Phylogeny of Paleozoic Limbed Vertebrates Reassessed Through Revision and Expansion of the Largest Published Relevant Data Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Die Microsauria Des Mitteleuropäischen Rotliegend
Die Microsauria des mitteleuropäischen Rotliegend Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften" im Promotionsfach Geologie/Paläontologie am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz Sabine Glienke geb. in Worms Mainz, 2011 http://d-nb.info/1058187503 Inhalt Inhalt 1. Einleitung 6 1.1. Allgemeine Merkmale und Bearbeitungsgeschichte 6 1.2. Fundorte und Erhaltung 9 2. Methoden, Abkürzungen und Material 16 2.1. Methoden 16 2.1.1. Bearbeitung der Skelette 16 2.1.2. Gewinnung und Bearbeitung der Einzelknochen 16 2.1.3. Kladogramme 17 2.2. Abkürzungen 17 2.2.1. Sammlungen 17 2.2.2. In den Zeichnungen verwendete Abkürzungen 17 2.3. Übersicht über die untersuchten Skelette 19 3. Beschreibungen 21 3.1. Die Familie Brachystelechidae CARROLL& GASKILL, 1978 21 3.1.1. Systematische Stellung 21 3.1.2. Diagnose 21 3.2. Die Gattung Batropetes CARROLL & GASKILL, 1971 21 3.2.1. Systematische Stellung 21 3.2.2. Diagnose 22 3.2.3. Die vier Spezies der Gattung Batropetes 22 3.3. Batropetes niederkirchensis n. sp 26 3.3.1. Diagnose 26 3.3.2. Beschreibung 28 3.3.2.1. Schädel 28 3.3.2.1.1. Schädeldach 28 3.3.2.1.2. Gaumen 38 3.3.2.1.3. Hirnkapsel 43 3.3.2.1.4. Unterkiefer 46 3.3.2.2. Postcraniales Skelett 48 Inhalt 3.4. Batropetes palatinus n. sp 62 3.4.1. Diagnose 62 3.4.2. Beschreibung 63 3.4.2.1. Schädel 74 3.4.2.1.1. Schädeldach 74 3.4.2.1.2. -
New Permian Fauna from Tropical Gondwana
ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina. -
Limb Ossification in the Paleozoic Branchiosaurid Apateon (Temnospondyli) and the Early Evolution of Preaxial Dominance in Tetrapod Limb Development
EVOLUTION & DEVELOPMENT 9:1, 69 –75 (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development Nadia B. Fro¨bisch,a,Ã Robert L. Carroll,a and Rainer R. Schochb aRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal H3A 2K6, Canada bStaatliches Museum fu¨r Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY Despite the wide range of shapes and sizes that divergent evolution of these two pathways and its causes are accompany a vast variety of functions, the development of still not understood. Based on an extensive ontogenetic series tetrapod limbs follows a conservative pattern of de novo we investigated the pattern of limb development of the 300 Ma condensation, branching, and segmentation. Development of old branchiosaurid amphibian Apateon. This revealed a the zeugopodium and digital arch typically occurs in a posterior preaxial dominance in limb development that was previously to anterior sequence, referred to as postaxial dominance, with believed to be unique and derived for modern salamanders. a digital sequence of 4–3–5–2–1. The only exception to this The Branchiosauridae are favored as close relatives of pattern in all of living Tetrapoda can be found in salamanders, extant salamanders in most phylogenetic hypotheses of the which display a preaxial dominance in limb development, a de highly controversial origins and relationships of extant novo condensation of a basale commune (distal carpal/tarsal amphibians. The findings provide new insights into the 112) and a precoccial development of digits I and II. -
AMS112 1978-1979 Lowres Web
--~--------~--------------------------------------------~~~~----------~-------------- - ~------------------------------ COVER: Paul Webber, technical officer in the Herpetology department searchers for reptiles and amphibians on a field trip for the Colo River Survey. Photo: John Fields!The Australian Museum. REPORT of THE AUSTRALIAN MUSEUM TRUST for the YEAR ENDED 30 JUNE , 1979 ST GOVERNMENT PRINTER, NEW SOUTH WALES-1980 D. WE ' G 70708K-1 CONTENTS Page Page Acknowledgements 4 Department of Palaeontology 36 The Australian Museum Trust 5 Department of Terrestrial Invertebrate Ecology 38 Lizard Island Research Station 5 Department of Vertebrate Ecology 38 Research Associates 6 Camden Haven Wildlife Refuge Study 39 Associates 6 Functional Anatomy Unit.. 40 National Photographic Index of Australian Director's Research Laboratory 40 Wildlife . 7 Materials Conservation Section 41 The Australian Museum Society 7 Education Section .. 47 Letter to the Premier 9 Exhibitions Department 52 Library 54 SCIENTIFIC DEPARTMENTS Photographic and Visual Aid Section 54 Department of Anthropology 13 PublicityJ Pu bl ications 55 Department of Arachnology 18 National Photographic Index of Australian Colo River Survey .. 19 Wildlife . 57 Lizard Island Research Station 59 Department of Entomology 20 The Australian Museum Society 61 Department of Herpetology 23 Appendix 1- Staff .. 62 Department of Ichthyology 24 Appendix 2-Donations 65 Department of Malacology 25 Appendix 3-Acknowledgements of Co- Department of Mammalogy 27 operation. 67 Department of Marine -
BOA2.1 Caecilian Biology and Natural History.Key
The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia -
Stuttgarter Beiträge Zur Naturkunde
S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid. -
Cape Range National Park
Cape Range National Park Management Plan No 65 2010 R N V E M E O N G T E O H F T W A E I S L T A E R R N A U S T CAPE RANGE NATIONAL PARK Management Plan 2010 Department of Environment and Conservation Conservation Commission of Western Australia VISION By 2020, the park and the Ningaloo Marine Park will be formally recognised amongst the world’s most valuable conservation and nature based tourism icons. The conservation values of the park will be in better condition than at present. This will have been achieved by reducing stress on ecosystems to promote their natural resilience, and facilitating sustainable visitor use. In particular, those values that are not found or are uncommon elsewhere will have been conserved, and their special conservation significance will be recognised by the local community and visitors. The park will continue to support a wide range of nature-based recreational activities with a focus on preserving the remote and natural character of the region. Visitors will continue to enjoy the park, either as day visitors from Exmouth or by camping in the park itself at one of the high quality camping areas. The local community will identify with the park and the adjacent Ningaloo Marine Park, and recognise that its values are of international significance. An increasing number of community members will support and want to be involved in its ongoing management. The Indigenous heritage of the park will be preserved by the ongoing involvement of the traditional custodians, who will have a critical and active role in jointly managing the cultural and conservation values of the park. -
Heber Den Archegosaurus Der Stciiikohleiiforntatioii. Wenn Auch
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Palaeontographica - Beiträge zur Naturgeschichte der Vorzeit Jahr/Year: 1851 Band/Volume: 1 Autor(en)/Author(s): Meyer Hermann Christian Erich von Artikel/Article: Ueber den Archegosaurus der Steinkohlenformation. 209-215 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Heber den Archegosaurus der Stciiikohleiiforntatioii. Von Hermann von Meyer. Die Nachrichten über das Vorkommen von Reptilien in Gebilden älter als die Formation des Zechsteins hatten sich bei genauerer Prüfung immer als unhaltbar bewiesen. Man glaubte sich daher um so mehr berechtigt, anzunehmen, dass im Zechstein die ältesten Reptilien begraben lägen, als während der Versammlung der Naturforscher in Mainz Dr. Gergens und Alex. Braun mir eine Wirbelthier- Versteinerung aus dem der Steinkohlenformation angehörigen, durch seine Fische berühmten Schieferthon von Münster- Appel in der bayerschen Pfalz vorlegten, deren Beschaffenheit mehr auf ein Wirbelthier mit Füssen als auf einen Fisch schliessen Hess. Dieses merkwürdige kleine Geschöpf habe ich Anfangs 1844, es Apateon pedestris nennend, beschrieben (Jahrb. f. Min. 1844. S. 336), später aber in den Palaeontographicis (1. S. 152. Taf. 20. Fig. t.) dargelegt. Drei Jahre darauf gelang es dem Berghauptmann v. Dechen in den Sphärosideritnieren der Steinkohlenformation zu Lebach im Saarbrücken'schen, woraus zuvor ebenfalls nur Fische bekannt waren , Ueberreste zu entdecken , welche an die Gegenwart von Sauriern in diesem Ge- bilde glauben Hessen. Mit dem zu Münster-Appel gefundenen Thier stimmten sie nicht überein. Die erste Nachricht darüber theilte Goldfuss in der Niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn am 18. Februar 1847 mit. -
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna. -
C.-Shoulder Joint
59.14.98,1:81 Article X.-THE LOCOMOTOR APPARATUS OF CERTAIN PRIMITIVE AND MAMMAL-LIKE REPTILES' BY ALFRED S. ROMER PLATES XXVII TO XLVI TABLE OF CONTENTS PAGE INTRODIUCTION ......................................................... 519 FORE LIMB, MIUSCULATURE ............................................. 524 1.-Trapezius (and sterno-cleido-mastoideus) ........................ 524 2.-Axial muscles acting on the girdle ............................... 525 a.-Dorsal: levator scapul& (and atlanto-scapularis, atlanto- acromialis or omo-trachelius and rhomboideuA), serratus anterior .............................................. 525 b.-Ventral: sterno- (episterno) hyoideus and omo-hyoideus, sterno-costo-coracoidei (subclavius) ................... 526 3.-Latissimus dorsi and teres major ................................ 527 4.-Pectoralis ..................................................... 528 5.-Deltoid ....................................................... 529 6.-Subcoraco-scapularis and scap'ilo-humeralis posterior (subscapularis) 530 7.-Scapulo-humeralis anterior (teres minor), supracoracoideus (supra- and infraspinatus), and coraco-brachialis ..................... 532 8.-Biceps and brachialis .......................................... 536 9.-Triceps ............................... A 537 10.-Brachio- (humero-) radialis (supinator longus) and supinator ...... 538 11.-Forearm: extensors............................................. 539 12.-Forearm: flexors (includingpronators) ............................ 540 13.-Groupingof forelimb muscles