A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes

Total Page:16

File Type:pdf, Size:1020Kb

A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes GENERAL COMMENTARY published: 03 December 2018 doi: 10.3389/feart.2018.00220 Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela Piñeiro 2 1 CR2P (UMR 7207), CNRS/MNHN Sorbonne Université, “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, Montevideo, Uruguay Keywords: Mesosauridae, Parareptilia, Synapsida, Sauropsida, Amniota, Paleozoic, temporal fenestration A Commentary on Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes by MacDougall, M. J., Modesto, S. P., Brocklehurst, N., Verrière, A., Reisz, R. R., and Fröbisch, J. (2018). Front. Earth Sci. 6:99. doi: 10.3389/feart.2018.00099 INTRODUCTION Edited by: Corwin Sullivan, University of Alberta, Canada Mesosaurs, known from the Early Permian of southern Africa, Brazil, and Uruguay, are the oldest known amniotes with a primarily, though probably not strictly, aquatic lifestyle (Nuñez Demarco Reviewed by: et al., 2018). Despite having attracted the attention of several prominent scientists, such as Wegener Tiago Simoes, University of Alberta, Canada (1966), who used them to support his theory of continental drift, and the great anatomist and paleontologist von Huene (1941), who first suggested the presence of a lower temporal fenestra *Correspondence: Michel Laurin in Mesosaurus, several controversies still surround mesosaurs. One concerns the presence of the [email protected] lower temporal fenestra in mesosaurs, which we accept (Piñeiro et al., 2012a; Laurin and Piñeiro, 2017, p. 4), contrary to Modesto (1999, 2006) and MacDougall et al. (2018); the other concerns Specialty section: the systematic position of mesosaurs, which have been argued, in the last decades, to be either This article was submitted to the basalmost sauropsids (Laurin and Reisz, 1995; Laurin and Piñeiro, 2017), or the basalmost Paleontology, parareptiles (Gauthier et al., 1988; Modesto, 1999; MacDougall et al., 2018). Note that we adopt a section of the journal a branch-based definition of Parareptilia as Laurin and Reisz (1995) did, but use Procolophon Frontiers in Earth Science trigoniceps as an internal specifier rather than turtles, because of the controversy surrounding the Received: 26 September 2018 affinities about turtle origins. Accepted: 14 November 2018 In their recent response to our recent paper on the taxonomic position of mesosaurs, Published: 03 December 2018 MacDougall et al. (2018) make a number of problematic claims, which we wish to discuss. These Citation: claims are that we used an outdated matrix and ignored over two decades of parareptile research, Laurin M and Piñeiro G (2018) that our taxon selection was insufficient and that along with variability in temporal fenestration Response: Commentary: A in parareptiles, all these choices explain the different taxonomic position of mesosaurs that we Reassessment of the Taxonomic Position of Mesosaurs, and a obtained (as the basalmost sauropsids rather than the basalmost parareptiles). Below, we respond to Surprising Phylogeny of Early these claims by providing additional background data and by performing various analyses of their Amniotes. Front. Earth Sci. 6:220. matrix and ours that show, through taxon and character deletion among other approaches, that doi: 10.3389/feart.2018.00220 neither the omission of some taxa, nor variability in temporal fenestration explains the differences Frontiers in Earth Science | www.frontiersin.org 1 December 2018 | Volume 6 | Article 220 Laurin and Piñeiro Response: Commentary: A Taxonomic Position of Mesosaurs in topologies between our study and theirs. We also highlight two decades of parareptilian research.” These two closely related problems with their analyses and discuss why reusing phenotypic claims are factually wrong. The second point (that we ignore data matrices produced by other systematists is difficult. two decades of parareptilian research) is refuted by a simple examination of the bibliography of our paper. We did not claim to have cited all recent papers on parareptiles (given that our MATERIALS AND METHODS paper was not a review of recent studies on parareptiles), but we cited several papers published in the 1998–2018 period that The reanalyses below use a version of our data matrix (Laurin and discuss parareptile extensively (Reisz and Scott, 2002; Cisneros Piñeiro, 2017) in which we deleted characters linked to temporal et al., 2004; Müller and Tsuji, 2007; Modesto et al., 2009; Lyson fenestration, to assess the impact of this complex of characters et al., 2010, 2013; Tsuji et al., 2010, 2012; Lee, 2013; Bever on the resulting topology. We also reanalyze the data matrix of et al., 2015). Note that this list does not include papers about MacDougall et al. (2018), in three versions: unmodified, modified mesosaurs, which our results suggest are not parareptiles. The by ordering characters that form morphoclines, and modified first point (that the matrix is obsolete) is equally factually further by removing the parareptile taxa not found in our matrix wrong as shown by the fact that we extensively updated the (Laurin and Piñeiro, 2017). We have not studied the scores of original matrix (Laurin and Reisz, 1995) using both the literature the cells of the data matrix of MacDougall et al. (2018) because and direct observations of specimens, especially mesosaurs, and this would be very time-consuming and would largely duplicate explained this clearly (Laurin and Piñeiro, 2017, p. 4). For a more ambitious project focusing on early amniote phylogeny instance, Owenetta, which we added to the matrix (it was not and the origin of turtles (mesosaurs are in the matrix, though in the matrix of Laurin and Reisz, 1995), was scored using the the project does not focus particularly on their affinities) initiated detailed description of Reisz and Scott (2002). We also added by one of us (ML) in January 2018 in collaboration with Ingmar one of the basalmost, best-known parareptiles (Acleistorhinus), Werneburg, Gabriel Ferreira, and Márton Rabi. to better test previous suggestions that mesosaurs are basal All phylogenetic analyses were carried out with PAUP∗ parareptiles, and made other changes to the taxon set (see below). (Swofford, 2003) version 4.0a, build 163 for Macintosh (the latest Given all these changes, we do not consider that we used an version available as of July 28, 2018), using the branch and bound outdated phylogenetic matrix. algorithm for our own data matrix, using the heuristic search MacDougall et al. (2018) object to the use of suprageneric with 50 random addition sequence replicates, holding 3 trees taxa as terminals because they claim that the resulting higher at each step, and using the tree-bisection-reconnection (TBR) rate of polymorphism can weaken support values. We think algorithm for the various versions of the matrix by MacDougall that the interpretation of support values is more complex than et al. (2018) because that matrix had too many taxa for the branch MacDougall et al. (2018) suggest because these values tend to and bound algorithm to conclude tree search in a reasonable reflect character congruence and the number of characters (or the amount of time. The branch and bound algorithm guarantees ratio between number of characters and number of OTUs). For discovery of all possible most parsimonious trees. No heuristic many taxa, various mutually incompatible phylogenies with good algorithm provides a similar guarantee, but we verified for each support values have been published, which shows that such values of our analyses that all most parsimonious islands of trees had should not be equated with reliability (Marjanovic´ and Laurin, been recovered at least three times (most were recovered far more 2018). The famous case of “The guinea-pig is not a rodent” frequently and all were found at least 4 times), allowing us to be (D’Erchia et al., 1996) illustrates this point. Furthermore, while reasonably certain that we had all the most parsimonious trees. the increased polymorphism in OTUs corresponding to large We also repeated one of these analyses (on the original version clades is unavoidable and simply reflects reality, the relationship of the matrix of MacDougall et al., 2018) using 1,000 addition between that elevated rate of polymorphism and support values sequence replicates, to ensure that our settings (in particular, use in a matrix is far more complex than suggested by MacDougall of 50 addition replicates) were appropriate; we found exactly the et al. (2018). This is illustrated by the fact that the taxa (typically same set of trees, which validated our choice. The results of these ranked as genera) that they introduced to replace the OTU analyses allow us to test the main claims made by MacDougall Synapsida yield a tree that suggests that this taxon, as currently et al. (2018). delimited, is paraphyletic! Of course, a monophyletic Synapsida Information associated with the analyses carried out in this could still be recognized in accordance with the definition of paper (modified list of characters, in which we document this clade that has been proposed under the PhyloCode (using which characters were ordered, and how the states had to be Cynognathus crateronotus as the sole internal specifier, and reordered to reflect the underlying continuous characters, and three extant sauropsids as
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
    RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • A Procolophonid (Parareptilia) from the Owl Rock Member, Chinle Formation of Utah, Usa
    Palaeontologia Electronica http://palaeo-electronica.org A PROCOLOPHONID (PARAREPTILIA) FROM THE OWL ROCK MEMBER, CHINLE FORMATION OF UTAH, USA Nicholas C. Fraser, Randall B. Irmis*, and David K. Elliott ABSTRACT An isolated skull of a procolophonid is described from the Owl Rock Member of the Chinle Formation in the Abajo Mountains of southeast Utah. Although poorly pre- served, this specimen exhibits features that demonstrate a phylogenetic relationship with leptopleuronine procolophonids. These include the dentition, the greatly expanded orbitotemporal opening, the prominent quadratojugal spikes, and the shape of the jugal. Nicholas C. Fraser. Virginia Museum of Natural History, Martinsville, Virginia 24112, USA. [email protected] Randall B. Irmis. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. *Current Address: University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, California 94720-4780. [email protected] David K. Elliott. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. [email protected] KEY WORDS: Procolophonidae; Parareptilia; Late Triassic; Chinle Formation PE Article Number: 8.1.13 Copyright: Society of Vertebrate Paleontology. May 2005 Submission: 28 June 2004. Acceptance: 6 March 2005. INTRODUCTION skull has been described in detail (Kemp 1974; Carroll and Lindsay 1985). The first member of the The Procolophonidae are a group of small clade to be named was Leptopleuron from the parareptiles (sensu Laurin and Reisz
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Alpha Taxonomy of the Russian Permian Procolophonoid Reptiles
    Alpha taxonomy of the Russian Permian procolophonoid reptiles LAURA K. SÄILÄ Säilä, L.K. 2009. Alpha taxonomy of the Russian Permian procolophonoid reptiles. Acta Palaeontologica Polonica 54 (4): 599–608. doi:10.4202/app.2009.0017 European Russia has been the source of many procolophonoid taxa from both the Permian and Triassic, and a Permian or− igin for the procolophonoid family Procolophonidae has been based on the Russian taxon Microphon exiguus. Recently, this taxon was reclassified as a seymouriamorph and, in its place, the taxa Nyctiphruretus, Suchonosaurus, and Kinelia from the Middle and Upper Permian of Russia were suggested as “procolophons”, using evolutionary−systematic classifi− cation methods. In recent phylogenies, however, Nyctiphruretus has been recovered as a non–procolophonoid para− reptile, whereas Kinelia and Suchonosaurus have never been included in a phylogenetic study. Re−examination indicates that Suchonosaurus is a member of the procolophonoid subfamily Procolophonidae based on the shape of the maxillary bone and the external naris, the laterally visible maxillary depression, and the number and type of maxillary teeth. Kinelia, on the other hand, is excluded from the Procolophonoidea because of its subpleurodont dental attachment and lack of any procolophonoid features. Thus, Suchonosaurus is the only confirmed Permian procolophonid from the Permian of Rus− sia. Additionally, re−examination of the holotype of Microphon exiguus confirms that it is identical to the seymouria− morph specimens recently included in the genus Microphon and that it lacks procolophonoid features. The earliest un− equivocal record of the subfamily Procolophonidae is confirmed from the Late Permian of Russia, making Russia the only region where, with certainty, both Permian and Triassic procolophonids have been discovered.
    [Show full text]
  • Chinese Pareiasaurs
    Benton, M. J. (2016). The Chinese pareiasaurs. Zoological Journal of the Linnean Society, 177(4), 813-853. https://doi.org/10.1111/zoj.12389 Peer reviewed version License (if available): Unspecified Link to published version (if available): 10.1111/zoj.12389 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/zoj.12389/abstract. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Page 1 of 85 Zoological Journal of the Linnean Society 1 1 2 3 1 [Abstract] 4 5 2 6 3 Pareiasaurs were important medium- to large-sized herbivores in the Middle and Late 7 8 4 Permian, some 268-252 million years (Myr) ago. They are best known from abundant remains 9 10 5 of several taxa each in South Africa and Russia, with isolated finds from other parts of the 11 6 world. Six genera and species of pareiasaurs have been described from China, and yet they 12 13 7 have not been reviewed. Of these six, Tsiyuania may be a synonym of Honania, but this taxon 14 15 8 is not further considered here. The other four, which were named for separate finds from the 16 9 Sunjiagou Formation (Changhsingian, 254-252 Myr) show considerable similarities.
    [Show full text]
  • Evidence of Advanced Sensory Perception at an Early Stage of Amniote Evolution Johannes Mu¨ Ller*, Linda A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Impedance-Matching Hearing in Paleozoic Reptiles: Evidence of Advanced Sensory Perception at an Early Stage of Amniote Evolution Johannes Mu¨ ller*, Linda A. Tsuji Humboldt-Universita¨t zu Berlin, Museum fu¨r Naturkunde, Berlin, Germany Background. Insights into the onset of evolutionary novelties are key to the understanding of amniote origins and diversification. The possession of an impedance-matching tympanic middle ear is characteristic of all terrestrial vertebrates with a sophisticated hearing sense and an adaptively important feature of many modern terrestrial vertebrates. Whereas tympanic ears seem to have evolved multiple times within tetrapods, especially among crown-group members such as frogs, mammals, squamates, turtles, crocodiles, and birds, the presence of true tympanic ears has never been recorded in a Paleozoic amniote, suggesting they evolved fairly recently in amniote history. Methodology/Principal Findings. In the present study, we performed a morphological examination and a phylogenetic analysis of poorly known parareptiles from the Middle Permian of the Mezen River Basin in Russia. We recovered a well-supported clade that is characterized by a unique cheek morphology indicative of a tympanum stretching across large parts of the temporal region to an extent not seen in other amniotes, fossil or extant, and a braincase specialized in showing modifications clearly related to an increase in auditory function, unlike the braincase of any other Paleozoic tetrapod. In addition, we estimated the ratio of the tympanum area relative to the stapedial footplate for the basalmost taxon of the clade, which, at 23:1, is in close correspondence to that of modern amniotes capable of efficient impedance-matching hearing.
    [Show full text]
  • Cisneros2008.Pdf
    Journal of Systematic Palaeontology 6 (3): 345–366 Issued 22 August 2008 doi:10.1017/S1477201907002350 Printed in the United Kingdom C The Natural History Museum ! Phylogenetic relationships of procolophonid parareptiles with remarks on their geological record Juan Carlos Cisneros∗ Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, South Africa SYNOPSIS The phylogenetic intrarelationships of procolophonid parareptiles are determined via a comprehensive cladistic analysis using a data matrix of 21 taxa and 58 characters. Most taxa are in- cluded for the first time in a phylogenetic analysis and 27 characters are novel. The relationships within the group are more firmly resolved than in previous analyses. Procolophoninae and Leptopleuron- inae, two of the three traditional subdivisions of the Procolophonidae, are valid monophyletic groups, but Spondylolestinae is polyphyletic. The Chinese genera Pentaedrusaurus and Neoprocolophon are the most primitive members of the Leptopleuroninae. A new group, Theledectinae, is erected. The latter clade consists of small procolophonids with a reduced marginal dentition and wide bulbous monocuspid teeth. Eumetabolodon from China and the former genus ‘Thelegnathus’ from South Africa are shown to be polyphyletic. The successful radiation of the Procolophonidae during the Triassic is likely to be related to the development of feeding adaptations that allowed exploration of various ecological niches, particularly the exploitation of high-fibre herbivory. The scarcity of Permian records of procolophonids is examined and the genus Spondylolestes from the Upper Permian of South Africa is considered to be a valid taxon with procolophonid affinities. Finally, a review of the records from the Middle and Upper Triassic reveals a procolophonid global hiatus of more than 15 Ma in Ladinian–Lower Carnian rocks.
    [Show full text]
  • A New Bolosaurid Parareptile, Belebey Chengi Sp. Nov., from the Middle Permian of China and Its Paleogeographic Significance
    Naturwissenschaften (2008) 95:1169–1174 DOI 10.1007/s00114-008-0438-0 SHORT COMMUNICATION A new bolosaurid parareptile, Belebey chengi sp. nov., from the Middle Permian of China and its paleogeographic significance Johannes Müller & Jin-Ling Li & Robert R. Reisz Received: 3 July 2008 /Revised: 19 July 2008 /Accepted: 31 July 2008 / Published online: 23 August 2008 # Springer-Verlag 2008 Abstract A new bolosaurid parareptile, Belebey chengi sp. suggesting that this may be the general trend in early nov., is described from Dashankou, Gansu Province, China, amniote evolution. a Middle Permian locality which is known mostly for its therapsid fauna. The material consists of well-preserved Keywords Parareptilia . Bolosauridae . Middle Permian . mandibular and anterior skull remains and currently China represents the largest and latest surviving member of Bolosauridae. Phylogenetic analysis of bolosaurid interre- lationships, the first analysis of any clade of Early Permian Introduction parareptiles, indicates that the new taxon groups consis- tently with the other (Russian) members of the genus Permian bolosaurids, until recently a highly enigmatic Belebey, and forms the sister clade to the genus Bolosaurus group, are now generally considered to be part of Para- from North America. The Early Permian Eudibamus reptilia, one of the three major clades of basal Amniota cursoris from Germany falls into the basal most position (Berman et al. 2000; Reisz et al. 2007; Müller and Tsuji within Bolosauridae. Our analysis also shows that the split 2007). Three genera and five species are currently between the main bolosaurid lineages must have occurred recognized, Bolosaurus grandis and B. striatus from the near or before the Permo-Carboniferous boundary and that Lower Permian of Texas and Oklahoma (Watson 1954; the paleo-equatorial region of Laurasia probably served as Reisz et al.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    ORIGINAL RESEARCH published: 02 November 2017 doi: 10.3389/feart.2017.00088 A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela H. Piñeiro 2 1 CR2P (UMR 7207) Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités), Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, University of the Republic, Montevideo, Uruguay We reassess the phylogenetic position of mesosaurs by using a data matrix that is updated and slightly expanded from a matrix that the first author published in 1995 with his former thesis advisor. The revised matrix, which incorporates anatomical information published in the last 20 years and observations on several mesosaur specimens (mostly from Uruguay) includes 17 terminal taxa and 129 characters (four more taxa and five more characters than the original matrix from 1995). The new matrix also differs by incorporating more ordered characters (all morphoclines were ordered). Parsimony Edited by: analyses in PAUP 4 using the branch and bound algorithm show that the new matrix Holly Woodward, Oklahoma State University, supports a position of mesosaurs at the very base of Sauropsida, as suggested by the United States first author in 1995. The exclusion of mesosaurs from a less inclusive clade of sauropsids Reviewed by: is supported by a Bremer (Decay) index of 4 and a bootstrap frequency of 66%, both of Michael S. Lee, which suggest that this result is moderately robust. The most parsimonious trees include South Australian Museum, Australia Juliana Sterli, some unexpected results, such as placing the anapsid reptile Paleothyris near the base of Consejo Nacional de Investigaciones diapsids, and all of parareptiles as the sister-group of younginiforms (the most crownward Científicas y Técnicas (CONICET), Argentina diapsids included in the analyses).
    [Show full text]
  • A New Reptile from the Lower Permian of Brazil (Karutia Fortunata Gen
    Journal of Systematic Palaeontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter To cite this article: Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter (2021): A new reptile from the lower Permian of Brazil (Karutiafortunata gen. et sp. nov.) and the interrelationships of Parareptilia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2020.1863487 To link to this article: https://doi.org/10.1080/14772019.2020.1863487 View supplementary material Published online: 12 Jan 2021. Submit your article to this journal Article views: 107 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2021 http://dx.doi.org/10.1080/14772019.2020.1863487 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia aà b c b,d Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk ,Jorg€ Frobisch€ , Claudia Marsicanoe,f , Roger M. H. Smithg,h and Martha Richteri aMuseu de Arqueologia e Paleontologia, Universidade Federal do Piauı, 64049-550 Teresina, Brazil; bPaleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA; cNegaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; dInstitut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Invalidenstr.
    [Show full text]