Heber Den Archegosaurus Der Stciiikohleiiforntatioii. Wenn Auch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Permian Fauna from Tropical Gondwana
ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina. -
Stuttgarter Beiträge Zur Naturkunde
S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid. -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Early Vertebrate Evolution Follow the Footprints and Mind the Gaps: a New Look at the Origin of Tetrapods Per E
Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 115–137, 2019 (for 2018) Early Vertebrate Evolution Follow the footprints and mind the gaps: a new look at the origin of tetrapods Per E. AHLBERG Department of Organismal Biology, Uppsala University, Norbyva¨gen 18A, 752 36 Uppsala, Sweden. Email: [email protected] ABSTRACT: The hypothesis that tetrapods evolved from elpistostegids during the Frasnian, in a predominantly aquatic context, has been challenged by the discovery of Middle Devonian tetrapod trackways predating the earliest body fossils of both elpistostegids and tetrapods. Here I present a new hypothesis based on an overview of the trace fossil and body fossil evidence. The trace fossils demonstrate that tetrapods were capable of performing subaerial lateral sequence walks before the end of the Middle Devonian. The derived morphological characters of elpistostegids and Devonian tetrapods are related to substrate locomotion, weight support and aerial vision, and thus to terres- trial competence, but the retention of lateral-line canals, gills and fin rays shows that they remained closely tied to the water. Elpistostegids and tetrapods both evolved no later than the beginning of the Middle Devonian. The earliest tetrapod records come from inland river basins, sabkha plains and ephemeral coastal lakes that preserve few, if any, body fossils; contemporary elpistostegids occur in deltas and the lower reaches of permanent rivers where body fossils are preserved. During the Frasnian, elpistostegids disappear and these riverine-deltaic environments are colonised by tetrapods. This replacement has, in the past, been misinterpreted as the origin of tetrapods. KEY WORDS: body fossils, Devonian, terrestrialisation, trackways, vertebrates. -
A New Species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the Intrarelationships of the Genus
Foss. Rec., 19, 83–100, 2016 www.foss-rec.net/19/83/2016/ doi:10.5194/fr-19-83-2016 © Author(s) 2016. CC Attribution 3.0 License. A new species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the intrarelationships of the genus Florian Witzmann1,2, Sven Sachs3,a, and Christian J. Nyhuis4 1Department of Ecology and Evolutionary Biology, Brown University, Providence, G-B204, RI 02912, USA 2Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany 3Naturkundemuseum Bielefeld, Abteilung Geowissenschaften, Adenauerplatz 2, 33602 Bielefeld, Germany 4Galileo-Wissenswelt, Mummendorferweg 11b, 23769 Burg auf Fehmarn, Germany aprivate address: Im Hof 9, 51766 Engelskirchen, Germany Correspondence to: Florian Witzmann (fl[email protected]; fl[email protected]) Received: 19 January 2016 – Revised: 11 March 2016 – Accepted: 14 March 2016 – Published: 23 March 2016 Abstract. A nearly complete dermal skull roof of a capi- clotosaurus is the sister group of the Heylerosaurinae (Eo- tosaur stereospondyl with closed otic fenestrae from the mid- cyclotosaurus C Quasicyclotosaurus). Cyclotosaurus buech- dle Carnian Stuttgart Formation (Late Triassic) of Bielefeld- neri represents the only unequivocal evidence of Cycloto- Sieker (NW Germany) is described. The specimen is as- saurus (and of a cyclotosaur in general) in northern Germany. signed to the genus Cyclotosaurus based on the limited con- tribution of the frontal to the orbital margin via narrow lat- eral processes. A new species, Cyclotosaurus buechneri sp. nov., is erected based upon the following unique combina- 1 Introduction tion of characters: (1) the interorbital distance is short so that the orbitae are medially placed (shared with C. -
Anatomy and Relationships of the Triassic Temnospondyl Sclerothorax
Anatomy and relationships of the Triassic temnospondyl Sclerothorax RAINER R. SCHOCH, MICHAEL FASTNACHT, JÜRGEN FICHTER, and THOMAS KELLER Schoch, R.R., Fastnacht, M., Fichter, J., and Keller, T. 2007. Anatomy and relationships of the Triassic temnospondyl Sclerothorax. Acta Palaeontologica Polonica 52 (1): 117–136. Recently, new material of the peculiar tetrapod Sclerothorax hypselonotus from the Middle Buntsandstein (Olenekian) of north−central Germany has emerged that reveals the anatomy of the skull and anterior postcranial skeleton in detail. Despite differences in preservation, all previous plus the new finds of Sclerothorax are identified as belonging to the same taxon. Sclerothorax is characterized by various autapomorphies (subquadrangular skull being widest in snout region, ex− treme height of thoracal neural spines in mid−trunk region, rhomboidal interclavicle longer than skull). Despite its pecu− liar skull roof, the palate and mandible are consistent with those of capitosauroid stereospondyls in the presence of large muscular pockets on the basal plate, a flattened edentulous parasphenoid, a long basicranial suture, a large hamate process in the mandible, and a falciform crest in the occipital part of the cheek. In order to elucidate the phylogenetic position of Sclerothorax, we performed a cladistic analysis of 18 taxa and 70 characters from all parts of the skeleton. According to our results, Sclerothorax is nested well within the higher stereospondyls, forming the sister taxon of capitosauroids. Palaeobiologically, Sclerothorax is interesting for its several characters believed to correlate with a terrestrial life, although this is contrasted by the possession of well−established lateral line sulci. Key words: Sclerothorax, Temnospondyli, Stereospondyli, Buntsandstein, Triassic, Germany. -
Marzola Et Al 2017 Cyclotosaurus Greenland
Journal of Vertebrate Paleontology e1303501 (14 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2017.1303501 ARTICLE CYCLOTOSAURUS NARASERLUKI, SP. NOV., A NEW LATE TRIASSIC CYCLOTOSAURID (AMPHIBIA, TEMNOSPONDYLI) FROM THE FLEMING FJORD FORMATION OF THE JAMESON LAND BASIN (EAST GREENLAND) MARCO MARZOLA *,1,2,3,4 OCTAVIO MATEUS 1,3 NEIL H. SHUBIN5 and LARS B. CLEMMENSEN 2 1GeoBioTec, Departamento de Ciencias^ da Terra, Faculdade de Ciencias^ e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal, [email protected]; [email protected]; 2Institut for Geovidenskab og Naturforvaltning (IGN), Det Natur-og Biovidenskabelige Fakultet, Københavns Universitet, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark, [email protected]; 3Museu da Lourinha,~ Rua Joao~ Luıs de Moura, 95, 2530-158 Lourinha,~ Portugal; 4Geocenter Møns Klint, Stengardsvej 8, DK-4751 Borre, Denmark; 5Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, U.S.A., [email protected] ABSTRACT—Cyclotosaurus naraserluki, sp. nov., is a new Late Triassic capitosaurid amphibian from lacustrine deposits in the Fleming Fjord Formation of the Jameson Land Basin in Greenland. It is based on a fairly complete and well-preserved skull associated with two vertebral intercentra. Previously reported as Cyclotosaurus cf. posthumus, C. naraserluki is unique among cyclotosaurs for having the postorbitals embaying the supratemporals posteromedially. The anterior palatal vacuity presents an autapomorphic complete subdivision by a wide medial premaxillary-vomerine bony connection. The parasphenoid projects between the pterygoids and the exoccipitals, preventing a suture between the two, a primitive condition shared with Rhinesuchidae, Eryosuchus, and Kupferzellia. -
Functional Morphology of Stereospondyl Amphibian Skulls
Functional Morphology of Stereospondyl Amphibian Skulls Samantha Clare Penrice Doctor of Philosophy School of Life Sciences College of Science July 2018 Functional morphology of stereospondyl amphibian skulls Stereospondyls were the most diverse clade of early tetrapods, spanning 190 million years, with over 250 species belonging to eight taxonomic groups. They had a range of morphotypes and have been found on every continent. Stereospondyl phylogeny is widely contested and repeatedly examined but despite these studies, we are still left with the question, why were they so successful and why did they die out? A group-wide analysis of functional morphology, informing us about their palaeobiology, was lacking for this group and was carried out in order to address the questions of their success and demise. Based on an original photograph collection, size independent skull morphometrics were used, in conjunction with analyses of the fossil record and comparative anatomy, to provide a synthesis of the functional morphology of stereospondyl amphibians. Stereospondyls originated in the Carboniferous and most taxonomic groups were extinct at the end of the Triassic. The early Triassic had exceptionally high numbers of short- lived genera, in habitats that were mostly arid but apparently experienced occasional monsoon rains. Genera turnover slowed and diversity was stable in the Middle Triassic, then declined with a series of extinctions of the Late Triassic. Stereospondyls showed the pattern of ‘disaster’ taxa: rapidly diversifying following a mass extinction, spreading to a global distribution, although this high diversity was relatively short-lived. Geometric morphometrics on characteristics of the skull and palate was carried out to assess general skull morphology and identified the orbital position and skull outline to be the largest sources of skull variation. -
Morphological and Histological Description of Small Metoposaurids from Petrified Orf Est National Park, AZ, USA and the Taxonomy of Apachesaurus
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. National Park Service Publications and Papers National Park Service 5-22-2018 Morphological and histological description of small metoposaurids from Petrified orF est National Park, AZ, USA and the taxonomy of Apachesaurus Bryan M. Gee University of Toronto Mississauga & Petrified orF est National Park, [email protected] William G. Parker Petrified orF est National Park Follow this and additional works at: https://digitalcommons.unl.edu/natlpark Part of the Environmental Education Commons, Environmental Policy Commons, Environmental Studies Commons, Fire Science and Firefighting Commons, Leisure Studies Commons, Natural Resource Economics Commons, Natural Resources Management and Policy Commons, Nature and Society Relations Commons, Other Environmental Sciences Commons, Physical and Environmental Geography Commons, Public Administration Commons, and the Recreation, Parks and Tourism Administration Commons Gee, Bryan M. and Parker, William G., "Morphological and histological description of small metoposaurids from Petrified orF est National Park, AZ, USA and the taxonomy of Apachesaurus" (2018). U.S. National Park Service Publications and Papers. 198. https://digitalcommons.unl.edu/natlpark/198 This Article is brought to you for free and open access by the National Park Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. National Park Service Publications and Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HISTORICAL BIOLOGY 2020, VOL. 32, NO. 2, 203–233 https://doi.org/10.1080/08912963.2018.1480616 ARTICLE Morphological and histological description of small metoposaurids from Petrified Forest National Park, AZ, USA and the taxonomy of Apachesaurus Bryan M. -
1 1 Appendix S1: Complete List of Characters And
1 1 Appendix S1: Complete list of characters and modifications to the data matrix of RC07, with 2 reports of new observations of specimens. 3 The names, the abbreviations and the order of all characters and their states are 4 unchanged from RC07 unless a change is explained. We renumbered the characters we did 5 not delete from 1 to 277, so the character numbers do not match those of RC07. However, 6 merged characters retain the abbreviations of all their components: PREMAX 1-2-3 (our 7 character 1) consists of the characters PREMAX 1, PREMAX 2 and PREMAX 3 of RC07, 8 while MAX 5/PAL 5 (our ch. 22) is assembled from MAX 5 and PAL 5 of RC07. We did not 9 add any characters, except for splitting state 1 of INT FEN 1 into the new state 1 of INT FEN 10 1 (ch. 84) and states 1 and 2 of the new character MED ROS 1 (ch. 85), undoing the merger 11 of PIN FOR 1 and PIN FOR 2 (ch. 91 and 92) and splitting state 0 of TEETH 3 into the new 12 state 0 of TEETH 3 (ch. 183) and the entire new character TEETH 10 (ch. 190). A few 13 characters have additional states or are recoded in other ways. Deleted characters are retained 14 here, together with the reasons why we deleted them and the changes we made to their scores. 15 All multistate characters mention in their names whether they are ordered, unordered, 16 or treated according to a stepmatrix. -
Hadrokkosaurus Bradyi from the Early Middle Triassic of Arizona, and a Phylogenetic Analysis of Lower Jaw Characters in Temnospondyl Amphibians
The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians MARCELLO RUTA and JOHN R. BOLT Ruta, M. and Bolt, J.R. 2008. The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians. Acta Palaeontologica Polonica 53 (4): 579–592. The holotype of the brachyopoid temnospondyl Hadrokkosaurus bradyi, represented by a right lower jaw ramus, is re−ex− amined based upon new data and revision of various morphological features. Additional fragmentary jaw material re− ferred to this species is briefly described. Prominent features are a large postsymphyseal foramen that is anteriorly open, and prearticular and surangular buttresses for support of the articular. Brachyopoid characters include a long and robust postglenoid area formed by surangular and prearticular, anterior and posterior keels on at least some marginal dentary teeth, and subtriangular outline of the adductor fossa in dorsal view. Five features of the holotype ramus, long thought to be at odds with its brachyopoid or temnospondyl nature, are critically re−evaluated. A phylogenetic analysis of lower jaw characters in temnospondyls retrieves most of the clades found in more comprehensive data sets, but the statistical node support is low. Brachyopoids are monophyletic, with Hadrokkosaurus emerging as their most basal taxon. Key words: Temnospondyli, Brachyopidae, Chigutisauridae, lower jaw, phylogeny, characters, evolution. Marcello Ruta [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; John R. Bolt [[email protected]], Department of Geology, The Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605−2496, USA. -
Modes of Ventilation in Early Tetrapods: Costal Aspiration As a Key Feature of Amniotes
Modes of ventilation in early tetrapods: Costal aspiration as a key feature of amniotes CHRISTINE M. JANIS and JULIA C. KELLER Janis, C.M. & Keller, J.C. 2001. Modes of ventilation in early tetrapods: Costal aspira- tion as a key feature of amniotes. -Acta Palaeontologica Polonica 46, 2, 137-170. The key difference between amniotes (reptiles, birds and mammals) and anamniotes (amphibians in the broadest sense of the word) is usually considered to be the amniotic egg, or a skin impermeable to water. We propose that the change in the mode of lung ven- tilation from buccal pumping to costal (rib-based) ventilation was equally, if not more important, in the evolution of tetrapod independence from the water. Costal ventilation would enable superior loss of carbon dioxide via the lungs: only then could cutaneous respiration be abandoned and the skin made impermeable to water. Additionally efficient carbon dioxide loss might be essential for the greater level of activity of amniotes. We ex- amine aspects of the morphology of the heads, necks and ribs that correlate with the mode of ventilation. Anamniotes, living and fossil, have relatively broad heads and short necks, correlating with buccal pumping, and have immobile ribs. In contrast, amniotes have narrower, deeper heads, may have longer necks, and have mobile ribs, in correlation with costal ventilation. The stem amniote Diadectes is more like true amniotes in most respects, and we propose that the changes in the mode of ventilation occurred in a step- wise fashion among the stem amniotes. We also argue that the change in ventilatory mode in amniotes related to changes in the postural role of the epaxial muscles, and can be correlated with the evolution of herbivory.