Interview with Robert F. Bacher

Total Page:16

File Type:pdf, Size:1020Kb

Interview with Robert F. Bacher ROBERT F. BACHER (1905–2004) INTERVIEWED BY MARY TERRALL June–August 1981, February 1983 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Physics Abstract An interview in ten sessions, 1981 and 1983, with Robert F. Bacher, chairman of the Division of Physics, Mathematics, and Astronomy (1949-1962), Caltech’s first provost (1962-1969), and professor of physics, emeritus. He recalls his education at the University of Michigan and graduate work in physics at Harvard (1926-27) and Michigan, where he got to know J. R. Oppenheimer and the European physicists who joined the faculty and/or came for the summer sessions in physics: Goudsmit, Uhlenbeck, Fermi, Bohr, Ehrenfest, Dirac and others. Recalls postdoc year at Caltech (1930-31) working on atomic spectra; Oppenheimer’s lectures; Millikan’s cosmic-ray work. Spends 1931-1932 at MIT working with John Slater; Chadwick’s discovery of the neutron. Spends the next two years as a postdoc at Michigan, working with Goudsmit. Instructorship at Columbia, 1934; association with I. I. Rabi. Moves to Cornell in 1935; recollections of Hans Bethe; cyclotron work on neutron energies. Early 1941, joins the Radiation Laboratory at MIT, of which Lee DuBridge was director. Recalls start of Manhattan Engineer District; contacts with J. R. Oppenheimer and General Leslie Groves. Joins Los Alamos in June 1943 as head of experimental physics division; recollections of bomb work. Returns to Cornell in January 1946. Postwar development of high-energy physics; Acheson-Lilienthal Report on international http://resolver.caltech.edu/CaltechOH:OH_Bacher_R control of atomic energy. Establishment of the Atomic Energy Commission, fall 1946; he becomes a commissioner; moves to Washington, D.C. Recalls weapons testing in the Pacific and the development of nuclear reactors. In 1949, he becomes chairman of the Division of Physics, Mathematics, and Astronomy at Caltech. Called back to Washington to testify at Hickenlooper hearings; warns the British about Klaus Fuchs. Discusses the postwar buildup of physics at Caltech; comments on the mathematics and astronomy departments. Debate over tactical vs. strategic nuclear weapons. Service on President’s Science Advisory Committee; the McCarthy era; comments on his service as Caltech provost. Comments on establishment of Fermilab; participation in the International Union of Pure and Applied Physics. Recalls advent of Harold Brown as Caltech president in 1969; comments on reorganization of NASA contract with the Jet Propulsion Laboratory. Comments on current setup of Caltech’s Faculty Board and on his own activities since his retirement. Administrative information Access The interview is unrestricted. Copyright Copyright has been assigned to the California Institute of Technology © 1983, 2004. All requests for permission to publish or quote from the transcript must be submitted in writing to the University Archivist. Preferred citation Bacher, Robert F. Interview by Mary Terrall. Pasadena, California, June-August, 1981, February 1983. Oral History Project, California Institute of Technology Archives. Retrieved [supply date of retrieval] from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Bacher_R Contact information Archives, California Institute of Technology Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] Graphics and content © 2004 California Institute of Technology. http://resolver.caltech.edu/CaltechOH:OH_Bacher_R CALIFORNIA INSTITUTE OF TECHNOLOGY ORAL HISTORY PROJECT INTERVIEW WITH ROBERT F. BACHER BY MARY TERRALL PASADENA, CALIFORNIA Caltech Archives, 1983 Copyright © 1983, 2004 by the California Institute of Technology http://resolver.caltech.edu/CaltechOH:OH_Bacher_R Bacher–ii TABLE OF CONTENTS INTERVIEW WITH ROBERT F. BACHER Tape 1, Side 1 1-11 Childhood and early education in Ann Arbor; high school science courses; first exposure to modern physics in university chemistry library; decision to pursue career in physics. University of Michigan; graduate work at Harvard (1926-1927); quantum mechanics with J. Slater; graduate work at Michigan; upgrading of theoretical physics at Michigan; arrival of O. Laporte, G. Uhlenbeck, S. Goudsmit, and D. M. Dennison. Tape 1, Side 2 11-21 Work with Laporte and Goudsmit on atomic spectra; Michigan summer session in theoretical physics; thesis research on quantum-mechanical problems of hyperfine structure of spectra. Marriage to Jean Dow (1930); summer at Cavanaugh Lake; getting to know E. Fermi; National Research Council Fellowship at Caltech; cross-country drive to Pasadena. National Academy of Sciences meeting at Mt. Wilson Observatory; experimental spectroscopy at Caltech, I. S. Bowen, W. V. Houston; compendium of energy states of elements; working in observatory library, Santa Barbara St.; contact with various Caltech faculty. Tape 2, Side 1 22-31 Attending J. R. Oppenheimer’s lectures (1930-1931); spectroscopic work; contact with R. A. Millikan; Millikan’s cosmic ray work; Millikan’s attitude toward theoretical physics and quantum mechanics; C. Anderson’s high-energy research as outgrowth of earlier cosmic ray physics; C. C. Lauritsen and nuclear physics (Kellogg Laboratory) in 1930s; dedication of Athenaeum (1931). Reflections on year at Caltech; comparison of Caltech and Michigan physics departments; move to MIT for second year of fellowship to work with Slater. Tape 2, Side 2 31-39 Comparison of MIT and Caltech; journal club at which Chadwick’s discovery of neutron was discussed; initial skeptical reaction to Chadwick’s work by MIT physicists; implications of neutron for problems of nuclear moments. Return to Michigan; moving into experimental spectroscopy; working with no money and homemade equipment; theoretical work on energy states with Goudsmit; Goudsmit and Uhlenbeck. http://resolver.caltech.edu/CaltechOH:OH_Bacher_R Bacher–iii Tape 3, Side 1 40-49 Move to Columbia as instructor (1934); associations with I. I. Rabi, J. Kellogg, J. Zacharias, S. Millman; job offer from Cornell; experimental nuclear physics started at Cornell by S. Livingston; comparison of Cornell and Columbia; revitalization of Cornell’s physics department; beginning of friendship and collaboration with H. Bethe. Discovering Cornell’s unused equipment and setting up high-resolution spectroscopy; moving into nuclear physics; inheriting small cyclotron from Livingston (1938); using cyclotron for neutron work. Revising Cornell’s introductory physics course to include modern physics; teaching summer school; building up cyclotron research group—M. Holloway, C. Baker, B. McDaniel; refining equipment to measure time of flight of neutrons; developing new kind of detector; measuring neutron absorption spectra for various elements. Tape 3, Side 2 50-59 Relevance of theoretical background for experimental neutron work. Move to MIT’s Radiation Laboratory (1940); history of magnetron development and use; establishment of Radiation Lab; invitation to join; work on radar problem while continuing neutron work at Cornell. Pearl Harbor attack; cooperation of industrial laboratories on radar work; development of improved cathode-ray tubes for signal display; relations with the military; funding from National Defense Research Committee (NDRC); first successful detection of radio echoes; use of radar to chase submarines from Atlantic Coast; importance of radar for the war. Disparity between results from Cornell neutron work and Fermi’s results on thermal neutrons as a result of incorrect figure for boron cross section; discussing results with Fermi and preparing for publication; decision not to publish for security reasons. Cornell equipment moved to Los Alamos; decision to move nuclear reactor research (including Fermi’s group) to Chicago after Pearl Harbor; McDaniel’s expertise on fast circuits applied to bomb work at Los Alamos. Tape 4, Side 1 60-70 Running indicator group at Radiation Lab; Oppenheimer asks for advice on starting nuclear weapon lab (1942); planning discussions with Oppenheimer and Maj. L. Groves; objections to Oppenheimer’s agreement to set up lab as a military project; eventual change of plan; Groves- Conant letter; first trip to Los Alamos (1943); preliminary Los Alamos meeting on technical problems of building bomb. Invitation to join lab; initial refusal and more precise offer to come as head of experimental physics division; acceptance on condition that lab remain civilian project; question of whether bomb could be developed fast enough to be used in war; support of Radiation Lab for bomb project; moving to Los Alamos with family. Oppenheimer as director of lab; personal relationship with Oppenheimer. Tape 4, Side 2 70-81 Oppenheimer’s doubts about his own performance; Oppenheimer’s relationship with Groves; http://resolver.caltech.edu/CaltechOH:OH_Bacher_R Bacher–iv Oppenheimer’s clearance problems. Trip to Berkeley to inspect isotope separation (August 1943); finding samples of partially separated uranium-235; problems to be solved before bomb could be built; decision to use implosion method; technical problems associated with implosion. Preparing for first bomb test; test site; Hiroshima and Nagasaki bombs; work on next core assembly; trip to Washington with Oppenheimer; V-J Day; problem of ending project. International control of atomic energy; moving back to Cornell; postwar Cornell physics group. Tape 5, Side 1 82-92 Return to Cornell; setting up new high-energy physics lab there. Acheson-Lilienthal Report on atomic energy; scientific
Recommended publications
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Annual Report 2013.Pdf
    ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4
    [Show full text]
  • Edward Mills Purcell (1912–1997)
    ARTICLE-IN-A-BOX Edward Mills Purcell (1912–1997) Edward Purcell grew up in a small town in the state of Illinois, USA. The telephone equipment which his father worked with professionally was an early inspiration. His first degree was thus in electrical engineering, from Purdue University in 1933. But it was in this period that he realized his true calling – physics. After a year in Germany – almost mandatory then for a young American interested in physics! – he enrolled in Harvard for a physics degree. His thesis quickly led to working on the Harvard cyclotron, building a feedback system to keep the radio frequency tuned to the right value for maximum acceleration. The story of how the Manhattan project brought together many of the best physicists to build the atom bomb has been told many times. Not so well-known but equally fascinating is the story of radar, first in Britain and then in the US. The MIT radiation laboratory was charged with developing better and better radar for use against enemy aircraft, which meant going to shorter and shorter wavelengths and detecting progressively weaker signals. This seems to have been a crucial formative period in Purcell’s life. His coauthors on the magnetic resonance paper, Torrey and Pound, were both from this lab. I I Rabi, the physicist who won the 1944 Nobel Prize for measuring nuclear magnetic moments by resonance methods in molecular beams, was the head of the lab and a major influence on Purcell. Interestingly, Felix Bloch (see article on p.956 in this issue) was at the nearby Radio Research lab but it appears that the two did not interact much.
    [Show full text]
  • Footnotes for ATOMIC ADVENTURES
    Footnotes for ATOMIC ADVENTURES Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey into the Wild World of Nuclear Science By James Mahaffey While writing ATOMIC ADVENTURES, I tried to be careful not to venture off into subplots, however interesting they seemed to me, and keep the story flowing and progressing at the right tempo. Some subjects were too fascinating to leave alone, and there were bits of further information that I just could not abandon. The result is many footnotes at the bottom of pages, available to the reader to absorb at his or her discretion. To get the full load of information from this book, one needs to read the footnotes. Some may seem trivia, but some are clarifying and instructive. This scheme works adequately for a printed book, but not so well with an otherwise expertly read audio version. Some footnotes are short enough to be inserted into the audio stream, but some are a rambling half page of dense information. I was very pleased when Blackstone Audio agreed wholeheartedly that we needed to include all of my footnotes in this version of ATOMIC ADVENTURES, and we came up with this added feature: All 231 footnotes in this included text, plus all the photos and explanatory diagrams that were included in the text. I hope you enjoy reading some footnotes while listening to Keith Sellon-Wright tell the stories in ATOMIC ADVENTURES. James Mahaffey April 2017 2 Author’s Note Stories Told at Night around the Glow of the Reactor Always striving to beat the Atlanta Theater over on Edgewood Avenue, the Forsyth Theater was pleased to snag a one-week engagement of the world famous Harry Houdini, extraordinary magician and escape artist, starting April 19, 1915.1 It was issued an operating license, no.
    [Show full text]
  • Pandit Deendayal Petroleum University School of Liberal Studies
    Pandit Deendayal Petroleum University School of Liberal Studies BSP302T Electricity and magnetism Teaching Scheme Examination Scheme Theory Practical Total L T P C Hrs/Week MS ES IA LW LE/Viva Marks 4 0 0 4 4 25 50 25 -- -- 100 COURSE OBJECTIVES To provide the basic understanding of vector calculus and its application in electricity and magnetism To develop understanding and to provide comprehensive knowledge in the field of electricity and magnetism. To develop the concepts of electromagnetic induction and related phenomena To introduce the Maxwell’s equations and understand its significance UNIT 1 REVIEW OF VECTOR CALCULUS 8 Hrs. Properties of vectors, Introduction to gradient, divergence, curl, Laplacian, Introduction to spherical polar and cylindrical coordinates, Stokes’ theorem and Gauss divergence theorem, Problem solving. UNIT 2 ELECTRICITY 14 Hrs. Coulomb’s law and principle of superposition. Gauss’s law and its applications. Electric potential and electrostatic energy Poisson’s and Laplace’s equations with simple examples, uniqueness theorem, boundary value problems, Properties of conductors, method of images Dielectrics- Polarization and bound charges, Displacement vector Lorentz force law (cycloidal motion in an electric and magnetic field). UNIT 3 MAGNETISM 16 Hrs. Magnetostatics- Biot & Savart’s law, Amperes law. Divergence and curl of magnetic field, Vector potential and concept of gauge, Calculation of vector potential for a finite straight conductor, infinite wire and for a uniform magnetic field, Magnetism in matter,
    [Show full text]
  • 11/03/11 110311 Pisp.Doc Physics in the Interest of Society 1
    1 _11/03/11_ 110311 PISp.doc Physics in the Interest of Society Physics in the Interest of Society Richard L. Garwin IBM Fellow Emeritus IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 www.fas.org/RLG/ www.garwin.us [email protected] Inaugural Lecture of the Series Physics in the Interest of Society Massachusetts Institute of Technology November 3, 2011 2 _11/03/11_ 110311 PISp.doc Physics in the Interest of Society In preparing for this lecture I was pleased to reflect on outstanding role models over the decades. But I felt like the centipede that had no difficulty in walking until it began to think which leg to put first. Some of these things are easier to do than they are to describe, much less to analyze. Moreover, a lecture in 2011 is totally different from one of 1990, for instance, because of the instant availability of the Web where you can check or supplement anything I say. It really comes down to the comment of one of Elizabeth Taylor later spouses-to-be, when asked whether he was looking forward to his wedding, and replied, “I know what to do, but can I make it interesting?” I’ll just say first that I think almost all Physics is in the interest of society, but I take the term here to mean advising and consulting, rather than university, national lab, or contractor research. I received my B.S. in physics from what is now Case Western Reserve University in Cleveland in 1947 and went to Chicago with my new wife for graduate study in Physics.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Aspin Bubbles Mechanical Project for the Unification of the Forces of Nature
    Aspin Bubbles mechanical project for the unification of the forces of Nature Yoël Lana-Renault Departamento de Física Teórica. Facultad de Ciencias. Universidad de Zaragoza. 50009 - Zaragoza, Spain e-mail: [email protected] web: www.yoel-lana-renault.es This paper describes a mechanical theory for the unification of the basic forces of Nature with a single wave-particle interaction. The theory is based on the hypothesis that the ultimate components of matter are just two kind of pulsating particles. The interaction between these particles immersed in a fluid-like medium (ether) reproduces all the forces in Nature: electric, nuclear, gravitational, magnetic, atomic, van der Waals, Casimir, etc. The theory also designes the internal structure of the atom and of the fundamental particles that are currently known. Thus, a new concept of physics, capable of tackling entirely new problems, is introduced. Keywords: Unification of Forces, Non-linear Interactions. 1. Introduction Our theory presented here is compatible with existing views about the nature of matter, and demonstrates that the essential properties of particles can be described in the mechanical framework of classical physics with certain assumptions about the nature of physical space, which is traditionally called the ether. The theory is a synthesis of ideas used by Newton, Faraday, Maxwell and Einstein. In the past, the hypothesis of the ether as a fluid was decisive in the creation of the theory of the electromagnetic field. Vortex rings were used to construct a model of the atom at a time when the existence of elementary particles was not known. These days, applying vortex models to elementary particles looked reasonable.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Cornell Gets a New Chair
    PEOPLE APPOINTMENTS & AWARDS Cornell gets a new chair Two prominent accelerator physicists and Cornell alumni, Helen T Edwards and her husband, Donald A Edwards, have endowed a chair in accelerator physics at Cornell.The chair is named after Boyce D McDaniel, pro­ fessor emeritus at Cornell. The first holder of the new chair is David L Rubin, professor of physics and director of accelerator physics at Cornell.The donors David Rubin is the first incumbent of the new Boyce McDaniel Chair of Physics at Cornell, asked that the new professorship should be endowed by Helen and Donald Edwards. The chair is named after Boyce D McDaniel. Left awarded to a Cornell faculty member whose to right: Boyce McDaniel, Donald Edwards, David Rubin, Helen Edwards and Maury Tigner, discipline is particle-beam physics and who director of Cornell's Laboratory of Nuclear Studies. would teach both graduate and undergradu­ ate students in addition to doing research. McDaniel, a previous director of nuclear ingthe commissioning of the Main Ring at Helen Edwards is a 1957 graduate of science at Cornell, was Helen Edwards' thesis Fermilab and providing advice for numerous Cornell, where she also earned her PhD in adviser. Initially a graduate student at Cornell, accelerator projects throughout the US, in 1966. She works at Fermilab and at DESY in he left during the Second World War to join the addition to his notable contributions to the Germany. She played a prominent role in the Manhattan Project and returned to complete accelerator and elementary particle physics construction of Fermilab'sTevatron and has his PhD, joining the faculty in 1946.
    [Show full text]