Reptile Family Tree
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cranial Anatomy, Taxonomic Implications
[Palaeontology, Vol. 55, Part 4, 2012, pp. 743–773] CRANIAL ANATOMY, TAXONOMIC IMPLICATIONS AND PALAEOPATHOLOGY OF AN UPPER JURASSIC PLIOSAUR (REPTILIA: SAUROPTERYGIA) FROM WESTBURY, WILTSHIRE, UK by JUDYTH SASSOON1, LESLIE F. NOE` 2 and MICHAEL J. BENTON1* 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; e-mails: [email protected], [email protected] 2Geociencias, departamento de Fisica, Universidad de los Andes, Bogota´ DC, Colombia; e-mail: [email protected] *Corresponding author. Typescript received 5 December 2010; accepted in revised form 6 April 2011 Abstract: Complete skulls of giant marine reptiles of the genera. The two Westbury Pliosaurus specimens share many Late Jurassic are rare, and so the discovery of the 1.8-m- features, including the form of the teeth, but marked differ- long skull of a pliosaur from the Kimmeridge Clay Forma- ences in the snout and parietal crest suggest sexual dimor- tion (Kimmeridgian) of Westbury, Wiltshire, UK, is an phism; the present specimen is probably female. The large important find. The specimen shows most of the cranial size of the animal, the extent of sutural fusion and the and mandibular anatomy, as well as a series of pathological pathologies suggest this is an ageing individual. An erosive conditions. It was previously referred to Pliosaurus brachy- arthrotic condition of the articular glenoids led to pro- spondylus, but it can be referred reliably only to the genus longed jaw misalignment, generating a suite of associated Pliosaurus, because species within the genus are currently in bone and dental pathologies. -
Sauropareion Anoplus, with a Discussion of Possible Life History
The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O. -
O'keefe, F. R. 2006
12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004). The work of Rieppel and others has clarified the anatomy and relationships of stem-group sauropterygians (Storrs, 1991; see Rieppel, 2000, for review). This work has laid the anatomic and phylogenetic foundations for a better understanding of ple- siosaur cranial anatomy. The purpose of this paper is to describe the condition of the braincase in stratigraphically early and morphologically primitive plesiosaurs. In- formation on the braincase of plesiomorphic taxa is important because it establishes the polarity of characters occurring in more derived ple- siosaurs. This paper begins with a short review of braincase anatomy in stem-group sauropterygians. Data on braincase morphology of the ple- siomorphic plesiosaur genera Thalassiodracon and Eurycleidus are then presented and interpreted via comparison with other plesiosaurs, stem- group sauropterygians, and stem diapsids (Araeoscelis). -
A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. -
Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements. -
Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N
Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Spring 2014 Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N. Cost Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Biology Commons Recommended Citation Cost, Ian N., "Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale" (2014). Master's Theses. 57. https://scholars.fhsu.edu/theses/57 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. DESCRIPTION OF AN UNUSUAL CERVICAL VERTEBRAL COLUMN OF A PLESIOSAUR FROM THE KIOWA SHALE being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Ian Cost B.A., Bridgewater State University M.Ed., Lesley University Date_____________________ Approved________________________________ Major Professor Approved________________________________ Chair, Graduate Council This Thesis for The Master of Science Degree By Ian Cost Has Been Approved __________________________________ Chair, Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Chair, Department of Biological Science i PREFACE This manuscript has been formatted in the style of the Journal of Vertebrate Paleontology. Keywords: plesiosaur, polycotylid, cervical vertebrae, Dolichorhynchops, Trinacromerum ii ABSTRACT The Early Cretaceous (Albian) Kiowa Shale of Clark County, Kansas consists mainly of dark gray shale with occasional limestone deposits that represent a near shore environment. -
A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
GENERAL COMMENTARY published: 03 December 2018 doi: 10.3389/feart.2018.00220 Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela Piñeiro 2 1 CR2P (UMR 7207), CNRS/MNHN Sorbonne Université, “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, Montevideo, Uruguay Keywords: Mesosauridae, Parareptilia, Synapsida, Sauropsida, Amniota, Paleozoic, temporal fenestration A Commentary on Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes by MacDougall, M. J., Modesto, S. P., Brocklehurst, N., Verrière, A., Reisz, R. R., and Fröbisch, J. (2018). Front. Earth Sci. 6:99. doi: 10.3389/feart.2018.00099 INTRODUCTION Edited by: Corwin Sullivan, University of Alberta, Canada Mesosaurs, known from the Early Permian of southern Africa, Brazil, and Uruguay, are the oldest known amniotes with a primarily, though probably not strictly, aquatic lifestyle (Nuñez Demarco Reviewed by: et al., 2018). Despite having attracted the attention of several prominent scientists, such as Wegener Tiago Simoes, University of Alberta, Canada (1966), who used them to support his theory of continental drift, and the great anatomist and paleontologist von Huene (1941), who first suggested the presence of a lower temporal fenestra *Correspondence: Michel Laurin in Mesosaurus, several controversies still surround mesosaurs. One concerns the presence of the [email protected] lower temporal fenestra in mesosaurs, which we accept (Piñeiro et al., 2012a; Laurin and Piñeiro, 2017, p. 4), contrary to Modesto (1999, 2006) and MacDougall et al. -
HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION . -
A Coluna Vertebral De Brazilosaurus Sanpauloensis Shikama
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. 151 A coluna vertebral de Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 da Formação Irati, Permiano da Bacia do Paraná (Brasil) (Proganosauria, Mesosauridae) The vertebral column of Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 from Irati Formation, Permian of Paraná Basin, (Brazil) (Proganosauria, Mesosauridae) FERNANDO A. SEDOR1 & JORGE FERIGOLO2 Os Mesosauridae incluídos na ordem Proganosauria (BAUR, 1887) constituem dentre os “Reptilia”, um pequeno grupo extinto de formas lacertiformes esguias, de pequeno porte, adaptados à vida aquática ou semi-aquática (cf. ROMER, 1956; 1966). A distribuição temporal e geográfica do grupo restringe-se ao Permiano da América do Sul e da África. No Brasil, os Mesosauridae ocorrem na Formação Irati da Bacia do Paraná, e, no continente africano, ocorrem na Formação Whitehill, do Sistema Karoo (COPE, 1886; MCGREGOR, 1908; SHIKAMA & OZAKI, 1966; MENDES, 1967; ROÖSLER, 1970; ARAÚJO, 1976; BORGOMANERO & LEONARDI, 1979; MOREIRA et al., 1984). Também são referidas ocorrências de Mesosauridae no Paraguai (Beder; e Harrington, apud OELOFSEN & ARAÚJO, 1983) e no Uruguai (Guillemain; e Walther, apud MONES, 1986). 1 Museu de Ciências Naturais (MCN) — SCB, Universidade Federal do Paraná — Caixa Postal 19031 — 81531-990 Curitiba, Paraná, Brasil. Email: [email protected] Pesquisador do Museu de Ciências Naturais — Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, RS, Brasil. 152 Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. Os sedimentos sul-americanos portadores de mesossaurídeos situam- se dentro do intervalo temporal do Kazaniano e os africanos entre Permiano Inferior e Permiano Médio (PINTO, 1972a; OELOFSEN & ARAÚJO, 1987), correspondendo à porção mais superior do Sakmariano. -
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus -
Paleodest - Paleontologia Em Destaque, V
v. 36, n. 74, 2021 Paleodest - Paleontologia em Destaque, v. 36, n. 74, 2021 1 SOCIEDADE BRASILEIRA DE PALEONTOLOGIA Presidente: Dr. Renato Pirani Ghilardi (UNESP/Bauru) Vice-Presidente: Dr. Rodrigo Miloni Santucci (UnB) 1ª Secretária: Dra. Sônia Maria Oliveira Agostinho da Silva (UFPE) 2º Secretário: Msc. Victor Rodrigues Ribeiro (UNESP/Bauru) 1º Tesoureiro: Msc. Marcos César Bissaro Júnior (USP/Ribeirão Preto) 2º Tesoureiro: Dr. Hermínio Ismael de Araújo Junior (UERJ) Diretor de Publicações: Dr. Sandro Marcelo Scheffler (MN/UFRJ) PALEODEST - PALEONTOLOGIA EM DESTAQUE Boletim Informativo da Sociedade Brasileira de Paleontologia Corpo Editorial Editor-chefe Sandro Marcelo Scheffler Editora de Honra Ana Maria Ribeiro, Museu de Ciências Naturais/SEMA-RS Conselho Editorial Hermínio Ismael de Araújo Júnior, Professor da Universidade do Estado do Rio de Janeiro/UERJ Rafael Costa da Silva, Pesquisador do Serviço Geológico do Brasil/CPRM Paula Andrea Sucerquia Rendón, Professora da Universidade Federal de Pernambuco/UFPE Cláudia Pinto Machado, Pesquisadora colaboradora da Universidade Federal de Roraima/UFRR Renato Pirani Ghilardi, Professor da Universidade Estadual Júlio de Mesquita Filho/UNESP Conselho Científico Annie Schmaltz Hsiou, Departamento de Biologia, Universidade de São Paulo (USP), Brasil Antonio Carlos Sequeira Fernandes, Museu Nacional, Universidade Federal do Rio de Janeiro (MN/UFRJ), Brasil Cecília Amenabar, Departamento de Geologia, Universidade de Buenos Aires (UBA), Argentina Cesar Schultz, Departamento de Geologia, Universidade -
A Procolophonid (Parareptilia) from the Owl Rock Member, Chinle Formation of Utah, Usa
Palaeontologia Electronica http://palaeo-electronica.org A PROCOLOPHONID (PARAREPTILIA) FROM THE OWL ROCK MEMBER, CHINLE FORMATION OF UTAH, USA Nicholas C. Fraser, Randall B. Irmis*, and David K. Elliott ABSTRACT An isolated skull of a procolophonid is described from the Owl Rock Member of the Chinle Formation in the Abajo Mountains of southeast Utah. Although poorly pre- served, this specimen exhibits features that demonstrate a phylogenetic relationship with leptopleuronine procolophonids. These include the dentition, the greatly expanded orbitotemporal opening, the prominent quadratojugal spikes, and the shape of the jugal. Nicholas C. Fraser. Virginia Museum of Natural History, Martinsville, Virginia 24112, USA. [email protected] Randall B. Irmis. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. *Current Address: University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, California 94720-4780. [email protected] David K. Elliott. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. [email protected] KEY WORDS: Procolophonidae; Parareptilia; Late Triassic; Chinle Formation PE Article Number: 8.1.13 Copyright: Society of Vertebrate Paleontology. May 2005 Submission: 28 June 2004. Acceptance: 6 March 2005. INTRODUCTION skull has been described in detail (Kemp 1974; Carroll and Lindsay 1985). The first member of the The Procolophonidae are a group of small clade to be named was Leptopleuron from the parareptiles (sensu Laurin and Reisz