The Recovery of Terrestrial Vertebrate Diversity in the South African Karoo Basin After the End-Permian Extinction

Total Page:16

File Type:pdf, Size:1020Kb

The Recovery of Terrestrial Vertebrate Diversity in the South African Karoo Basin After the End-Permian Extinction C. R. Palevol 4 (2005) 555–568 http://france.elsevier.com/direct/PALEVO/ Systematic Palaeontology (Vertebrate Palaeontology) The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction Roger Smith *, Jennifer Botha Department of Karoo Palaeontology, Iziko South African Museum, Box 61, Cape Town, 8000, South Africa Received 30 August 2004; accepted after revision 8 July 2005 Available online 25 August 2005 Written on invitation of the Editorial Board Abstract The southern half of the main Karoo Basin in South Africa contains an almost continuous stratigraphic record of terrestrial sedimentation through the Permo-Triassic boundary (PTB). Detailed logging of multiple sections through the boundary sequence has defined the end-Permian mass extinction event using vertebrate fossils as well as a synchronous change in fluvial style reflecting a rapid aridification of climate. Field data demonstrates a 69% mass extinction of Late Permian terrestrial vertebrates lasting some 300 kyr terminating at the PTB, followed by a lesser extinction event (31%) approximately 160 kyr later involving four survivor taxa that crossed the PTB. The Early Triassic recovery fauna comprises proterosuchian archosauromorphs (Prot- erosuchus), small amphibians (Micropholis, Lydekkerina), small procolophonoids (‘Owenetta’ kitchingorum, Procolophon), medium-sized dicynodonts (Lystrosaurus) and small insectivorous cynodonts (Progalesaurus, Galesaurus, Thrinaxodon). Tapho- nomic bias towards preferential preservation of drought accumulations in the Early Triassic has probably over-emphasized the abundance and diversity of semi aquatic and burrowing animals. To cite this article: R. Smith, J. Botha, C. R. Palevol 4 (2005). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé La restauration de la diversité des Vertébrés terrestres dans le bassin du Karoo d’Afrique du Sud, après la crise biologique de la fin du Permien. Un enregistrement stratigraphique presque continu de la sédimentation terrestre du passage Permien–Trias (PTB), se trouve exposé dans la moitié méridionale du principal bassin du Karoo, en Afrique du Sud. Des relevés lithologiques détaillés de nombreux affleurements, englobant la séquence PTB, ont permis de définir l’événement des extinc- tions en masse de la fin du Permien à partir des vertébrés fossiles ainsi qu’à travers un changement contemporain du régime fluviatile, traduisant une rapide aridification du climat. Les données de terrain révèlent qu’une extinction en masse affecte 69 % des vertébrés terrestres à la fin du Permien, la durée de l’événement s’étalant sur environ 300 000 ans avant la PTB. Elle est suivie par un événement de moindre ampleur, avec un taux d’extinction de 39 %, survenant approximativement 160 000 ans plus * Corresponding author. E-mail address: [email protected] (R. Smith). 1631-0683/$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crpv.2005.07.005 556 R. Smith, J. Botha / C. R. Palevol 4 (2005) 555–568 tard et comportant quatre taxons survivant au passage de la PTB. Les faunes de la reconquête du Trias inférieur comprennent des archosauromorphes protérosuchiens (Proterosuchus), de petits amphibiens (Micropholis, Lyddekerina), de petits procolo- phonidés (« Owenetta » kitchingorum, Procolophon), des dicynodontes de taille moyenne (Lystrosaurus) et de petits cynodon- tes insectivores (Progalesaurus, Galesaurus, Thrinaxodon). Les distorsions taphonomiques, en privilégiant la préservation des fossiles dans les mares en voie d’assèchement du début du Trias, ont probablement fait surestimer l’abondance et la diversité des animaux amphibies ou fouisseurs. Pour citer cet article : R. Smith, J. Botha, C. R. Palevol 4 (2005). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. Keywords: Terrestrial vertebrates; Mass extinction; Recovery; Permo-Triassic boundary (PTB); Karoo Basin; South Africa Mots clés : Vertébrés terrestres ; Extinction en masse ; Reconquête ; Limite Permien-Trias ; Bassin du Karoo ; Afrique du Sud 1. Introduction restrial vertebrate communities after the end-Permian mass extinction. The end-Permian mass extinction that occurred at approximately 251 Ma [8] is generally regarded as the most catastrophic of the five major Phanerozoic mass 2. Palaeoenvironment extinctions. An estimated 90% of all marine species (e.g. [5,17,33,50]) and 70% of all terrestrial vertebrate The Karoo Supergroup is a thick succession of sedi- families [34,35] disappeared within 165 kyr [8] and per- mentary rocks that accumulated in a large, intracra- haps as little as 10 kyr [56,60]. Research to date on the tonic, retroarc foreland basin in southwestern Gond- Permo-Triassic boundary (PTB) has focused more on wana. The strata record more than 100 Ma of almost patterns of taxon extinctions and possible causes for continuous sediment accumulation from the Permo- the extinction event (e.g., [2,3,22,24,47,60]) rather than Carboniferous (300 Ma) through to the Early Jurassic on the recovery of biodiversity during the Early Trias- (190 Ma) under a range of climatic regimes and within sic. Numerous marine PTB sections have provided a several tectonically controlled sub-basins. broad indication of the devastation of marine life From the Middle Permian onwards, some 4000 m [22,24,25,36,60]. However, the details of the effect of of vertebrate-fossil-bearing fluvio-lacustrine sedi- the end-Permian extinction on the terrestrial ecosys- ments that make up the Beaufort Group dominate the tems of Pangaea remain poorly understood. World- Karoo Supergroup succession. The PTB occurs in the wide there are very few stratigraphic sequences that are middle of the Beaufort Group succession and is not only complete enough to preserve the terrestrial end-Permian marked by a major extinction episode, recorded in the mass extinction and the succeeding Early Triassic fossil record by the ‘Glossopteris-Dicroidium floral suc- recovery. One of these rare locations is the South Afri- cession’and the therapsid fauna, but also coincides with can Karoo Basin, where recent work has revealed a a major change in fluvial style. complete terrestrial sequence from the Permian to the Triassic, containing abundant fossils that record changes 2.1. Sedimentology of the PTB sequence in floral and vertebrate taxa across the PTB and subse- quent recovery of the southern Gondwanan ecosys- The main extinction zone is approximately 40 m tems in the Early Triassic [52,53]. thick at both the Bethulie and the Graaff-Reinet sec- Over the past ten years, 225 in situ vertebrate fossils tions and is stratigraphically positioned in the lower have been systematically collected from the PTB strata of the Palingkloof Member at the top of the Bal- sequences in the Bethulie and the Graaff-Reinet dis- four Formation (Fig. 1). Detailed sedimentological logs tricts of the southern and central Karoo Basin (Fig. 1). compiled from several sections at each locality show Here, we present a compilation of the latest palaeoen- that the facies sequences in the boundary beds are vironmental and biostratigraphic data collected from remarkably similar (Fig. 2). The overall lithological these sections with particular emphasis on the nature transitions are from drab greenish grey and blue-grey and the controls of the recovery of Early Triassic ter- thickly-bedded and pedogenically modified massive R. Smith, J. Botha / C. R. Palevol 4 (2005) 555–568 557 Fig. 1. (A) Map of South Africa, showing the location of Bethulie and Graaff-Reinet districts where detailed lithostratigraphical sections were conducted. (B) Summary of the litho- and biostratigraphy for the southern and central Karoo Basin indicating the stratigraphic positions of the PTB described in this report. Abbreviations: C.T., Cape Town; D, Durban; JHB, Johannesburg; SACS, South African Committee for Stratigra- phy. Fig. 1. (A) Carte d’Afrique du Sud localisant les districts de Bethulie et de Graaff-Reinet, où des coupes lithostratigraphiques détaillées ont été relevées. (B) Synthèse des données litho- et biostratigraphiques des parties méridionales et centrale du bassin du Karoo, indiquant les positions stratigraphiques de la PTB décrites dans cet article. Abréviations : C.T., Le Cap; D, Durban; JHB, Johannesburg; SACS, Comité sud-africain de stratigraphie. siltstone beds with interbedded, laterally-accreted fine glomeratic sandstone-dominated succession – the grained sandstone bodies grading upwards into progres- Katberg Formation. sively more maroon coloured siltstone beds interbed- ded with vertically accreted sandstones with distinc- 2.1.1. Massive dark grey mudrock tive gullied basal scours and include a regionally In the drab-coloured dark grey (5Y 4/1) and olive extensive interval of maroon coloured thinly bedded grey (5Y5/2) mudrocks below the PTB, large dark laminites. The PTB sequence is capped by a thick con- brown weathering calcareous nodules and claystone 558 R. Smith, J. Botha / C. R. Palevol 4 (2005) 555–568 Fig. 2. Summary sedimentological log of the PTB sequence compiled from the study sections in the Bethulie District with interpreted palaeo- landscape reconstructions. Vertical scale in metres. Fig. 2. Profil sédimentologique synthétique de la séquence de la PTB, d’après les coupes étudiées dans le district de Bethulie et interprétations des paysages correspondants. Échelle verticale en mètres. lined-root channels as well as Planolites and Taenidium disarticulated postcranial
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
    RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Analysis of Millerettid Parareptile Relationships in the Light of New Material of BROOMIA PERPLEXA Watson, 1914, from the Permian of South Africa
    Journal of Systematic Palaeontology 6 (4): 453–462 Issued 24 November 2008 doi:10.1017/S147720190800254X Printed in the United Kingdom C The Natural History Museum ! Analysis of millerettid parareptile relationships in the light of new material of BROOMIA PERPLEXA Watson, 1914, from the Permian of South Africa Juan Carlos Cisneros Departamento de Paleontologia† e Estratigrafia, Universidade Federal do Rio Grande do Sul, Porto Alegre, CP 15001, 91501-970, Brazil; and Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Bruce S. Rubidge Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Richard Mason Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Charlton Dube Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa SYNOPSIS A second specimen of the poorly known millerettid Broomia perplexa is reported. It consists of a cranium and partially articulated postcranium. As indicated by its small size (ca.35% shorter skull than the holotype) and unfused pelvis and limbs, the new specimen is a sub-adult indi- vidual. Comparison with the holotype reveals only minor differences that are ascribed to ontogenetic or individual variation. Accordingly we consider the new specimen to represent the second record of Broomia,discovered90yearsafterthedescriptionoftheholotype.Apreliminaryphylogenetic analysis of millerettid inter-relationships identifies Broomia as a millerettid related to the genus Millerosaurus.TheenigmaticparareptileEunotosaurus africanus is nested within Millerettidae as the sister taxon of Milleretta rubidgei.WhereasmillerettidsarewellknownfromthelatestPermian Dicynodon Assemblage Zone of the Beaufort Group of South Africa, Broomia and Eunotosaurus are found in the Middle Permian Tapinocephalus Assemblage Zone.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Permitid: 2796
    Export parareptile skulls for synchrotron scanning at ESRF Our Ref: 12890 Enquiries: Ragna Redelstorff Date: Thursday September 20, 2018 Tel: +27 (0)21 202 8651 Page No: 1 Email: [email protected] CaseID: 12890 PermitID: 2796 PERMIT: Export (Temporary) In terms of Section 32(19) of the National Heritage Resources Act (Act 25 of 1999) Permit Holder: Dr Jonah Nathaniel Choiniere Evolutionary Studies Institute University of the Witwatersrand Private Bag 3, WITS 2050 Object: AM 3585, BP/1/5128, BP/1/4195, BP/1/5398, BP/1/3822, BP/1/3819, BP/1/70, BP/1/2871, BP/1/720, BP/1/5927a, BP/1/5927c, BP/1/3318, BP/1/4504a, BP/1/5880, BP/1/1396 The permit is issued to Dr. Jonah N. Choiniere (ESI Evolutionary Studies Institute, University of the Witwatersrand), in collaboration with Dr. Vincent Fernandez (ESRF European Synchrotron Radiation facility, Grenoble, France) to temporarily export 15 fossil skulls of parareptilians Paliguana whitei (AM 3585), Prolacerta (BP/1/5128, BP/1/4504a, BP/1/5880), Owenetta (BP/1/4195, BP/1/5398, BP/1/3819), Milleretta (BP/1/3822, BP/1/720, BP/1/3318, BP/1/1396), Youngina (BP/1/70, BP/1/2871) and Procolophon (BP/1/5927 2 specimens) for synchrotron scanning at the ESRF, Grenoble, France. The material is currently housed at the Albany Museum, Grahamstown (AM 3585) and Evolutionary Studies Institute, University of the Witwatersrand. Conditions: 1. Only the selected representatives of the material stored in the collection may be exported. 2. The material must be carefully packed and all packaging must be clearly marked with the name of the site (if known), and the name and address of the permit holder or the Albany Museum and ESI.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    GENERAL COMMENTARY published: 03 December 2018 doi: 10.3389/feart.2018.00220 Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela Piñeiro 2 1 CR2P (UMR 7207), CNRS/MNHN Sorbonne Université, “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, Montevideo, Uruguay Keywords: Mesosauridae, Parareptilia, Synapsida, Sauropsida, Amniota, Paleozoic, temporal fenestration A Commentary on Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes by MacDougall, M. J., Modesto, S. P., Brocklehurst, N., Verrière, A., Reisz, R. R., and Fröbisch, J. (2018). Front. Earth Sci. 6:99. doi: 10.3389/feart.2018.00099 INTRODUCTION Edited by: Corwin Sullivan, University of Alberta, Canada Mesosaurs, known from the Early Permian of southern Africa, Brazil, and Uruguay, are the oldest known amniotes with a primarily, though probably not strictly, aquatic lifestyle (Nuñez Demarco Reviewed by: et al., 2018). Despite having attracted the attention of several prominent scientists, such as Wegener Tiago Simoes, University of Alberta, Canada (1966), who used them to support his theory of continental drift, and the great anatomist and paleontologist von Huene (1941), who first suggested the presence of a lower temporal fenestra *Correspondence: Michel Laurin in Mesosaurus, several controversies still surround mesosaurs. One concerns the presence of the [email protected] lower temporal fenestra in mesosaurs, which we accept (Piñeiro et al., 2012a; Laurin and Piñeiro, 2017, p. 4), contrary to Modesto (1999, 2006) and MacDougall et al.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • The Braincase of Eocaecilia Micropodia (Lissamphibia, Gymnophiona) and the Origin of Caecilians
    The Braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the Origin of Caecilians Hillary C. Maddin1,2*, Farish A. Jenkins, Jr.1, Jason S. Anderson2 1 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America, 2 Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada Abstract The scant fossil record of caecilians has obscured the origin and evolution of this lissamphibian group. Eocaecilia micropodia from the Lower Jurassic of North America remains the only stem-group caecilian with an almost complete skull preserved. However, this taxon has been controversial, engendering re-evaluation of traits considered to be plesiomorphic for extant caecilians. Both the validity of the placement of E. micropodia as a stem caecilian and estimates of the plesiomorphic condition of extant caecilians have been questioned. In order to address these issues, the braincase of E. micropodia was examined via micro-computed tomography. The braincase is considered to be a more reliable phylogenetic indicator than peripheral regions of the skull. These data reveal significant new information, including the possession of an ossified nasal septum, ossified anterior wall of the sphenethmoid, long anterolateral processes on the sphenethmoid, and paired olfactory nerve foramina, which are known only to occur in extant caecilians; the latter are possibly related to the evolution of the tentacle, a caecilian autapomorphy. A phylogenetic analysis that included 64 non-amniote taxa and 308 characters represents the first extensive test of the phylogenetic affinities of E. micropodia. The results place E. micropodia securely on the stem of extant caecilians, representing a clade within Temnospondyli that is the sister taxon to batrachians plus Gerobatrachus.
    [Show full text]
  • A Procolophonid (Parareptilia) from the Owl Rock Member, Chinle Formation of Utah, Usa
    Palaeontologia Electronica http://palaeo-electronica.org A PROCOLOPHONID (PARAREPTILIA) FROM THE OWL ROCK MEMBER, CHINLE FORMATION OF UTAH, USA Nicholas C. Fraser, Randall B. Irmis*, and David K. Elliott ABSTRACT An isolated skull of a procolophonid is described from the Owl Rock Member of the Chinle Formation in the Abajo Mountains of southeast Utah. Although poorly pre- served, this specimen exhibits features that demonstrate a phylogenetic relationship with leptopleuronine procolophonids. These include the dentition, the greatly expanded orbitotemporal opening, the prominent quadratojugal spikes, and the shape of the jugal. Nicholas C. Fraser. Virginia Museum of Natural History, Martinsville, Virginia 24112, USA. [email protected] Randall B. Irmis. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. *Current Address: University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, California 94720-4780. [email protected] David K. Elliott. Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA. [email protected] KEY WORDS: Procolophonidae; Parareptilia; Late Triassic; Chinle Formation PE Article Number: 8.1.13 Copyright: Society of Vertebrate Paleontology. May 2005 Submission: 28 June 2004. Acceptance: 6 March 2005. INTRODUCTION skull has been described in detail (Kemp 1974; Carroll and Lindsay 1985). The first member of the The Procolophonidae are a group of small clade to be named was Leptopleuron from the parareptiles (sensu Laurin and Reisz
    [Show full text]
  • Evolution of the Mammalian Fauces Region and the Origin of Suckling
    Evolution of the mammalian fauces region and the origin of suckling The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crompton, Alfred, Catherine Musinsky, Jose Bonaparte, Bhart- Anjan Bhullar, and Tomasz Owerkowicz. Evolution of the mammalian fauces region and the origin of suckling (2018). Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364482 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1 Evolution of the mammalian fauces region and the origin of suckling Alfred Crompton1†, Catherine Musinsky1, Jose Bonaparte2, Bhart-Anjan Bhullar3, Tomasz Owerkowicz4 1: Harvard University, Organismic and Evolutionary Biology Department, Museum of Comparative Zoology, 26 Oxford St, Cambridge, MA 02138 USA 2: Museo Municipal de C. Naturales "C. Ameghino", 6600 MERCEDES – BS. AS. Argentina 3: Department of Geology & Geophysics, Yale University, PO Box 208109, New Haven, CT 06520- 8109 USA 4: Department of Biology, California State University in San Bernadino, 5500 University Pkwy, San Bernardino, CA 92407 USA †corresponding author: ORCID 0000-0001-6008-2587, [email protected], 617-495-3202 Acknowledgments Thanks to Dr. Edgar Allin for his comments on an early draft of this paper. Thanks to the Museum of Comparative Zoology, its Director, Professor James Hanken, and to the Center for Nanoscale Systems at Harvard University for providing the facilities and finances for this research.
    [Show full text]