein, N. and Albers, P.C.H. 2009. A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands. Acta Palaeontologica Polonica 54 (4): 589–598. doi:10.4202/ app.2008.0083 A nothosaur skull recently discovered from the Lower Muschelkalk (early Anisian) locality of Winterswijk, The Nether− lands, represents at only 46 mm in length the smallest nothosaur skull known today. It resembles largely the skull mor− phology of Nothosaurus marchicus. Differences concern beside the size, the straight rectangular and relative broad parietals, the short posterior extent of the maxilla, the skull proportions, and the overall low number of maxillary teeth. In spite of its small size, the skull can not unequivocally be interpreted as juvenile. It shows fused premaxillae, nasals, frontals, and parietals, a nearly co−ossified jugal, and fully developed braincase elements, such as a basisphenoid and mas− sive epipterygoids. Adding the specimen to an existing phylogenetic analysis shows that it should be assigned to a new species, Nothosaurus winkelhorsti sp. nov., at least until its juvenile status can be unequivocally verified. Nothosaurus winkelhorsti sp. nov. represents, together with Nothosaurus juvenilis, the most basal nothosaur, so far. Key words: Sauropterygia, Nothosaurus, ontogeny, Anisian, The Netherlands. Nicole Klein [nklein@uni−bonn.de], Steinmann−Institut für Geologie, Mineralogie und Paläontologie, Universtät Bonn, Nußallee 8, 53115 Bonn, Germany; Paul C.H. Albers [[email protected]], Naturalis, Nationaal Natuurhistorisch Museum, Darwinweg 2, 2333 CR Leiden, The Netherlands.
    [Show full text]
  • A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
    A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.
    [Show full text]
  • Interpreting Character Variation in Turtles: [I]Araripemys Barretoi
    A peer-reviewed version of this preprint was published in PeerJ on 29 September 2020. View the peer-reviewed version (peerj.com/articles/9840), which is the preferred citable publication unless you specifically need to cite this preprint. Limaverde S, Pêgas RV, Damasceno R, Villa C, Oliveira GR, Bonde N, Leal MEC. 2020. Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil. PeerJ 8:e9840 https://doi.org/10.7717/peerj.9840 Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil Saulo Limaverde 1 , Rodrigo Vargas Pêgas 2 , Rafael Damasceno 3 , Chiara Villa 4 , Gustavo Oliveira 3 , Niels Bonde 5, 6 , Maria E. C. Leal Corresp. 1, 5 1 Centro de Ciências, Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Brazil 2 Department of Geology and Paleontology, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 3 Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil 4 Department of Forensic Medicine, Copenhagen University, Copenhagen, Denmark 5 Section Biosystematics, Zoological Museum (SNM, Copenhagen University), Copenhagen, Denmark 6 Fur Museum (Museum Saling), Fur, DK-7884, Denmark Corresponding Author: Maria E. C. Leal Email address: [email protected] The Araripe Basin (Northeastern Brazil) has yielded a rich Cretaceous fossil fauna of both vertebrates and invertebrates found mainly in the Crato and Romualdo Formations, of Aptian and Albian ages respectively. Among the vertebrates, the turtles were proved quite diverse, with several specimens retrieved and five valid species described to this date for the Romualdo Fm.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • A Dinosaur Called Tiny Free
    FREE A DINOSAUR CALLED TINY PDF Alan Durant,Jo Simpson | 32 pages | 06 Aug 2007 | HarperCollins Publishers | 9780007233908 | English | London, United Kingdom A Dinosaur Called Tiny by Alan Durant Members of its single species Compsognathus longipes could grow to around the size of a turkey. Paleontologists have found two well-preserved fossilsone in Germany in the s and the second in France more than a century later. Today, C. Many presentations still describe Compsognathus as "chicken-sized" dinosaurs because of the size of the German specimen, which is now believed to be a juvenile. Compsognathus longipes is one of the few dinosaur species whose diet is known with certainty: the remains of small, agile lizards are preserved in the bellies of both specimens. Teeth discovered in Portugal may be further fossil remains of the genus. Although not recognized as such at the time of its discovery, Compsognathus is the first theropod dinosaur known from a reasonably complete fossil skeleton. Until the s, it was the smallest-known non- avialan dinosaur, with the preceding centuries incorrectly labelling them as the closest relative of Archaeopteryx. However, dinosaurs discovered later, such as CaenagnathasiaMicroraptor and Parvicursorwere even smaller. The largest Compsognathus specimen is estimated to have weighed somewhere between A Dinosaur Called Tiny. Compsognathus were small, bipedal animals with long hind legs and longer tails, which they used for balance during locomotion. The forelimbs were smaller than the hindlimbs. The hand bore two large, clawed digits and a third, smaller A Dinosaur Called Tiny that may have been non-functional. The skull had five pairs of fenestrae skull openingsthe largest of which was for the orbit eye socket[7] with the eyes being larger in proportion to the rest of the skull.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]