<<

(19) &   

(11) EP 1 756 126 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 9/30 (2006.01) 08.02.2012 Bulletin 2012/06 (86) International application number: (21) Application number: 05737652.7 PCT/US2005/013756

(22) Date of filing: 22.04.2005 (87) International publication number: WO 2005/105818 (10.11.2005 Gazette 2005/45)

(54) PROCESS FOR THE ALKYLATION OF PHOSPHORUS-CONTAINING COMPOUNDS VERFAHREN ZUR ALKYLIERUNG VON PHOSPHORHALTIGEN VERBINDUNGEN PROCEDE D"ALKYLATION DE COMPOSES CONTENANT DU PHOSPHORE

(84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • I DEVEDJIEV ET AL: "On the Interaction between HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Hypophosphorous and " PHOSPHORUS AND SULFUR, vol. 31, (30) Priority: 23.04.2004 US 564801 P 1987, pages 7-11, XP008049857 • BOYD E A ET AL: "SYNTHESIS OF (43) Date of publication of application: PHOSPHINIC FROM SILYL 28.02.2007 Bulletin 2007/09 PHOSPHONITES AND ALKYL HALIDES" TETRAHEDRONLETTERS, ELSEVIER (73) Proprietor: ICL-IP America Inc. SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. Ardsley, NY 10502 (US) 35, no. 24, 9 May 1994 (1994-05-09), pages 4223-4226, XP002900417 ISSN: 0040-4039 (72) Inventors: • V A CHAUZOV ET AL: "Alkylation of •YAO,Qiang Hydrophosphoryl Compounds by Alcohols. Yorktown Heights, NY 10598 (US) Synthesis of Diorganoalkylphosphine • LEVCHIK, Sergei, V. Oxides" JOURNAL OF GENERAL CHEMISTRY Croton-on-Hudson, NY 10520 (US) OF THE USSR, vol. 59, 1989, pages 2211-2213, XP002336546 (74) Representative: Beetz, Tom et al • MITSUJI YAMASHITA ET AL: "Nucleophilic De Vries & Metman Substitution with Phosphide Anions Prepared by Overschiestraat 180 an Action of Sodium Dihydrobis(2- 1062 XK Amsterdam (NL) methoxyethanolato)aluminate on Phosphorous Compounds" BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 56, 1983, pages 219-222, XP002336547 • DEPRELE S ET AL: "TRIETHYLBORANE- INITIATED ROOM TEMPERATURE RADICAL ADDITION OF HYPOPHOSPHITES TO OLEFINS: SYNTHESIS OF MONOSUBSTITUTED PHOSPHINIC ACIDS AND " JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, US, vol. 66, no. 20,5 October 2001 (2001-10-05), pages 6745-6755, XP001083279 ISSN: 0022-3263 cited in the application

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 756 126 B1

Printed by Jouve, 75001 PARIS (FR) EP 1 756 126 B1

Description

BACKGROUND OF THE INVENTION

5 [0001] This invention relates to processes for alkylating phosphorus-containing compounds. More particularly, this invention relates to processes for alkylating phosphorus-containing compounds possessing at least one phosphorus- hydrogen

10

15 alkylatable site to provide an alkylated phosphorus-containing product, e.g., a mono- or dialkylphosphinic acid or metal salt thereof, an alkylarylphosphinic acid or metal salt thereof, an alkyl alkylphosphonic acid or metal salt thereof, an alkyl or aryl dialkylphosphinate , an alkyl or aryl alkylarylphosphinate ester, an alkyl or arylalkylphosphorous acid or metal salt thereof or a dialkyl or diaryl alkylphosphonate ester. [0002] In order to prepare dialkylphosphinic acid derivatives, a complex synthesis route has been used which includes 20 the hydrolysis of methyldichlorophosphine to provide methylphosphinic acid and the subsequent esterification of this acid to provide an alkyl methylphosphinic ester. The second phosphorus-hydrogen bond can also be alkylated in the presence of a free-radical initiator. [0003] The use of dialkylphosphinic acid derivatives as flame retardants for polyesters (poly( terephthalate) and poly(butylene terephthalate)) is described in European Patent Publication No. 699,708. These products are syn- 25 thesized by a complex process using methyldichlorophosphine which is hydrolyzed to methylphosphinic acid; the ester of this acid has been prepared and isolated as intermediate. To prepare dialkylphosphinic acids or derivatives thereof, alkylphosphinic esters can be alkylated by α-olefins at high temperatures under free-radical conditions. In the case of the reaction of alkylphosphonic acids under the same conditions, only the disproportionation products, namely, alkylphosphines and alkylphosphonic acids, are obtained while under mild conditions no reaction is observed. 30 [0004] U.S. Patent No. 4,632,741 describes a process for preparing mixtures of salts of alkylphosphinic and dialkyl- phosphinic acids by reacting an olefin with a salt of hypophosphorous acid in the presence of a photoinitiator using UV light. U.S. Patent No. 4,590,014 describes a similar process in which the olefin is reacted with the alkali metal salt of hypophosphorous acid in the presence of a free-radical initiator. However, the predominant product monoalkylphosphinic acid. 35 [0005] U.S. Patent No. 6,300,516 describes a process for preparing dialkylphosphinic acids and/or alkali metal salts thereof by reacting olefins, particularly ethylene, with alkylphosphinic acid or hypophosphorous acid in the presence of azo free-radical initiator. This process is performed in a pressurized reactor with complicated feeding systems which require special safety features. Only high boiling olefins can be reacted with hypophosphorous acid at atmospheric pressure. 40 [0006] The reaction of hypophosphorous acid with isobutene was reported in the literature (S. Deprele and J- L. Mont- champ, J. Org Chem. 2001, 66, 6745). The reaction was run in the presence of a stochiometric amount of triethyl borane as initiator. The yield of monosubstituted isobutylphosphinic acid was only 38%. [0007] I. Devedjiev et al. (Phosphorus and Sulfur, 1987, 31, 7-11) describe the esterification of hypophosphorous acid with alcohols and suggest that the olefin may possibly be formed in situ via the dehydration of the in the presence 45 of mineral acid. E.A. Boyd and A.C. Regan (Tetrahedron Letters, 1994, 24, 4223-4226) describe the synthesis of alkyl phosphininc acids from silyl and alkyl halides. Y Chauzov et al. (J. General Chemistry USSR, 1989, 59, 2211-2213) describe the alkylation of hydrophosphoryl compounds by alcohols. M Yamashita et al. (Bull. Chem. Soc. Japan, 1983, 56, 219-222) describe the nucleophilic substitution with phosphide anions prepared by an action of sodium dihydrobis(2-methoxyethanolate)aluminate on phosphorus compounds. 50 SUMMARY OF THE INVENTION

[0008] It is an object of the invention to provide a process for the alkylation of phosphorous-containing compounds possessing at least one phosphorus-hydrogen 55

2 EP 1 756 126 B1

5

alkylatable site. [0009] It is a particular object of the present invention to provide a process as defined in claim 1 employing as alkylating agents short chain which result within a relatively short time in a high yield of the desired alkylated product while 10 avoiding the aforenoted disadvantages associates with the known processes discussed above. [0010] These and other objects of the invention are achieved by the process of alkylation as defined in claim 1 which comprises alkylating phosphorous-containing compound possessing at least one phosphorus-hydrogen

15

20 alkylatable site with reactant which generates and/or cycloalkene alkylating agent in situ in the presence of free radical initiator, the alkene and/or cycloalkene alkylating agent alkylating the phosphorus-containing compound to provide alkylated phosphorus-containing product. [0011] Without intending to be bound, it is thought that the reactant which generates alkene or cycloalkenein situ under alkylation conditions produces a sufficient concentration of these compounds that will result in alkylation of the at 25 least one phosphorus-hydrogen alkylatable site present in the starting organophosphorous-containing compound and as the /cycloalkenes are consumed in the alkylation reaction, the equilibrium shifts towards generation of addi- tional alkenes/cycloalkenes.

DETAILED DESCRIPTION OF THE INVENTION 30 [0012] The phosphorus-containing compound employed as one of the starting reactants herein must contain at least one phosphorus-hydrogen

35

40 alkylatable site and can contain more than one such site in which case the alkylated phosphorus-containing product may either be partially or fully alkylated. [0013] In one embodiment of the invention, the phosphorus- containing starting reactant is represented by the general formula (I):

45

50

wherein: x1, where present, is

55

3 EP 1 756 126 B1

5

and x2, where present, is 10

15

in which R1 is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 12 carbon atoms or aryl of from 6 to 20 carbon atoms; Me is a metal having a valence v of 1, 2, 3 or 4; R2 is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 20 12 carbon atoms or aryl of from 6 to 20 carbon atoms; and, a, b, c, d, e and f each independently is 0 or 1, provided, when a=1, c=1 and b=0, when b=1, a=0 and x1 is not present, 25 when f=1, d=1 and e=0, and when e=1, f=0 and x2 is not present. [0014] Particularly useful phosphorus-containing compounds (I) are those of structural formulas (1)-(6):

30

35

40

and 45

50

in which R1, R2, Me and v have the aforestated meanings. In the foregoing structural formulas, R1 is preferably H, R2 55 is preferably H (except in compounds of structural formula 1 where only R1 may be H) or alkyl of from 1 to 8 carbon atoms and Me is preferably lithium, sodium, potassium, magnesium, calcium, barium, aluminum, titanium, vanadium, chromium, molybdenum, iron, nickel, cobalt, copper or zinc. [0015] Illustrative of the alkylatable phosphorus- containing starting reactants herein are phosphonic acid (phosphorous

4 EP 1 756 126 B1

acid); hypophosphorous acid; phosphinic acid, phosphinous acid; esters of the foregoing such as phosphonic acid tert- butyl ester, phosphonic acid di- tert-butyl ester, phosphonic acid methyl ester, phosphonic acid phenyl ester, phosphinic acid tert-butyl ester, methylphosphinic acid phenyl ester, benzenephosphinic acid phenyl ester, and the like; and, metal salts of the foregoing such as sodium hypophosphite, calcium hypophosphite, zinc hyposphosphite, aluminum hypo- 5 phosphite, sodium phosphite, calcium phosphite, zinc phosphite, aluminum phosphite, ferric phosphite, sodium ben- zenephosphinate, sodium methylphosphinate, and the like. [0016] The reactant which generates alkene or cycloalkene in situ is represented by the general formula

R4-X (II) 10 wherein:

R4 is alkyl of up to 30 carbon atoms or cycloalkyl of from 3 to 12 carbon atoms; and,

15 X is halogen,

20

25

in which R5 and R6 each independently is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 12 carbon atoms or 30 aryl of from 6 to 20 carbon atoms and g is 0 or 1. [0017] In reactant (II), R4 is preferably branched alkyl since branching more readily provides alkene alkylating agent. [0018] Illustrative of useful halides R 4-X are 2-chloro-2-methylpropane, 2-bromo-2-methylpropane, 2-chloropropane, 2-bromopropane, tert-amyl chloride, tert-amyl bromide, and the like. [0019] Useful alcohols of structure R 4-OH include tert-butyl alcohol, tert-amyl alcohol, isopropyl alcohol, 2-butanol, 2- 35 buten-1-ol and 2-methyl-3-buten-2-ol. Likewise suitable are cyclic alcohols, in particular, methylcyclopentanol, 1- 1- methycycloheptanol, 1-methylcyclooctanol and 1-methylcyclodecanol. [0020] Useful esters of the structures

40

45

include tert-butyl acetate, phosphoric acid tert-butyl ester, phosphonic acid tert-butyl ester, phosphonic acid di- tert-butyl ester, diisobutylphosphinic acid tert-butyl ester, isopropyl tosylate, isopropyl mesylate, and the like. [0021] As free-radical initiators, advantageous use is made of azo compounds. Preferably, the azo compounds are 50 cationic and/or non-cationic azo compounds. Preferably, as cationic azo compounds, use is made of 2,2’-azobis(2- amidinopropane) dihydrochloride or 2,2’-azobis(N,N-dimethyleneisobutyramidine) dihydrochloride. Preferably, as non- cationic azo compounds, use is made of azobis(isobutyronitrile) (AIBN), 4,4’-azobis(4-cyanopentanoic acid) or 2,2’- azobis(2-methylbutyronitrile). [0022] Preferably, as free- radical initiators, use is also made of inorganic peroxide and/or organic peroxide free-radical 55 initiators. [0023] Preferably, as inorganic peroxide free-radical initiators, use is made of hydrogen peroxide, ammonium perox- odisulfate and/or potassium peroxodisulfate. [0024] Preferably, as organic peroxide free- radical initiators, use is made of dibenzoyl peroxide, di- tert-butyl peroxide,

5 EP 1 756 126 B1

tert-butyl peroxybenzoate and/or peracetic acid. [0025] Preferably, UV light initiation alone or in combination with above-mentioned initiators is employed. [0026] Preferably, the reaction is carried out in the presence of carboxylic or mineral acid. Particularly preferably, the carboxylic acid is and the mineral acid is . 5 [0027] Preferably, the reaction is carried out at a temperature of from about 25 to about 130°C. Particularly preferably, the reaction is carried out at a temperature of from about 60°C to about 120°C. Preferably, the reaction is carried out at atmospheric pressure. If generated in situ, an alkene tends to evaporate from the reaction vessel prior to reacting with P-H in which case a condenser can be used in order to return the alkene to the reaction vessel. Alternatively, a pressure of about 1-2 atmospheres can be applied in order to prevent evaporation of the alkene. 10 [0028] The present invention also relates in particular to a process in which hypophosphorous acid or sodium hypo- phosphite is reacted with tert-butyl alcohol or tert-butyl acetate in the presence of azo free-radical initiator or in the presence of a peroxide free-radical initiator to give diisobutyl phosphinic acid and/or sodium salt thereof as main product. [0029] The invention also relates to the use of the dialkyphosphinic acids and/or alkali metal salts thereof obtained by the above-described process for preparing salts of such metals as Mg, Ca, Al, Zn, Fe(II), Fe(III), Cu(II), Zr(IV). These 15 salts find use as flame retardants for thermoplastic polymers such as poly (ethylene terephthalate), poly (butylene tereph- thalate), polystyrene, polyamide, polyethylene, polypropylene, and the like, and thermoset resins such as epoxy, phenolic or bismaleimide resins, and the like. The dialkylphosphinic acids and/or alkali metal salts thereof obtained by the above- described process are also used as intermediates in the pharmaceutical industry. [0030] The process of the invention is illustrated by the examples which follow. 20 Example 1

[0031] Into a 250 ml three-necked flask equipped with condenser, addition funnel, magnetic stirrer and thermometer were charged 47.79 g (0.362 mol) 50% commercial hypophosphorous acid, 45.94 g (0.395 mol) tert-butyl acetate and 25 3.2 g AIBN. The reaction mixture was heated to 61 °C and stirred for 3 hours. Thereafter, a second portion of 8.7g AIBN in acetic acid solution was gradually added while the temperature of the reaction mixture was slowly raised to 84°C over the course of 11 hours. After addition was complete, 31P NMR analysis indicated the formation of 8% di- isobutylphosphinic acid, 63% isobutylphosphinic and 29% hypophosphorus acid. The reaction mixture was either neutralized by aqueous sodium hydroxide solution and then treated with aqueous aluminum hydroxide or directly reacted with aluminum oxide. 30 The resulting white precipitate was filtered out, washed with water and dried in an oven thus providing 23 g aluminum salt of isobutylphosphinic acid. The mother liquor can, if desired, be recycled and used for preparing another quantity of product.

Example 2 35 [0032] Into a 500 ml three-necked flask equipped with condenser, addition funnel, magnetic stirrer and thermometer were charged 65.80 g (0.498 mol) 50% commercial hypophosphorous acid and 79.92 g (1.08 mol) tert-butyl alcohol. The reaction mixture was heated to 70°C and addition of 2.06 g AIBN in 35 g acetic acid solution begun. After 6 hours, the addition was complete. The mixture contained 50% isobutylphosphinic acid and 50% hypophosphorus acid as 40 determined by 31P NMR. The mixture was treated with a second portion of 5.5 g AIBN and 5.7 g t- butyl peroxybenzoate in acetic acid while the temperature was gradually increased to 97°C over the course of 10 hours. After addition was complete, the mixture was found to contain 75% di-isobutylphosphinic acid, 20% isobutylphosphinic acid and 5% iso- butylphosphonic acid. The mixture was dried in a rotavapor under vacuum at 75°C to remove water and solvent and washed with warm water three times. The upper oily phase was separated and dried in a rotavapor under vacuum at 45 75°C. 57.5 g. The oily material was collected and crystallized at room temperature. The yield based on hypophosphorous acid was 65% without recycling the mother liquid. The mother liquid can, if desired, be recycled and used for preparing another quantity of product.

Example 3 50 [0033] Into a 2L four- necked flask equipped with condenser, addition funnel, mechanical stirrer and thermometer were charged 321.35 g (3.03 mol) sodium hypophosphite monohydrate and 637 g acetic acid. After the solution became clear, 149.33 g sulfuric acid was gradually added to the mixture and a slurry was observed. A solution comprised of 458.18 g (6.186 mol) tert-butanol, 107.85 g acetic acid and 18.63 g (0.13 mol) tert-di- butyl peroxide was slowly added at a 55 temperature of from 104 to 110°C over 14.5 hours. Analysis of the mixture by 31P NMR showed it to contain 58 mol % diisobutylphosphinic acid and 42 mol % monoisobutylphosphinic acid. There was no measurable amount of hypophos- phorus acid as determined by 31P NMR analysis. A portion of the solvent was then removed. Another solution comprising 98.80 g (1.33 mol) tert- butanol, 5.87 g (0.040 mol) di- tert-butyl peroxide and 23.7 g acetic acid was added to the reaction

6 EP 1 756 126 B1

mixture at a temperature of from 103 to 111°C over 7 hours. 31P NMR analysis indicated a mixture of 73% diisobutyl- phosphinic acid and 25% monoisobutylphosphinic acid with the remainder made up of monoisobutylphosphonate acid and phosphorus acid.

5 Example 4

[0034] The alkylated product mixture obtained in Example 3, supra, was filtered and the solvents were stripped out in a rotavapor under vacuum. The liquid mixture was then consecutively washed with 200 mL water, 200 mL 2.7% sodium carbonate three times and 200 mL water twice. The upper layer was separated and dried in a Rotavapor under 10 vacuum. The material crystallized upon standing at room temperature to provide 350 g pure diisobutylphosphinic acid. The yield was 65%.

Example 5

15 [0035] A portion of the above pure diisobutylphosphinic acid (135.01 g, 0.758 mol) was mixed with water and neutralized with dilute aqueous sodium hydroxide solution. The neutralized product was then mixed with a solution of 61.83 g (0.256 mol) AlCl3 6H2O in 2 L water. A large amount of white precipitate was observed. The precipitate was filtered and dried to a constant weight in an oven at 105°C. A white powder, aluminum salt of diisobutylphosphinic acid, of 139.43 g was obtained. The yield was 98.9%. 20 Example 6

[0036] Into a 1L four- necked flask equipped with condenser, addition funnel, mechanical stirrer and thermometer were charged 187.52 g (1.77 mol) sodium hypophosphite monohydrate and 294 g acetic acid. After the solution became clear, 25 88.18 g sulfuric acid was gradually added thereto and a slurry was observed. A solution comprised of 150.81 g (2.03 mol) tert-butanol, 16.97 g acetic acid and 6.35 g (0.043 mol) di-tert-butyl peroxide was slowly added at a temperature range of from 111 to 118°C over 6 hours. Analysis of the mixture by 31P NMR showed the mixture to consist of 13 mol% diisobutylphosphinic acid, 72 mol % monoisobutylphosphinic acid and 13% hyposphosphorus acid. Another solution comprising 156.577 g (2.11 mol) tert-butanol, 11.86 g di-tert-butyl peroxide (0.081 mol) and 160.29 g acetic anhydride 30 was then added to the reaction mixture at a temperature of 104 to 111°C over 14.5 hours while 13.71 g sulfuric acid was added from a second funnel. A mixture of 87.5% diisobutylphosphinic acid, 9.5% monoisobutylphosphinic acid, 1.6% monoisobutylphosphonic acid and 1.4% phosphorus acid was obtained.

Example 7 35 [0037] The alkylated product mixture obtained in Example 6, supra, was first filtered and then stripped in a Rotavapor at a bath temperature of 100°C. A solution of 302 g was obtained. Part of this solution (233 g, total 1.37 mol P) was neutralized with diluted sodium hydroxide and added to 2.5 L 4% aqueous aluminum chloride (0.435 mol AlCl3 6H2O). The resulting white precipitate was filtered and.dried in an oven at 75°C overnight. 214 g of white powder, aluminum 40 salts of diisobutylphinic acid, monoisobutylphosphinic acid and monoisobutylphosphonic acid, was obtained.

Example 8

[0038] Into a 2L four- necked flask equipped with condenser, addition funnel, mechanical stirrer and thermometer were 45 charged 211.76 g (2.00 mol) sodium hypophosphite monohydrate and 317 g acetic acid. After the solution became clear, 106.97 g sulfuric acid was gradually added to the mixture and a slurry was observed. The mixture was then heated to 120°C. A solution comprised of 243.19 g (2.09 mol) tert-butyl acetate and 7.35 g (0.050 mol) di-tert- butyl peroxide was slowly added at a temperature of 115 to 120°C over 5 hours. Analysis of the mixture by31P NMR showed the mixture contained 11 mol % diisobutylphosphinic acid, 72 mol% monoisobutylphosphinic acid and 17 mol % hypophosphorus 50 acid. A further 20.12 g sulfuric acid was added. Another solution comprising 310.73 g (2.68 mol) tert-butyl acetate and 13.10 g (0.090 mol) di-tert-butyl peroxide was added to the reaction mixture at a temperature of 114 to 120°C over 10 hours. 31P NMR analysis indicated the mixture to contain 88% diisobutylphosphinic acid and 10% monoisobutylphos- phinic acid with the remainder made up of monoisobutylphosphonate acid and phosphorus acid.

55 Example 9

[0039] The alkylated product mixture obtained in Example 8, supra, was filtered and the solvents were stripped out in a rotavapor under vacuum. The liquid was mixed with 100 mL and consecutively washed by 200 mL water,

7 EP 1 756 126 B1

150 mL 3.8% sodium carbonate three times and 100 mL water twice respectively. The upper layer was separated and dried at a Rotavapor under vacuum. The layer crystallized upon standing at room temperature to provide 288 g pure diisobutylphosphinic acid. The yield was 81%.

5 Claims

1. A process for alkylating a phosphorus-containing compound to provide an alkylated phosphorus-containing com- pound which comprises alkylating phosphorus-containing compound possessing at least one phosphorus- hydrogen 10

15

20 alkylatable site with reactant which generates alkene and/or cycloalkene alkylating agent in situ in the presence of initiator, the reactant which generates alkene or cycloalkene in situ being represented by general formula (II):

R4-X (II) 25 wherein:

R4 is alkyl of up to 30 carbon atoms or cycloalkyl of from 3 to 12 carbon atoms; X is halogen, 30

35

40

in which R5 and R6 each independently is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 12 carbon 45 atoms or aryl of from 6 to 20 carbon atoms and g is 0 or 1; and the initiator being at least one free radical initiator, UV light or a combination thereof, the alkylene and/or cycloalkylene alkylating agent alkylating the phosphorus-containing component to provide alkylated phosphorus-containing product.

50 2. The process of Claim 1 wherein phosphorus-containing compound is represented by general formula (I):

55

8 EP 1 756 126 B1

wherein:

x1, were present, is

5

10

and x2, where present, is

15

20

in which R is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 12 carbon atoms or aryl of from 6 to 20 carbon atoms; Me is a metal having a valence v of 1, 2, 3 or 4; R 2 is H, alkyl of up to 30 carbon atoms, cycloalkyl of from 3 to 12 carbon atoms or aryl of from 6 to 20 carbon atoms; and, 25 a, b, c, d, e and f each independently is 0 or 1, provided, when a=1, c=1 and b=0, when b=1, a=0 and x1 is not present, when f=1, d=1 and e=0, and when e=1, f=0 and x2 is not present. 30 3. The process of Claim 1 wherein phosphorus- containing compound (I) is selected from the group (1)-(5) consisting of:

35

40

45

and

50

55 in which R1, R2, Me and v have the aforestated meanings.

4. The process of Claim 3 wherein in phosphorus-containing compounds (1)-(5), R1 is H and Me is lithium, sodium,

9 EP 1 756 126 B1

potassium, magnesium, calcium, barium, aluminum, titanium, vanadium, chromium, molybdenum, iron, cobalt, nick- el, copper or zinc.

5. The process of Claim 4 wherein in phosphorus-containing compounds (2) and (3), R2 is H. 5 6. The process of Claim 1 wherein the phosphorus-containing compound is at least one member of the group consisting of phosphonic acid, hypophosphorous acid, phosphinic acid, phosphinous acid, phosphonic acid tert-butyl ester, phosphonic acid di-tert-butyl ester, phosphonic acid methyl ester, phosphonic acid phenyl ester, phosphinic acid tert-butyl ester, methylphosphinic acid phenyl ester, benzenephosphinic acid phenyl ester, sodium hypophosphite, 10 calcium hypophosphite, zinc hyposphosphite, aluminum hypophosphite, sodium phosphite, calcium phosphite, zinc phosphite, aluminum phosphite, ferric phosphite, sodium benzenephosphinate and sodium methylphosphinate.

7. The process of Claim 1 or Claim 6 wherein the reactant which generates alkene or cycloalkenein situ is at least one member of the group consisting of 2-chloro-2-methylpropane, 2-bromo-2-methylpropane, 2-chloropropane, 2- 15 bromopropane, tert-amyl chloride, tert-amyl bromide, tert-butyl alcohol, tert-amyl alcohol, isopropyl alcohol, 2-bu- tanol, 2-buten-1-ol, 2- methyl-3-buten-2-ol, 1-methylcyclopentanol, 1-methycycloheptanol, 1- methylcyclooctanol, 1-methylcyclodecanol, tert-butyl acetate, phosphoric acid tert-butyl ester, phosphonic acid tert-butyl ester, phos- phonic acid di-tert-butyl ester, diisobutylphosphinic acid tert-butyl ester, isopropyl tosylate and isopropyl mesylate.

20 8. The process of Claim 1 wherein the free radical initiator is at least one azo compound, inorganic peroxide and/or organic peroxide.

9. The process of Claim 8 wherein the free radical initiator is at least one member selected from the group consisting of 2,2’-azobis(2-amidinopropane) dihydrochloride, 2,2’-azobis(N,N’-dimethyleneisobutyramidine) dihydrochloride, 25 azobis(isobutyronitrile), 4,4’-azobis(4-cyanopentanoic acid), 2,2’-azobis(2-methylbutyronitrile), hydrogen peroxide, ammonium peroxodisulfate, potassium peroxodisulfate, dibenzoyl peroxide, di- tert-butyl peroxide and peracetic acid.

10. The process of Claim 1 carried out in the presence of carboxylic acid and/or mineral acid.

30 11. The process of Claim 1 wherein the alkylation reaction is carried out at a temperature of from about 25 °C to about 130°C and a pressure ranging from about atmospheric up to about 2 atmospheres.

12. The process of Claim 3 wherein phosphorus-containing compound (I) is at least one member selected from the group consisting of (2) and (3), the alkylated reaction product thereafter being converted to the corresponding metal 35 salt.

13. The process of Claim 12 wherein the metal of said metal salt is selected from the group consisting of Mg, Al, Zn, Fe(II), Fe(III), Cu(II) and Zr(IV).

40 14. The process of Claim 1 wherein hypophosphorous acid or sodium hypophosphite is reacted with tert-butyl alcohol or tert- butyl acetate in the presence of azo free- radical initiator or in the presence of a peroxide free- radical initiator to provide diisobutyl phosphinic acid and/or sodium salt thereof.

45 Patentansprüche

1. Verfahren zur Alkylierung einer phosphorhaltigen Verbindung, um eine alkylierte, phosphorhaltige Verbindung be- reitzustellen, welche eine alkylierende, phosphorhaltige Verbindung umfasst, die zumindest eine Phosphorwasser- stoff- 50

55

10 EP 1 756 126 B1

alkylierbare Position mit einem Reaktanten aufweist, der in situ in Gegenwart eines Initiators ein Alken- und/oder Cycloalken-Alkylierungmittel erzeugt, wobei der Reaktant, der in situ ein Alken- und/oder Cycloalken-Alkylierungmittel erzeugt, durch die allgemeine Formel (II) dargestellt ist: 5 R4-X (II),

wobei:

10 R4 ein Alkyl mit bis zu 30 Kohlenstoffatomen oder Cycloalkylmit 3 bis 12 Kohlenstoffatomen ist; X ein Halogen,

15

20

25

ist, wobei R5 und R 6 jeweils unabhängig voneinander H, Alkyl mit bis zu 30 Kohlenstoffatomen, Cycloalkylmit 3 bis 12 Kohlenstoffatomen oder Aryl mit 6 bis 20 Kohlenstoffatomen und 30 g 0 oder 1 sind; und der Initiator zumindest ein Radikalinitiator, UV-Licht oder eine Kombination aus beidem ist, das Alken- und/oder Cycloalken-Alkylierungmittel die phosphorhaltige Verbindung alkyliert, um ein alkyliertes, phosphorhaltiges Produkt bereitzustellen.

35 2. Verfahren nach Anspruch 1, wobei die phosphorhaltige Verbindung durch die allgemeine Formel (I) dargestellt ist:

40

45 wobei:

x1, soweit vorhanden,

50

55 und x2, soweit vorhanden,

11 EP 1 756 126 B1

5

ist, 10 wobei R H, Alkyl mit bis zu 30 Kohlenstoffatomen, Cycloalkyl mit 3 bis 12 Kohlenstoffatomen oder Aryl mit 6 bis 20 Kohlenstoffatomen ist; Me ein Metall mit einer Valenz v von 1, 2, 3 oder 4 ist; R2 H, Alkyl mit bis zu 30 Kohlenstoffatomen, Cycloalkyl mit 3 bis 12 Kohlenstoffatomen oder Aryl mit 6 bis 20 Kohlenstoffatomen ist; und a, b, c, d, e und f jeweils unabhängig voneinander 0 oder 1 sind, für den Fall, dass a=1, dann ist c=1 und b=0, 15 dass b=1, dann ist a=0 und x1 nicht vorhanden, dass f=1, dann ist d=1 und e=0 und dass e=1, dann ist f=0 und x2 nicht vorhanden.

3. Verfahren nach Anspruch 1, wobei die phosphorhaltige Verbindung (I) ausgewählt ist aus der Gruppe (1) bis (5) 20 bestehend aus:

25

30

35 und

40

45 wobei R1, R2, Me und v die zuvor genannte Bedeutung haben.

4. Verfahren nach Anspruch 3, wobei bei den phosphorhaltigen Verbindungen (1) bis (5) 1R H ist und Me Lithium, Natrium, Kalium, Magnesium, Calcium, Barium, , Titan, Vanadium, Chrom, Molybdän, Eisen, Cobalt, Nickel, Kupfer oder Zink ist. 50 5. Verfahren nach Anspruch 4, wobei bei den phosphorhaltigen Verbindungen (2) und (3) R2 H ist.

6. Verfahren nach Anspruch 1, wobei die phosphorhaltige Verbindung zumindest ein Bestandteil der Gruppe ist be- stehend aus Phosphonsäure, unterphosphoriger Säure, Phosphinsäure, Phosphinige Säure, Phosphonsäure-tert- 55 Butylester, Phosphonsäure-di-tert-Butylester, Phosphonsäure-Methylester, Phosphonsäure-Phenylester, Phos- phinsäure-tert-Butylester, Methyl-Phosphinsäure-Phenylester, Benzol-Phosphinsäure-Phenylester, Natriumhypo- phosphit, Calciumhypophosphit, Zinkhypophosphit, Aluminiumhypophosphit, Natriumphosphit, Calciumphosphit, Zinkphosphit, Aluminiumphosphit, Eisenphosphit, Natrium-Benzolphosphinat sowie Natrium-Methylphosphinat.

12 EP 1 756 126 B1

7. Verfahren nach Anspruch 1 oder 6, wobei der Reaktant, der in situ Alken- und/oder Cycloalkenerzeugt, zumindest ein Bestandteil der Gruppe ist bestehend aus 2- Chlor-2-Methylpropan, 2-Brom-2-Methylpropan, 2-Chlorpropan, 2- Brompropan, Tert-Amylchlorid, Tert-Amylbromid, Tert-Butylalkohol, Tert-Amylalkohol, Isopropylalkohol, 2-Butanol, 2-Buten-1-ol, 2-Methyl-3-Buten-2-ol, 1-Methylcyclopentanol, 1-Methylcycloheptanol, 1-Methylcyclooctanol, 1-Me- 5 thylcyclodecanol, Tert-Butylacetat, Phosphorsäure-tert-Butylester,Phosphonsäure-tert- Butylester,Phosphonsäure- di-tert-Butylester,Diisobutylphosphinsäure-tert-Butylester, Isopropyltosylat sowie Isopropylmesylat.

8. Verfahren nach Anspruch 1, wobei der Radikalinitiator zumindest eine Azoverbindung, ein anorganisches Peroxid und/oder ein organisches Peroxid ist. 10 9. Verfahren nach Anspruch 8, wobei der Radikalinitiator zumindest einBestandteil der Gruppe ist bestehend aus 2,2’- Azobis(N,N‘-Dimethylenisobutyramidin)Dihydrochlorid, Azobis(Isobutyronitril), 4,4’-Azobis(4-Cyanopentansäure), 2,2‘-Azobis(2-Methylbutyronitril), Wasserstoffperoxid, Ammoniumperoxodisulfat, Kaliumperoxodisulfat, Dibenzoyl- peroxid, Di-tert-Butylperoxid sowie Peressigsäure. 15 10. Verfahren nach Anspruch 1, welches in Gegenwart von Carbonsäure und/oder Mineralsäure durchgeführt wird.

11. Verfahren nach Anspruch 1, wobei die Alkylierungsreaktion bei einer Temperatur von ca. 25°C bis ca. 130°C und einem Drucketwa im Atmosphärenbereich bis hin zu ca. 2 Atmosphären durchgeführt wird. 20 12. Verfahren nach Anspruch 3, wobei die phosphorhaltige Verbindung (I) zumindest ein Bestandteil der Gruppe ist bestehend aus (2) und (3), wobei das alkylierte Reaktionsprodukt danach in das entsprechende Metallsalz umge- wandelt wird.

25 13. Verfahren nach Anspruch 12, wobei das Metall dieses Metallsalzes ausgewählt ist aus der Gruppe bestehend aus Mg, Al, Zn, Fe(II), Fe(III), Cu(II) sowie Zr(IV).

14. Verfahren nach Anspruch 1, wobei unterphosphorige Säure oder Natriumhypophosphiteine Reaktion eingehen mit Tert-Butylalkohol oder Tert- Butylacetat in Gegenwart eines Azo- Radikalinitiators oder Peroxid-Radikalinitiators, um 30 Diisobutylphosphinsäure und/oder ein Natriumsalz hiervon bereitzustellen.

Revendications

35 1. Procédé d’alkylation d’un composé contenant du phosphore pour fournir un composé contenant du phosphore ayant subi une alkylation qui comprend l’alkylation d’un composé contenant du phosphore en traitant au moins un site d’hydrogène phosphoré pouvant subir une alkylation

40

45 avec un réactif qui génère un alcène et/ou un agent d’alkylation d’un cycloalcène in situ en présence d’un initiateur, le réactif qui génère un alcène ou un cycloalcène in situ étant représenté par la formule générale (II):

R4-X (II) 50 où:

R4 est un groupe alkyle ayant jusqu’à 30 atomes de carbone ou un groupe cycloalkyle ayant 3 à 12 atomes de carbone ; 55 X est un atome d’halogène,

13 EP 1 756 126 B1

5

10

ou 15

20

où R5 et R6 sont chacun indépendamment un atome d’hydrogène, un groupe alkyle ayant jusqu’à 30 atomes de carbone, un groupe cycloalkyle ayant 3 à 12 atomes de carbone ou un groupe aryle ayant 6 à 20 atomes 25 de carbone et g est égal à zéro ou à 1 ; et l’initiateur étant au moins : un initiateur de radicaux libres, de la lumière UV ou leur combinaison, l’agent d’alkylation de l’alkylène et/ou du cycloalkylène faisant subir une alkylation au composant contenant du phosphore afin de fournir un produit alkylé contenant du phosphore.

30 2. Procédé de la revendication 1 dans lequel le composé contenant du phosphore est représenté par la formule générale (I):

35

40 où:

x1, lorsqu’il est présent, est

45

50 et x2, lorsqu’il est présent, est

55

où R est de un atome d’hydrogène, un groupe alkyle ayant jusqu’à 30 atomes de carbone, un groupe cycloalkyle

14 EP 1 756 126 B1

ayant 3 à 12 atomes de carbone ou aryle ayant 6 à 20 atomes de carbone ; Me est un métal ayant une valeur de valence de : 1, 2, 3 ou 4 ; 2R est un atome d’hydrogène, un groupe alkyle ayant jusqu’à 30 atomes de carbone, un groupe cycloalkyle ayant 3 à 12 atomes de carbone ou aryle ayant 6 à 20 atomes de carbone ; et, a, b, c, d, e et f sont chacun indépendamment égal à zéro ou à 1, sauf, 5 lorsque a = 1, c = 1 et b = 0, lorsque b = 1, a = 0 et x1 n’est pas présent, lorsque f = 1, D = 1 et e = 0, et lorsque e = 1, f = 0 et x2 n’est pas présent.

10 3. Procédé de la revendication 1, dans lequel le composé (I) contenant du phosphore est choisi dans le groupe (1) à (5) constitué de :

15

20

25 et

30

35 où R1, R2, Me et V répondent aux significations précitées.

4. Procédé de la revendication 3 dans lequel dans les composés contenant du phosphore (1) à (5), R1 est un atome d"hydrogène et Me est le : lithium, sodium, potassium, magnésium, calcium, baryum, aluminium, titane, vanadium, chrome, molybdène, fer, cobalt, nickel, cuivre ou zinc. 40 5. Procédé de la revendication 4 dans lequel dans les composés contenant du phosphore (2) et (3), R 2 est un atome d’hydrogène.

6. Procédé de la revendication 1 dans lequel le composé contenant du phosphore est au moins un élément du groupe 45 constitué : d’acide phosphonique, d’acide hypophosphoreux, d’acide phosphinique, d’acide phosphineux, ester tert- butylique d’acide phosphonique, ester di- tert-butylique d’acide phosphonique, ester méthylique d’acide phosphoni- que, ester phénylique d’acide phosphonique, ester tert-butylique d’acide phosphinique, ester phénylique d’acide méthylphosphinique, ester phénylique d’acide benzènephosphinique, hypophosphite de sodium, hypophosphite de calcium, hypophosphite de zinc, hypophosphite d’aluminium, phosphite de sodium, phosphite de calcium, phosphite 50 de zinc, phosphite d’aluminium, phosphite ferrique, benzène phosphinate de sodium et méthylphosphinate de so- dium.

7. Procédé de la revendication 1 ou la revendication 6, dans lequel le réactif qui génère l’alcène ou le cycloalcène in situ est au moins un élément du groupe constitué de : chloro-2- 2-méthylpropane, 2-bromo-2-méthylpropane, 2- 55 chloropropane, 2-bromopropane, chlorure de tert-amyle, bromure de tert-amyle, alcool tert-butylique, alcool tert- amylique, alcool isopropylique, 2-butanol, 2-butène-1-ol, 2-méthyl-3-butène-2-ol, 1-méthylcyclopentanol, 1-méthy- cycloheptanol, 1-méthylcyclooctanol, 1-méthylcyclodecanol, acétate de tert- butyle, ester de tert- butyle d’acide phos- phorique, ester tert- butyliqued’acide phosphonique, ester di- tert-butyliqued’acide phosphonique, ester tert- butylique

15 EP 1 756 126 B1

d’acide diisobutylphosphinique, tosylate d’isopropyle et mésylate d’isopropyle.

8. Procédé de la revendication 1 dans lequel l’initiateur de radicaux libres est au moins un composé azoïque, un peroxyde inorganique et/ou un peroxyde organique. 5 9. Procédé de la revendication 8 dans lequel l’initiateur de radicaux libres est au moins un élément choisi dans le groupe constitué de : dihydrochlorure de 2,2’-azobis(2-amidinopropane), dihydrochlorure de 2,2’-azobis(N,N-di- methyleneisobutyramidine), azobis (isobutyronitrile), acide 4,4’-azobis (acide 4-cyanopentanoique), 2,2’-azobis(2- méthylbutyronitrile), peroxyde d’hydrogène, peroxodisulfate d’ammonium, peroxodisulfate de potassium, peroxyde 10 de dibenzoyle, peroxyde de di-tert-butyle et acide peracétique.

10. Procédé de la revendication 1 réalisé en présence d’acide carboxylique et/ou d’acide minéral.

11. Procédé de la revendication 1 dans lequel la réaction d’alkylation est effectuée à une température comprise entre 15 environ 25°C et environ 130°C et à une pression comprise entre environ la pression atmosphérique et environ 2 atmosphères.

12. Procédé de la revendication 3 dans lequel le composé (I) contenant du phosphore est au moins un élément choisi dans le groupe constitué de (2) et (3), le produit de réaction alkylé étant ensuite converti en un sel de métal corres- 20 pondant.

13. Procédé de la revendication 12 dans lequel le métal dudit sel de métal est choisi dans le groupe constitué de : Mg, Al, Zn, Fe(II), Fe(III), Cu(II) et Zr(IV).

25 14. Procédé de la revendication 1 dans lequel l’acide hypophosphoreux ou l’hypophosphite de sodium réagit avec l’alcool tert-butylique ou l’acétate de tert-butyle en présence d’initiateur de radicaux libres azoïque ou en présence d’un initiateur de radicaux libres de peroxyde afin de fournir un acide phosphinique de diisobutyle et/ou son sel de sodium.

30

35

40

45

50

55

16 EP 1 756 126 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 699708 A [0003] • US 4590014 A [0004] • US 4632741 A [0004] • US 6300516 B [0005]

Non-patent literature cited in the description

• S. DEPRELE ; J-L. MONTCHAMP. J. Org Chem., • Y CHAUZOV et al. J. General Chemistry USSR, 2001, vol. 66, 6745 [0006] 1989, vol. 59, 2211-2213 [0007] • I. DEVEDJIEV et al. Phosphorus and Sulfur, 1987, • M YAMASHITA et al. Bull. Chem. Soc. Japan, 1983, vol. 31, 7-11 [0007] vol. 56, 219-222 [0007] •E.A.BOYD; A.C. REGAN. Tetrahedron Letters, 1994, vol. 24, 4223-4226 [0007]

17