Analysis of Millerettid Parareptile Relationships in the Light of New Material of BROOMIA PERPLEXA Watson, 1914, from the Permian of South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Millerettid Parareptile Relationships in the Light of New Material of BROOMIA PERPLEXA Watson, 1914, from the Permian of South Africa Journal of Systematic Palaeontology 6 (4): 453–462 Issued 24 November 2008 doi:10.1017/S147720190800254X Printed in the United Kingdom C The Natural History Museum ! Analysis of millerettid parareptile relationships in the light of new material of BROOMIA PERPLEXA Watson, 1914, from the Permian of South Africa Juan Carlos Cisneros Departamento de Paleontologia† e Estratigrafia, Universidade Federal do Rio Grande do Sul, Porto Alegre, CP 15001, 91501-970, Brazil; and Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Bruce S. Rubidge Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Richard Mason Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa Charlton Dube Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa SYNOPSIS A second specimen of the poorly known millerettid Broomia perplexa is reported. It consists of a cranium and partially articulated postcranium. As indicated by its small size (ca.35% shorter skull than the holotype) and unfused pelvis and limbs, the new specimen is a sub-adult indi- vidual. Comparison with the holotype reveals only minor differences that are ascribed to ontogenetic or individual variation. Accordingly we consider the new specimen to represent the second record of Broomia,discovered90yearsafterthedescriptionoftheholotype.Apreliminaryphylogenetic analysis of millerettid inter-relationships identifies Broomia as a millerettid related to the genus Millerosaurus.TheenigmaticparareptileEunotosaurus africanus is nested within Millerettidae as the sister taxon of Milleretta rubidgei.WhereasmillerettidsarewellknownfromthelatestPermian Dicynodon Assemblage Zone of the Beaufort Group of South Africa, Broomia and Eunotosaurus are found in the Middle Permian Tapinocephalus Assemblage Zone. The new Broomia specimen not only complements our knowledge of this early millerettid but also shows, in addition to recent findings in the same area, that the lowermost Beaufort Group is at least 1200 m thick in this area compared with ca. 2500 m in the western part of the Karoo Basin. KEY WORDS Parareptilia, phylogeny, Gondwana, Middle Permian, Tapinocephalus Assemblage Zone Contents Introduction 454 Institutional abbreviations 454 Material and methods 454 Geological setting 454 Systematic palaeontology 455 Parareptilia Olson, 1947 sensu deBraga & Reisz, 1996 455 Millerettidae Romer, 1956 455 Broomia perplexa Watson, 1914 455 Description 457 Cranial skeleton 457 E-mail: [email protected] † 454 J. C. Cisneros et al. Postcranial skeleton 458 Comparisons with other millerettids 458 Interrelationships of the Millerettidae 459 Methods 459 Results 459 Discussion 459 Conclusions 460 Acknowledgements 460 References 461 Appendix A: Character list 461 Appendix A: Data matrix 462 Introduction Institutional abbreviations Millerettids are small lizard-like reptiles considered to be the BMNH Natural History Museum, London. = basalmost members of the Parareptilia (Laurin & Reisz 1995; BP Bernard Price Institute for Palaeontological Re- = deBraga & Reisz 1996; Modesto 1999; Berman et al.2000; search, University of the Witwatersrand, Johan- Reisz & Scott 2002). Some features of the group include a nesburg. cranial ornamentation formed by shallow tubercles and the RC Rubidge Collection, Wellwood, Camdeboo = presence of a temporal fenestra (Gow 1972). Five species are (formerly Graaff-Reinet) Municipality, Eastern known: Milleretta rubidgei Broom, 1938, Millerosaurus or- Cape, South Africa. natus Broom, 1948, Millerosaurus nuffieldi Watson, 1957, Milleropsis pricei (Watson, 1957) and Broomia perplexa Watson, 1914. All are from the Permian of the Karoo Basin in South Africa. Whereas the millerettids from the latest Material and methods Permian Dicynodon Assemblage Zone (AZ) are known from The new specimen, BP/1/6222, comprises a skull and post- several specimens, the Middle Permian Broomia perplexa is cranial elements. Most of the specimen had been exposed by the only millerettid from the Tapinocephalus AZ, and it is erosion and was badly weathered, with only the impression represented only by the holotype (Kitching 1977). of bone preserved in places. An air hammer was used as the In the past, Broomia has been considered by several main instrument to prepare the palate, but manual cleaning authors to be a taxon that is closely related, or ancestral, to with fine needles was employed for delicate areas. The pel- the Millerettidae (Broom 1921, 1941; Romer 1956; Watson vic girdle and the right hindlimb were preserved largely as 1957; Kuhn 1969), but was not mentioned in the review of impressions in the mudstone, and negative preparation (i.e. the Millerettidae by Gow (1972). The taxon has also been the remaining bone was removed) was undertaken on these regarded as a probable araeoscelid diapsid (Nopcsa 1923; areas. This procedure was not applied to the right knee be- Piveteau 1955) or procolophonoid parareptile (Romer 1966). cause in this area the bone is in good condition. The pelvis In a detailed and well-illustrated re-description of the genus, and right hindlimb areas that had been negatively prepared Thommasen & Carroll (1981) justified the classification of were filled with silicone in order to produce a positive cast this taxon as a millerettid mainly on the basis of palatal fea- for study. Numerous morphological details of the palate and tures, but they could not evaluate the presence of distinctive the manus became visible only through the application of millerettid features in other areas of the skull because the roof immersion oil. of the cranium is not preserved in the holotype. Broomia was The holotype of Broomia perplexa,BMNHR4065,con- also excluded from the phylogenetic definition of the group sists of a natural impression and a silicone cast was employed proposed by Laurin & Reisz (1995) and was not included for its study. Other comparative material included: Miller- in any other reptilian group by these authors. Scepticism in etta rubidgei,BP/1/2040,BP/1/2610,BP/1/2614,BP/1/2876, regarding Broomia as a millerettid may be due to the incom- BP/1/3818, BP/1/3821, BP/1/3822, RC 14 (holotype) and pletenessoftheholotype,whichlackstheroofofthecranium, RC 70; Millerosaurus ornatus,RC78(holotype);Millerop- where some features that diagnose the Millerettidae are loc- sis pricei, BP/1/720 (a block with at least eight specimens, ated (Gow 1972; Laurin & Reisz 1995). In addition, a con- including the holotype) and BP/1/4203. siderable stratigraphical gap exists between Broomia,known from the Tapinocephalus AZ, and the millerettids from the Dicynodon AZ. This paper reports a new parareptile speci- men from the Tapinocephalus AZ in Eastern Cape Province that can be clearly identified as a millerettid and exhibits fea- Geological setting tures that are comparable with only Broomia perplexa.The BP/1/6222 was discovered by Charlton Dube on the farm, new specimen also provides important cranial information The Grant, in Eastern Cape Province (Fig. 1). It was re- not present in the holotype. The stratigraphical implications covered from an argillaceous interval comprising dark olive- of the presence of Broomia in Eastern Cape Province are green mudstone with minor sandstones, 1705 m above the discussed. Ecca/Beaufort boundary. Stratigraphically the locality falls South African Permian millerettid parareptile relationships 455 Figure 1 Locality map showing part of the Grahamstown area of South Africa and the farm The Grant. The site where the specimen was recovered is indicated by an asterisk. within the middle part of the Koonap Formation (lower Systematic palaeontology Beaufort Group), which is considered to have been depos- ited in a subaerial delta plain setting (Johnson & le Roux PARAREPTILIA Olson, 1947 sensu deBraga & 1994). Reisz, 1996 At present the biostratigraphy of this part of the Karoo MILLERETTIDAE Romer, 1956 Basin is poorly known (Rubidge 1995). However, as a res- ult of recent collecting activities in the area, dinocephali- NEW DEFINITION. A clade that comprises all taxa more re- ans (Modesto et al. 2001), scylacosaurid therocephalians lated to Milleretta rubidgei Broom, 1938, than to Macroleter and the parareptile Eunotosaurus have been found on The poezicus Tverdokhlebova & Ivakhnenko, 1984. Grant, thus indicating that the lowermost Beaufort Tapino- cephalus AZ (Boonstra 1969; Smith & Keyser 1995) is present in the area. This is in addition to an earlier dis- Broomia perplexa Watson, 1914 (Figs 2–3) covery of Eunotosaurus 15 km to the east (Gow & de Klerk HOLOTYPE. BMNH R4065, an impression of a skull and 1997). fairly complete and articulated postcranium in ventral view. Figure 2 Broomia perplexa BP/1/6222. A, block containing the fossil, most elements are exposed in dorsal view. Pelvis and right hindlimb are shown prior to negative preparation. B, reverse side of the block, showing palate, the tibia–femur articulation and some unidentified postcranial elements. Abbreviations: cr, cranium; cl, clavicle; fe, femur; fi, fibula; h, humerus; is, ischia; ph, phalanx; m, manus; pb, pubis; r, radius; ti, tibia; ul, ulna; vt, vertebrae. 456 J. C. Cisneros et al. Figure 3 Broomia perplexa BP/1/6222. A, cranium, left lateral and dorsal surfaces. B, cranium in palatal view and attached
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus Cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes
    RESEARCH ARTICLE Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes Yara Haridy*, Mark J. Macdougall, Diane Scott, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada * [email protected] a11111 Abstract A juvenile specimen of Delorhynchus cifellii, collected from the Early Permian fissure-fill deposits of Richards Spur, Oklahoma, permits the first detailed study of cranial ontogeny in this parareptile. The specimen, consisting of a partially articulated skull and mandible, exhib- OPEN ACCESS its several features that identify it as juvenile. The dermal tuberosities that ornament the dor- Citation: Haridy Y, Macdougall MJ, Scott D, Reisz sal side and lateral edges of the largest skull of D. cifellii specimens, are less prominent in RR (2016) Ontogenetic Change in the Temporal the intermediate sized holotype, and are absent in the new specimen. This indicates that the Region of the Early Permian Parareptile new specimen represents an earlier ontogenetic stage than all previously described mem- Delorhynchus cifellii and the Implications for bers of this species. In addition, the incomplete interdigitation of the sutures, most notably Closure of the Temporal Fenestra in Amniotes. PLoS ONE 11(12): e0166819. doi:10.1371/journal. along the fronto-nasal contact, plus the proportionally larger sizes of the orbit and temporal pone.0166819 fenestrae further support an early ontogenetic stage for this specimen. Comparisons Editor: Thierry Smith, Royal Belgian Institute of between this juvenile and previously described specimens reveal that the size and shape of Natural Sciences, BELGIUM the temporal fenestra in Delorhynchus appear to vary through ontogeny, due to changes in Received: July 18, 2016 the shape and size of the bordering cranial elements.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Permitid: 2796
    Export parareptile skulls for synchrotron scanning at ESRF Our Ref: 12890 Enquiries: Ragna Redelstorff Date: Thursday September 20, 2018 Tel: +27 (0)21 202 8651 Page No: 1 Email: [email protected] CaseID: 12890 PermitID: 2796 PERMIT: Export (Temporary) In terms of Section 32(19) of the National Heritage Resources Act (Act 25 of 1999) Permit Holder: Dr Jonah Nathaniel Choiniere Evolutionary Studies Institute University of the Witwatersrand Private Bag 3, WITS 2050 Object: AM 3585, BP/1/5128, BP/1/4195, BP/1/5398, BP/1/3822, BP/1/3819, BP/1/70, BP/1/2871, BP/1/720, BP/1/5927a, BP/1/5927c, BP/1/3318, BP/1/4504a, BP/1/5880, BP/1/1396 The permit is issued to Dr. Jonah N. Choiniere (ESI Evolutionary Studies Institute, University of the Witwatersrand), in collaboration with Dr. Vincent Fernandez (ESRF European Synchrotron Radiation facility, Grenoble, France) to temporarily export 15 fossil skulls of parareptilians Paliguana whitei (AM 3585), Prolacerta (BP/1/5128, BP/1/4504a, BP/1/5880), Owenetta (BP/1/4195, BP/1/5398, BP/1/3819), Milleretta (BP/1/3822, BP/1/720, BP/1/3318, BP/1/1396), Youngina (BP/1/70, BP/1/2871) and Procolophon (BP/1/5927 2 specimens) for synchrotron scanning at the ESRF, Grenoble, France. The material is currently housed at the Albany Museum, Grahamstown (AM 3585) and Evolutionary Studies Institute, University of the Witwatersrand. Conditions: 1. Only the selected representatives of the material stored in the collection may be exported. 2. The material must be carefully packed and all packaging must be clearly marked with the name of the site (if known), and the name and address of the permit holder or the Albany Museum and ESI.
    [Show full text]
  • Heritage Impact Assessment: Proposed Quarry on Portion 4 of Farm 120, Waai Kraal, Outside Beaufort West, Western Cape
    HERITAGE IMPACT ASSESSMENT: PROPOSED QUARRY ON PORTION 4 OF FARM 120, WAAI KRAAL, OUTSIDE BEAUFORT WEST, WESTERN CAPE (Assessment conducted under Section 38 (8) of the National Heritage Resources Act (No. 25 of 1999) as part of Basic Assessment) Prepared for Greenmined Environmental On behalf of Lombardskraal Doleriet (Pty) Ltd December 2020 Version 1.0 Prepared by John Gribble (MA) ACO Associates 8 Jacobs Ladder, St James, Cape Town, 7945 Phone (021) 706 4104 Fax (086) 603 7195 Email: [email protected] CONTENTS OF THE SPECIALIST REPORT – CHECKLIST Regulation GNR 326 of 4 December 2014, as amended 7 April Section of Report 2017, Appendix 6 (a) details of the specialist who prepared the report; and the Preface pages and expertise of that specialist to compile a specialist report including Appendices C and D a curriculum vitae; (b) a declaration that the specialist is independent in a form as Page 4 may be specified by the competent authority; (c) an indication of the scope of, and the purpose for which, the Section 3: Terms of report was prepared; Reference (cA) an indication of the quality and age of base data used for the Section 6: Methodology specialist report; (cB) a description of existing impacts on the site, cumulative Section 14: Impacts impacts of the proposed development and levels of acceptable and Risks change; (d) the duration, date and season of the site investigation and the Section 6.3: relevance of the season to the outcome of the assessment; (e) a description of the methodology adopted in preparing the Section
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Alpha Taxonomy of the Russian Permian Procolophonoid Reptiles
    Alpha taxonomy of the Russian Permian procolophonoid reptiles LAURA K. SÄILÄ Säilä, L.K. 2009. Alpha taxonomy of the Russian Permian procolophonoid reptiles. Acta Palaeontologica Polonica 54 (4): 599–608. doi:10.4202/app.2009.0017 European Russia has been the source of many procolophonoid taxa from both the Permian and Triassic, and a Permian or− igin for the procolophonoid family Procolophonidae has been based on the Russian taxon Microphon exiguus. Recently, this taxon was reclassified as a seymouriamorph and, in its place, the taxa Nyctiphruretus, Suchonosaurus, and Kinelia from the Middle and Upper Permian of Russia were suggested as “procolophons”, using evolutionary−systematic classifi− cation methods. In recent phylogenies, however, Nyctiphruretus has been recovered as a non–procolophonoid para− reptile, whereas Kinelia and Suchonosaurus have never been included in a phylogenetic study. Re−examination indicates that Suchonosaurus is a member of the procolophonoid subfamily Procolophonidae based on the shape of the maxillary bone and the external naris, the laterally visible maxillary depression, and the number and type of maxillary teeth. Kinelia, on the other hand, is excluded from the Procolophonoidea because of its subpleurodont dental attachment and lack of any procolophonoid features. Thus, Suchonosaurus is the only confirmed Permian procolophonid from the Permian of Rus− sia. Additionally, re−examination of the holotype of Microphon exiguus confirms that it is identical to the seymouria− morph specimens recently included in the genus Microphon and that it lacks procolophonoid features. The earliest un− equivocal record of the subfamily Procolophonidae is confirmed from the Late Permian of Russia, making Russia the only region where, with certainty, both Permian and Triassic procolophonids have been discovered.
    [Show full text]
  • Chinese Pareiasaurs
    Benton, M. J. (2016). The Chinese pareiasaurs. Zoological Journal of the Linnean Society, 177(4), 813-853. https://doi.org/10.1111/zoj.12389 Peer reviewed version License (if available): Unspecified Link to published version (if available): 10.1111/zoj.12389 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/zoj.12389/abstract. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Page 1 of 85 Zoological Journal of the Linnean Society 1 1 2 3 1 [Abstract] 4 5 2 6 3 Pareiasaurs were important medium- to large-sized herbivores in the Middle and Late 7 8 4 Permian, some 268-252 million years (Myr) ago. They are best known from abundant remains 9 10 5 of several taxa each in South Africa and Russia, with isolated finds from other parts of the 11 6 world. Six genera and species of pareiasaurs have been described from China, and yet they 12 13 7 have not been reviewed. Of these six, Tsiyuania may be a synonym of Honania, but this taxon 14 15 8 is not further considered here. The other four, which were named for separate finds from the 16 9 Sunjiagou Formation (Changhsingian, 254-252 Myr) show considerable similarities.
    [Show full text]
  • Origin of the Unique Ventilatory Apparatus of Turtles
    ARTICLE Received 8 Apr 2014 | Accepted 10 Sep 2014 | Published 7 Nov 2014 DOI: 10.1038/ncomms6211 Origin of the unique ventilatory apparatus of turtles Tyler R. Lyson1,2,3, Emma R. Schachner4,5, Jennifer Botha-Brink6,7, Torsten M. Scheyer8, Markus Lambertz9, G.S. Bever3,10,11, Bruce S. Rubidge3 & Kevin de Queiroz2 The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of inter- costal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell. 1 Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205, USA. 2 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA. 3 Evolutionary Studies Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa.
    [Show full text]
  • Cisneros2008.Pdf
    Journal of Systematic Palaeontology 6 (3): 345–366 Issued 22 August 2008 doi:10.1017/S1477201907002350 Printed in the United Kingdom C The Natural History Museum ! Phylogenetic relationships of procolophonid parareptiles with remarks on their geological record Juan Carlos Cisneros∗ Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, South Africa SYNOPSIS The phylogenetic intrarelationships of procolophonid parareptiles are determined via a comprehensive cladistic analysis using a data matrix of 21 taxa and 58 characters. Most taxa are in- cluded for the first time in a phylogenetic analysis and 27 characters are novel. The relationships within the group are more firmly resolved than in previous analyses. Procolophoninae and Leptopleuron- inae, two of the three traditional subdivisions of the Procolophonidae, are valid monophyletic groups, but Spondylolestinae is polyphyletic. The Chinese genera Pentaedrusaurus and Neoprocolophon are the most primitive members of the Leptopleuroninae. A new group, Theledectinae, is erected. The latter clade consists of small procolophonids with a reduced marginal dentition and wide bulbous monocuspid teeth. Eumetabolodon from China and the former genus ‘Thelegnathus’ from South Africa are shown to be polyphyletic. The successful radiation of the Procolophonidae during the Triassic is likely to be related to the development of feeding adaptations that allowed exploration of various ecological niches, particularly the exploitation of high-fibre herbivory. The scarcity of Permian records of procolophonids is examined and the genus Spondylolestes from the Upper Permian of South Africa is considered to be a valid taxon with procolophonid affinities. Finally, a review of the records from the Middle and Upper Triassic reveals a procolophonid global hiatus of more than 15 Ma in Ladinian–Lower Carnian rocks.
    [Show full text]
  • Phylogenetic Relationships Among Extinct and Extant Turtles: the Position of Pleurodira and the Effects of the Fossils on Rooting Crown-Group Turtles
    Contributions to Zoology, 79 (3) 93-106 (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles Juliana Sterli1, 2 1 CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina 2 E-mail: [email protected] Key words: molecules, morphology, phylogeny, Testudinata, Testudines Abstract Taxonomic nomenclature ........................................................ 94 Taxonomic sampling ................................................................ 94 The origin and evolution of the crown-group of turtles (Crypto- Character sampling ................................................................. 95 dira + Pleurodira) is one of the most interesting topics in turtle Phylogenetic analyses ............................................................. 95 evolution, second perhaps only to the phylogenetic position of Results ............................................................................................... 97 turtles among amniotes. The present contribution focuses on Morphological analysis with extinct taxa .......................... 97 the former problem, exploring the phylogenetic relationships Molecular analyses .................................................................. 97 of extant and extinct turtles based on the most comprehensive Morphological and molecular analysis excluding phylogenetic dataset of morphological and molecular data ana- extinct taxa ................................................................................
    [Show full text]
  • Biarmosuchus
    Meet the Amniotes: The great terrestrial adaptation Pterosauria Archaic archosaurs Crocodiles Dinosauria Lepidosaurs Anapsids Synapsids Most ‘amphibians’ Most ‘fishes’ Assorted jawless fish Amniota Urochordata Tetrapoda Cephalochordata Gnathostomata Vertebrata Amniotic egg Chordata Thick skin Distinctive skulls The cleidoic egg: a private pond Eggshell: Semipermeable Calcareous or leathery Albumen: Egg cytoplasm Amnion: Protection / Gas transfer Yo l k Sac: Nutrient Pool Allantois: Waste Pool Synapsida Anapsida Lepidosauria Archosauria First amniotes Diapsida in record (!!) Eureptilia Amniotes Walking with Monsters Chapter 2 1:10-5:00 Evolution of Eggs? Some modern amphibians To deal with longer time Eggs became larger, lay eggs on land... why? periods on dry land, tougher. Large eggs can - One inner membrane tougher shells were produce larger babies, 1. escape predation selected for. Gas exchange which had a higher and waste devices evolved likelihood of survival in a for complete eggtonomy tough world. Evolution of Hair? Amniotes all have the gene for hair: alpha keratin In birds/lizards, it’s expressed in claws In mammals, it’s used in hair & nails 310 Ma Thrinaxodon Blood vessel channels on premaxillae, maxillae ~vibrassae (whiskers) (early Triassic) Castorcauda First direct fossil evidence of hair (mid-Jurassic) Meet the Amniotes No temporal fenestra Upper temporal fenestra Lower temporal fenestra Single temporal fenestra = ‘window’ fenestra The Permian 299-251 Ma The Permian 299-251 Ma Convergence of Pangaea The effects of the landscape on climate: Gondwana icecap disappeared Heat distributed more equally through fluids than solids as continent drifted north Oceans slower to warm/cool than continents Pangaea: Rapid warming/cooling ~ more intense than today Temperature extremes Our modern continents are ‘tempered’ by oceans between them.
    [Show full text]