Reptile Family Tree

Total Page:16

File Type:pdf, Size:1020Kb

Reptile Family Tree Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus 86 Protocaptorhinus 75 72 98 Dimetrodon 72 Paracaptorhinus Eocaptorhinus Sphenacodon 100 97 Captorhinus 91 Labidosaurus Mycterosaurus FMNH UC169 Saurorictus 71 Heleosaurus 90 77 Limnoscelis Mesenosaurus SGU 104V/1558 87 100 Tseajaia Mesenosaurus PIN 3706/15 Tetraceratops 94 53 72 Mesenosaurus PIN 158/1 Orobates Mesenosaurus PIN 3586/8a 60 92 Oradectes 53 97 Archaeovenator 95 Silvadectes 55 Diadectes 97 Orovenator Colobomycter 82 Pyozia 84 Procolophon 100 Broomia 86 69 96 Scolaparia NSM 99 GF82.1 82 Milleropsis BPI-720 90 Leptopleuron 85 Erpetonyx 99 Pentaedrusaurus Hypsognathus Eudibamus 100 Milleretta RC14 100 Aphelosaurus Milleretta RC70 92 Petrolacosaurus 65 Oedaleops Araeoscelis 77 95 Eothyris Ennatosaurus Spinoaequalis Youngina? 93 Casea 87 Galesphyrus 98 Cotylorhynchus 63 94 Youngina BPI 3859 81 Feeserpeton 85 Acerosodontosaurus dorsal scutes 95 Australothyris 72 100 Thadeosaurus Eunotosaurus 98 100 Tangasaurus Acleistorhinus Hovasaurus 95 83 Delorhynchus Claudiosaurus 87 Adelosaurus 100 Atopodentatus 96 Bolosaurus 83 100 Largocephalosaurus Belebey Sinosaurosphargis Stephanospondylus 96 82 81 Arganaceras Anarosaurus Anthodon 61 90 Sclerosaurus Majiashanosaurus 81 59 Elginia Turtle 99 Palatodonta Meiolania Paraplacodus 100 Proganochelys scales/scutes 87 100 Placodus inexpectatus 79 79 Odontochelys 96 88 Placodus gigas Marine taxa Trionyx 72 99 100 99 Henodus Kayentachelys Phonodus 90 Chelonia 88 dorsal scutes 88 Placochelys 58 55 Macrochelys temminckii 85 Cyamodus 75 Terrapene carolina 100 Pelomedusa Pachypleurosaurus Foxemys 75 Cartorhynchus 66 Qianxisaurus 87 Macroleter 81 Keichousaurus 95 Hanosaurus Emeroleter 65 97 Romeriscus Lariosaurus 100 93 Corosaurus Lanthanosuchus 53 Nothosaurus 83 78 75 Simosaurus 99 75 Nyctiphruretus holotype Anningsaura Nyctiphruretus PIN 4659/1 Pistosaurus 68 97 Owenetta rubidgei 100 Plesiosaurus 96 95 Owenetta kitchingorum 100 Trinacromerum Candelaria 75 100 100 Brachauchenius Sauropareion Kronosaurus 93 Barasaurus 83 Kitchingnathus Psilotrachelosaurus 69 Coletta Paliguana Serpianosaurus 87 Sophineta 100 Concavispina 79 Santaisaurus 100 94 Xinpusaurus kohi 76 77 Xinpusaurus suni 79 Thalattosaurus 79 Endennasaurus 97 Saurosternon 100 Clarazia 94 90 Palaegama 85 Coelurosauravus Askeptosaurus 99 90 Lanthanolania 94 Anshunsaurus 54 Kuehneosaurus 100 Miodentosaurus Vancleavea 62 100 Eusaurosphargis 100 94 Icarosaurus 100 74 Xianglong Helveticosaurus dermal scutes Vancleavea 91 Megachirella PIMUZ AIII 0192 99 Pleurosaurus SMF R 4710 100 Marmoretta 94 Stereosternum 87 100 Gephyrosaurus Lepidosaur 100 Brazilosaurus holotype 88 100 Ankylosphenodon 94 Mesosaurus 90 Paleopleurosaurus Wumengosaurus Heleosuchus scales 94 82 Eohupehsuchus Planocephalosaurus 100 Hupehsuchus 77 Kallimodon 94 Parahupehsuchus Sphenodon Grippia 88 100 Brachyrhinodon 100 Utatsusaurus 96 88 Clevosaurus Chaohusaurus Sphenotitan 64 Qianichthyosaurus 53 80 71 Leptosaurus 100 Ichthyosaurus Sapheosaurus 92 85 Ophthalmosaurus 61 Noteosuchus Phalarodon Trilophosaurus 53 96 Mixosaurus Mesosuchus 85 95 96 Cymbospondylus Priosphenodon 97 100 Rhynchosaurus articeps Youngina SAM K7710 98 Bentonyx Youngina BPI 375 Hyperodapedon 86 85 AMNH 9520 9502 Prolacerta 90 80 Protorosaurus Tijubina Jaxtasuchus 77 Homoeosaurus macrodactylus 82 97 Boreopricea Huehuecuetzpalli 74 74 Azendohsaurus 95 Jesairosaurus Pamelaria Hypuronector 83 Vallesaurus 84 60 Megalancosaurus Youngina TM 3603 90 64 Macrocnemus BES SC 111 Youngopsis rubidgei RC90 Macrocnemus T2472 73 Youngopsis kitchingi TM1490 71 Dinocephalosaurus Youngoides RC91 91 64 Langobardisaurus 80 Youngina AMNH 5561 99 Tanytrachelos Youngoides UC1528 76 52 Tanystropheus k and q 99 Cosesaurus Proterosuchus BPI 1 4016 99 Kyrgyzsaurus Fenestrasaur 72 93 Sharovipteryx 54 Proterosuchus NMQR 1484 Proterosuchus RC96 94 Longisquama extradermal membranes MPUM6009 pterosaur 74 59 100 Chasmatosaurus QR 880C.500 Chasmatosaurus SAM PK 11208 54 Chasmatosaurus TM 201 95 Bavarisaurus Elaphrosuchus RC59 Lacertulus 52 Youngina BPI 2871 68 80 Daohugou lizard IVPP V13747 Proterosuchus SAMPKK10603 73 96 75 Meyasaurus 56 Doswellia Carusia 89 Ikechosaurus 60 Hoyalacerta 97 63 90 Simoedosaurus 99 Homoeosaurus solnhofensis 100 Champsosaurus IVPP V14386 Pararchosaur 100 98 Cteniogenys Dalinghosaurus Lazarussuchus 61 99 Hyphalosaurus dorsal scutes 77 100 MFSN 19235 100 Monjurosuchus GMV21678 Monjurosuchus holotype 100 Scandensia 92 99 Diandongosuchus 96 Teraterpeton 95 Mesorhinosuchus 100 Paleorhinus 98 Euposaurus 100 52 Parasuchus Iguana Chanaresuchus 65 Draco volans 83 82 Proterochampsa PVSJ 77 Trioceros 100 83 Proterochampsa PVSJ606 Phrynosoma 87 Pseudochampsa PVSJ 567 84 Gualosuchus 92 Cerritosaurus 70 Calanguban 92 Tropidosuchus PVL 4601 100 Macrocephalosaurus 92 Tropidosuchus PVL 4602 84 Tianyusaurus Lagerpeton 75 100 Eolacerta Tupinambis Acanthodactylus Nundasuchus 61 Liushusaurus 60 Euparkeria Osmolskina Tasmaniosaurus 98 Revueltosaurus Euarchosaur Tchingisaurus 95 92 87 Fugusuchus Gekko smithii 94 100 Garjainia expanded armor 58 Lialis 99 95 100 Erythrosuchus 78 97 Gekko gecko 99 Luperosuchus Eublepharis Shansisuchus 70 100 Riojasuchus Ardeosaurus Ornithosuchus 77 Eichstaettisaurus schroederi 81 Euarchosaur 78 Eichstaettisaurus gouldi 80 Jucaraseps 73 Vjushkovia dorsal scutes 79 Prestosuchus Aphanizocnemus 73 80 Adriosaurus 84 Batrachotomus 96 72 Pontosaurus 90 Saurosuchus 83 Smok 97 70 Dinilysia 92 Teratosaurus 97 88 Pachyrhachis 73 Sikannisuchus Boa Postosuchus 83 Loxocemus 82 92 Xenopeltis Anilius 98 91 Arizonasaurus 96 Cylindrophis 99 56 Yarasuchus 81 Uropeltis Qianosuchus 95 Anomochilus 96 99 Ticinosuchus Leptotyphlops 87 Aeotosauroides Euarchosaur 98 Aetosaurus Stagonolepis expanded armor Yabeinosaurus IVPP V13284 Decuriasuchus Bahndwivici FMNH PR2260 88 Aigialosaurus 62 100 75 Turfanosuchus 94 Tethysaurus Poposaurus 72 52 Tylosaurus Sacisaurus TA1045 Silesaurus 94 Estesia 100 96 Lotosaurus Varanus komodensis 99 98 99 99 Shuvosaurus Varanus griseus 52 Effigia Shinisaurus 92 52 91 Ophisaurus Gracilisuchus Cryptolacerta 97 Saltopus 60 Scleromochlus 91 Heloderma 51 Lanthanotus 72 Terrestrisuchus 93 62 SMNS12591skull 83 Anniella 83 SMNS 12352 Gobiderma 89 Litargosuchus 79 Chalcides guentheri Erpetosuchus Chalcides ocellatus 63 90 100 Gymnophthalmus 89 60 Hesperosuchus Vanzosaura Pedeticosaurus 86 56 100 Yonghesuchus Crocodilian Sirenoscincus 71 88 Dromicosuchus Sineoamphisbaena 76 92 Sichuanosuchus Crythiosaurus Protosuchus expanded armor 96 Spathorhynchus 93 Dibamus 96 Sphenosuchus Tamaulipasaurus 81 67 Dibothrosuchus 82 Bipes 100 92 66 Teleosaurus Amphisbaena 71 Metriorhynchus 97 Isisfordia 91 Crocodylus niloticus 98 Simosuchus 58 Araripesuchus 100 Caipirasuchus Baurusuchus Lewisuchus 51 Saltoposuchus Euarchosaur 77 87 Junggarsuchus Pseudhesperosuchus 54 PVL 4597 dorsal scutes Trialestes 54 Herrerasaurus 91 Tawa 95 98 Segisaurus 96 95 Marasuchus 98 Procompsognathus 95 Coelophysis Sinocalliopteryx 97 91 100 Aurornis Archaeopteryx Feathers 99 100 Cathayornis 100 Gallus Struthio Eoraptor Pampadromaeus 94 Leyesaurus 60 Saturnalia 89 97 90 Pantydraco 94 92 Efraasia Massospondylus kaalae 97 Daemonosaurus Jeholosaurus 93 Haya 99 Pisanosaurus Dinosaur 98 Scelidosaurus 67 Emausaurus Heterodontosaurus expanded armor 84 86 Dryosaurus 81 Hexinlusaurus 98 Yinlong 82 Lesothosaurus 98 Agilisaurus 97 Scutellosaurus.
Recommended publications
  • Cranial Anatomy, Taxonomic Implications
    [Palaeontology, Vol. 55, Part 4, 2012, pp. 743–773] CRANIAL ANATOMY, TAXONOMIC IMPLICATIONS AND PALAEOPATHOLOGY OF AN UPPER JURASSIC PLIOSAUR (REPTILIA: SAUROPTERYGIA) FROM WESTBURY, WILTSHIRE, UK by JUDYTH SASSOON1, LESLIE F. NOE` 2 and MICHAEL J. BENTON1* 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; e-mails: [email protected], [email protected] 2Geociencias, departamento de Fisica, Universidad de los Andes, Bogota´ DC, Colombia; e-mail: [email protected] *Corresponding author. Typescript received 5 December 2010; accepted in revised form 6 April 2011 Abstract: Complete skulls of giant marine reptiles of the genera. The two Westbury Pliosaurus specimens share many Late Jurassic are rare, and so the discovery of the 1.8-m- features, including the form of the teeth, but marked differ- long skull of a pliosaur from the Kimmeridge Clay Forma- ences in the snout and parietal crest suggest sexual dimor- tion (Kimmeridgian) of Westbury, Wiltshire, UK, is an phism; the present specimen is probably female. The large important find. The specimen shows most of the cranial size of the animal, the extent of sutural fusion and the and mandibular anatomy, as well as a series of pathological pathologies suggest this is an ageing individual. An erosive conditions. It was previously referred to Pliosaurus brachy- arthrotic condition of the articular glenoids led to pro- spondylus, but it can be referred reliably only to the genus longed jaw misalignment, generating a suite of associated Pliosaurus, because species within the genus are currently in bone and dental pathologies.
    [Show full text]
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • O'keefe, F. R. 2006
    12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004). The work of Rieppel and others has clarified the anatomy and relationships of stem-group sauropterygians (Storrs, 1991; see Rieppel, 2000, for review). This work has laid the anatomic and phylogenetic foundations for a better understanding of ple- siosaur cranial anatomy. The purpose of this paper is to describe the condition of the braincase in stratigraphically early and morphologically primitive plesiosaurs. In- formation on the braincase of plesiomorphic taxa is important because it establishes the polarity of characters occurring in more derived ple- siosaurs. This paper begins with a short review of braincase anatomy in stem-group sauropterygians. Data on braincase morphology of the ple- siomorphic plesiosaur genera Thalassiodracon and Eurycleidus are then presented and interpreted via comparison with other plesiosaurs, stem- group sauropterygians, and stem diapsids (Araeoscelis).
    [Show full text]
  • A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
    A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.
    [Show full text]
  • Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
    RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements.
    [Show full text]
  • Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Spring 2014 Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N. Cost Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Biology Commons Recommended Citation Cost, Ian N., "Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale" (2014). Master's Theses. 57. https://scholars.fhsu.edu/theses/57 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. DESCRIPTION OF AN UNUSUAL CERVICAL VERTEBRAL COLUMN OF A PLESIOSAUR FROM THE KIOWA SHALE being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Ian Cost B.A., Bridgewater State University M.Ed., Lesley University Date_____________________ Approved________________________________ Major Professor Approved________________________________ Chair, Graduate Council This Thesis for The Master of Science Degree By Ian Cost Has Been Approved __________________________________ Chair, Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Chair, Department of Biological Science i PREFACE This manuscript has been formatted in the style of the Journal of Vertebrate Paleontology. Keywords: plesiosaur, polycotylid, cervical vertebrae, Dolichorhynchops, Trinacromerum ii ABSTRACT The Early Cretaceous (Albian) Kiowa Shale of Clark County, Kansas consists mainly of dark gray shale with occasional limestone deposits that represent a near shore environment.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    GENERAL COMMENTARY published: 03 December 2018 doi: 10.3389/feart.2018.00220 Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela Piñeiro 2 1 CR2P (UMR 7207), CNRS/MNHN Sorbonne Université, “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, Montevideo, Uruguay Keywords: Mesosauridae, Parareptilia, Synapsida, Sauropsida, Amniota, Paleozoic, temporal fenestration A Commentary on Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes by MacDougall, M. J., Modesto, S. P., Brocklehurst, N., Verrière, A., Reisz, R. R., and Fröbisch, J. (2018). Front. Earth Sci. 6:99. doi: 10.3389/feart.2018.00099 INTRODUCTION Edited by: Corwin Sullivan, University of Alberta, Canada Mesosaurs, known from the Early Permian of southern Africa, Brazil, and Uruguay, are the oldest known amniotes with a primarily, though probably not strictly, aquatic lifestyle (Nuñez Demarco Reviewed by: et al., 2018). Despite having attracted the attention of several prominent scientists, such as Wegener Tiago Simoes, University of Alberta, Canada (1966), who used them to support his theory of continental drift, and the great anatomist and paleontologist von Huene (1941), who first suggested the presence of a lower temporal fenestra *Correspondence: Michel Laurin in Mesosaurus, several controversies still surround mesosaurs. One concerns the presence of the [email protected] lower temporal fenestra in mesosaurs, which we accept (Piñeiro et al., 2012a; Laurin and Piñeiro, 2017, p. 4), contrary to Modesto (1999, 2006) and MacDougall et al.
    [Show full text]
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • A Coluna Vertebral De Brazilosaurus Sanpauloensis Shikama
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. 151 A coluna vertebral de Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 da Formação Irati, Permiano da Bacia do Paraná (Brasil) (Proganosauria, Mesosauridae) The vertebral column of Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 from Irati Formation, Permian of Paraná Basin, (Brazil) (Proganosauria, Mesosauridae) FERNANDO A. SEDOR1 & JORGE FERIGOLO2 Os Mesosauridae incluídos na ordem Proganosauria (BAUR, 1887) constituem dentre os “Reptilia”, um pequeno grupo extinto de formas lacertiformes esguias, de pequeno porte, adaptados à vida aquática ou semi-aquática (cf. ROMER, 1956; 1966). A distribuição temporal e geográfica do grupo restringe-se ao Permiano da América do Sul e da África. No Brasil, os Mesosauridae ocorrem na Formação Irati da Bacia do Paraná, e, no continente africano, ocorrem na Formação Whitehill, do Sistema Karoo (COPE, 1886; MCGREGOR, 1908; SHIKAMA & OZAKI, 1966; MENDES, 1967; ROÖSLER, 1970; ARAÚJO, 1976; BORGOMANERO & LEONARDI, 1979; MOREIRA et al., 1984). Também são referidas ocorrências de Mesosauridae no Paraguai (Beder; e Harrington, apud OELOFSEN & ARAÚJO, 1983) e no Uruguai (Guillemain; e Walther, apud MONES, 1986). 1 Museu de Ciências Naturais (MCN) — SCB, Universidade Federal do Paraná — Caixa Postal 19031 — 81531-990 Curitiba, Paraná, Brasil. Email: [email protected] Pesquisador do Museu de Ciências Naturais — Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, RS, Brasil. 152 Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. Os sedimentos sul-americanos portadores de mesossaurídeos situam- se dentro do intervalo temporal do Kazaniano e os africanos entre Permiano Inferior e Permiano Médio (PINTO, 1972a; OELOFSEN & ARAÚJO, 1987), correspondendo à porção mais superior do Sakmariano.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Paleodest - Paleontologia Em Destaque, V
    v. 36, n. 74, 2021 Paleodest - Paleontologia em Destaque, v. 36, n. 74, 2021 1 SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Rodrigo Miloni Santucci (UnB) 1ª Secretária: Dra. Sônia Maria Oliveira Agostinho da Silva (UFPE) 2º Secretário: Msc. Victor Rodrigues Ribeiro (UNESP/Bauru) 1º Tesoureiro: Msc. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Hermínio Ismael de Araújo Junior (UERJ) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (MN/UFRJ) PALEODEST - PALEONTOLOGIA EM DESTAQUE Boletim Informativo da Sociedade Brasileira de Paleontologia Corpo Editorial Editor-chefe Sandro Marcelo Scheffler Editora de Honra Ana Maria Ribeiro, Museu de Ciências Naturais/SEMA-RS Conselho Editorial Hermínio Ismael de Araújo Júnior, Professor da Universidade do Estado do Rio de Janeiro/UERJ Rafael Costa da Silva, Pesquisador do Serviço Geológico do Brasil/CPRM Paula Andrea Sucerquia Rendón, Professora da Universidade Federal de Pernambuco/UFPE Cláudia Pinto Machado, Pesquisadora colaboradora da Universidade Federal de Roraima/UFRR Renato Pirani Ghilardi, Professor da Universidade Estadual Júlio de Mesquita Filho/UNESP Conselho Científico Annie Schmaltz Hsiou, Departamento de Biologia, Universidade de São Paulo (USP), Brasil Antonio Carlos Sequeira Fernandes, Museu Nacional, Universidade Federal do Rio de Janeiro (MN/UFRJ), Brasil Cecília Amenabar, Departamento de Geologia, Universidade de Buenos Aires (UBA), Argentina Cesar Schultz, Departamento de Geologia, Universidade
    [Show full text]
  • A Procolophonid (Parareptilia) from the Owl Rock Member, Chinle Formation of Utah, Usa
    Palaeontologia Electronica http://palaeo-electronica.org A PROCOLOPHONID (PARAREPTILIA) FROM THE OWL ROCK MEMBER, CHINLE FORMATION OF UTAH, USA Nicholas C. Fraser, Randall B. Irmis*, and David K. Elliott ABSTRACT An isolated skull of a procolophonid is described from the Owl Rock Member of the Chinle Formation in the Abajo Mountains of southeast Utah. Although poorly pre- served, this specimen exhibits features that demonstrate a phylogenetic relationship with leptopleuronine procolophonids. These include the dentition, the greatly expanded orbitotemporal opening, the prominent quadratojugal spikes, and the shape of the jugal. Nicholas C. Fraser. Virginia Museum of Natural History, Martinsville, Virginia 24112, USA. [email protected] Randall B. Irmis. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. *Current Address: University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, California 94720-4780. [email protected] David K. Elliott. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. [email protected] KEY WORDS: Procolophonidae; Parareptilia; Late Triassic; Chinle Formation PE Article Number: 8.1.13 Copyright: Society of Vertebrate Paleontology. May 2005 Submission: 28 June 2004. Acceptance: 6 March 2005. INTRODUCTION skull has been described in detail (Kemp 1974; Carroll and Lindsay 1985). The first member of the The Procolophonidae are a group of small clade to be named was Leptopleuron from the parareptiles (sensu Laurin and Reisz
    [Show full text]