Alkyl Transfer Steps in the Catalytic Alkylation of Benzene, Toluene, and Cyclohexane

Total Page:16

File Type:pdf, Size:1020Kb

Alkyl Transfer Steps in the Catalytic Alkylation of Benzene, Toluene, and Cyclohexane JOURNAL OF CATALYSIS 24, 233-240 (1972) Alkyl Transfer Steps in the Catalytic Alkylation of Benzene, Toluene, and Cyclohexane G. PARRAVANO Drpcrrtment oj Chemical and hfelallurgical Btcgi~~eering. University of Michignn, A& Arbor. Michignn @lob Received April 6. 1971 The rate of the catalytic redistribution of isotopic carbon in binary mixtures of benzene and toluene, benzene and ethylbenzene. toluene and xylene, toluene and ethylbenzene, cyclohexane and methylcyclohexane was investigated over supported Pt, Ir, Ru, and Au. The influence of the following experimental variables was as- sessed: hydrocarbon partial pressure ratios, 3 X 10e3 to 30; temperature, 185 to 400°C; catalyst support, ALO,, MgO; catalyst acidity and basicity, and method of catalyst preparation. The results are discussed in the framework of processes of com- petitive and reactive chemisorption of hydrocarbon mixtures. The dependence of the reaction rate upon t.he hydrocarbon partial pressure ratio is considered in detail. Displacement effects were found when xylene isomers were present simultaneously. The insight tha.t the carbon redistribution reaction may provide in investigations on the thermodynamic and kinetic asprcts of alkyl transfer strps at catalytic surfaces is pointed out. -4lkyl t.ran~fcr steps figure prominently catalytic surfatc sirnultanttouxly with the in catalytic alkylations. Their character- following step: istics are often indirectly gleaned from in- format.ion on the rate of net alkylation rc- *A(g) + R(s) --* *AI:(g). Ilb) actions. However, individual alkyl transfer The requcnce of reaction steps (la) and steps cannot be observed easily in a net (lb) corresponds to the exchange reaction: alkylation process operating at steady state. It is more convenient and direct to All(g) + *A(g) + A(g) + *AI<(g). (1) follow alkyl transfer at catalytic surfaces The asterisk in reactions (1) anti (lb) by suitable isotopic labeling of molecular represents an isotopic carbon atom. Since species differing in composition by a CH, there is no change in gas phase composition or higher alkenyl group. Consider the re- during the occurrence of reaction (1) and action between a CH, donor, ,4R, and a neglecting kinetic isotopic effects, the rates (‘H, acceptor, A, at :I catalytic surface, of reaction steps (la) and (lb) are equal to that of the overall reaction (1). Consc- AH(g) + A(g) + It(s), (18) quently, the rate of reaction (I) gives di- rectly that of the CH, transfer (la). These lvllere R. is a CH, group and the suffixes g considerations indicate that a convenient and s indicate gas and surface, respcctivcly. manner to study the rate of catalytic trans- Reaction (la) represents a key step in fcr of R between ,4R and A is to contact a catalytic alkylations. To assessits role in mixture of AR, “,4R, and A with the cata- the net reaction, the influence of catalyst lytic surface and follow the rate of appear- and reaction variables on the step rate ance of *A. We have carried out these cx- must be measured. To this end, consider 1,eriments with R being a methylene or transfer step (la1 taking place at the same ethylene group. In particular, tlic transfer Copyright @ 1972 by .4cadcmip Press. Inc.. 234 G. PARRAVANO was investigated between the hydrocarbons amounts of the various hydrocarbon com- of the following binary mixtures: ben- binations were flowed in a stream of He zene (BE) -toluene (TO) ; BE-ethyl benzene through the catalyst bed (l-5 mlj. The WEI ; TO-xylene (XE ) ; TO-EBE ; exit stream was analyzed and fractionated cyclohexane (CHA) - methylcyclohexane by gas chromatography; and radioactivity (MCHA). In the case of XE, the three counting on each fraction was carried out isomers were investigated independently by liquid scintillation techniques. Details and also in binary combinations. The range of the experimental setup and procedure of temperature employed was between 185 have been published previously (2). The and 400°C and that of the ratio of hydro- treatment of t’he experimental results fol- carbon partial pressure varied between lowed the method already described (2). 3 X lo-” to 30. Metal catalysts used were The rate of reaction (,I b) is given by: Pt, Ir, Au, and Ru supported on Al,O, and MgO. The possibility of following the rate of reaction (1) was suspected on the basis of previous studies showing that when where w catalyst weight, n&moles of *AR l”CH,TO was catalytically hydrodealkyl- and k,, k’,. rate coefficients of the forward ated, the BE produced was free from and reverse step of reaction (lb). Integra- radioactivity (1) . This was taken as an in- tion of Eq. (2) for a flow reactor yields: dication of a selective splitting of the CH,, group without skeletal rearrangements. EXPERIMENTAL METHODS where $‘, volumetric flow rate, p = p&p.,, Reagent grade hydrocarbons were used and the reaction conversion without further purification and high purity He gas was used as a carrier. Stock solu- tions of W-labeled BE, TO, and CHA were made from milligram portions of radioactively concentrated samples (0.5 to The subscripts e,O refer to equilibrium and 3 mCi). The catalysts tested included: initial conditions, respectively. The possi- Pt (0.4 wt %)-ALO,, Pt (0.4 wt %)-Al,O, bility of studying the rate of the transfer fluorided, Ir (0.7 wt %)--ALO,, Ru (2 wt step (la), by following the rate of the ex- %)-Al,O,, Au (0.3 wt %)-A1203, Au (2 change reactions (1) implied that no inter- wt %)-MgO. The Pt catalysts were com- ference from side reactions took place. The mercial samples, in the form of IA6 in. experimental conditions were specifically diameter spheres. Ir, Ru, and Au catalysts chosen to fulfill this point. The absence of were prepared by impregnation of high products was checked in each run. The area powdered A1,O3 with an H,O solu- former appeared at temperature or partial tion of the metal chloride, followed by pressure ratios higher than those reported. thermal decomposition. Details on these C&H, desorption was found absent. This preparations have been described previ- may have been due to the low equilibrium ously (2, 3). Part of the Ir catalyst was pressure corresponding to the temperature treated with sufficient amounts of NaHC03 and hydrocarbon ratios employed [ +lO+ solution to add to it 1% NaHCO,. Au atm for (pPTO/pBE)= I at 38O”C] and/or catalysts were also prepared by reduc- to low desorption rate. The conditions gen- tion of the Au salt with HCHO. Catalyst erally employed for the catalytic alkylation pretreatment included in situ heating in a of BE (4) and TO (5) are somewhat dif- stream of H, at 370°C for 1 hr, except for ferent from those of the present study. Pt-fluorided Al,O, for which the H, treat- ment was carried out at 450°C. The rate of EXPERIMENTAL RESULTS reaction (1) was studied in a flow system A direct check for the establishment of at a total pressure of 1 atm. Appropriate equilibrium during the course of reaction ALKYL THANSFEH. STEPS 235 LOG R FIG. 4. k, versus P~O/PBE = p for reaction (1) I I I I I catalyzed by Ru (2~wt C$)pAl&n: (0) 336°C; (0) -2 -I 0 I 390°C. LOG 4 FIG. 1. k, versus PTO/PHE = @ for reaction (1): presents the results obtained from experi- Pt (0.4 wt y0))-A1203 (0); *BE + EB ou Pt (1 ments on Au catalysts. In Fig. 6, we show wt Ojo)-fluorided A1203 (a), 390°C. the experimental results of the hydrocarbon (1) was not possible due to the smallness mixture TO-SE on Pt-Al,&, at 39O”C, of the equilibrium pressure of possible ole- while results at 210, 327, and 390°C for finic intermediates. The former was as- p-XE on a similar catalyst arc collected in sumed on the basis of the reversibility and Fig. 7. To obtain a direct indication of the reproducibility of the results. Reaction con- versions up to 50% were obtained with con- tact times of the order of 1 to 10 set at -I 0 I LOS p I I I I I -90’ -2 -I 0 I FIG. 5. k, versus ~TO/~HE = @ for reaction (1): LOG 4 (0 ) Au (2 wt s,)-MgO prepared by reduction; (A) Au (0.3 wt %)-A1~03 prepared by reduction; (0) FIG. 2. k, versus PTO/PBE = 6 for reaction (1) catalyzed by Pt(0.4 wt yG)-fluorided Al&: (0) Au (0.3 wt ‘j;)-AltO~ prepared by impregnation; 185°C; (A) 255°C; (0) 338°C; (0) 390°C. 386°C. 390°C. The effect of ,!3 on k, for the mix- relative rate of reaction between SE tures BE-TO and BE-EBE on Pt catalysts isomers, experiments on mixed XE feeds in the temperature range 187 to 393”C, is were carried out by introducing to the re- shown in Figs. 1 and 2. Figures 3 and 4 actor a mixture of TO + “TO + XE iso- summarize the observation on Ir and Ru mers. The results on the mixture o-XE + catalysk for BE-TO mixtures in the tem- VL-XE are reported in Fig. 8, while Fig. 9 perature range 276 to 39O”C, while Fig. 5 -6 -2 -8L---+J-I LOG B LOGoB FIG. 3. k, versus PTO,/PRE = fi for reaction (1): Fig. 6. k, versus ~TO/~BE = @ for reaction (1) (0) Ir (0.7 wt %)-AM&; (A) Ir (0.7 wt %)-Al& + catalyzed by Pt-Al&, 390°C: (@) O-XR; (0) lyc NaHCOr; 390°C. rn-xlz; CO) p-xl?. 236 G. PARRAVANO LOG /3 3 LOG 4 FIG.
Recommended publications
  • Petroleum Refinery Process Stream Additions
    American Petroleum Institute Petroleum Refinery Process Stream Additions CasNo Substance Definition Caveat 129813-66-7 Alkanes, C10-13 68551-17-7 Alkanes, C10-13-iso- 93924-07-3 Alkanes, C10-14 68551-18-8 Alkanes, C10-14-iso- 329909-27-5 Alkanes, C10-15-iso-, cyclic and linear 73138-29-1 Alkanes, C10-18 289711-49-5 Alkanes, C10-24 289711-48-4 Alkanes, C10-24-branched 129813-67-8 Alkanes, C12-14 68551-19-9 Alkanes, C12-14-iso- 68551-20-2 Alkanes, C13-16-iso- 90622-46-1 Alkanes, C14-16 74664-93-0 Alkanes, C14-30 70024-92-9 Alkanes, C7-8-iso- 68551-15-5 Alkanes, C8-10-iso- 68551-16-6 Alkanes, C9-11-iso- 68990-23-8 Alkenes, C12-26 .alpha.-, sulfated 93762-80-2 Alkenes, C15-18 68603-35-0 Alkenes, C18-24 .alpha.-, bisulfited 72162-34-6 Alkenes, C18-24 .alpha.-, sulfurized 93924-10-8 Alkenes, C20-24 .alpha.- 93924-11-9 Alkenes, C24-28 .alpha.- 131459-42-2 Alkenes, C24-54-branched and linear .alpha.- 68409-73-4 Aromatic hydrocarbons, biphenyl-rich A complex combination of hydrocarbons produced by the Substance found at hydrodealkylation and distillation of toluene. It consists refineries, but also may be predominantly of aromatic hydrocarbons having a carbon number produced in separate C6 or greater, primarily biphenyl, and boiling in the range of petrochemical approximately 79.degree.C to 398.degree.C (175.degree.F to manufacturing facilities. 750.degree.F). 68989-41-3 Aromatic hydrocarbons, biphenyl-rich, The complex combination of hydrocarbons obtained from a Substance found at thermal hydrodealkylation residues thermal hydrodealkylation process.
    [Show full text]
  • Disproportionation and Transalkylation of Alkylbenzenes Over Zeolite Catalysts
    Applied Catalysis A: General 181 (1999) 355±398 Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts Tseng-Chang Tsaia, Shang-Bin Liub, Ikai Wangc,* aRe®ning and Manufacturing Research Center, Chinese Petroleum Corporation, Chiayi 600, Taiwan bInstitute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan Received 13 June 1998; received in revised form 3 October 1998; accepted 5 November 1998 Abstract Disproportionation and transalkylation are important processes for the interconversion of mono-, di-, and tri-alkylbenzenes. In this review, we discuss the recent advances in process technology with special focus on improvements of para-isomer selectivity and catalyst stability. Extensive patent search and discussion on technology development are presented. The key criteria for process development are identi®ed. The working principles of para-isomer selectivity improvements involve the reduction of diffusivity and the inactivation of external surface. In conjunction with the fundamental research, various practical modi®cation aspects particularly the pre-coking and the silica deposition techniques, are extensively reviewed. The impact of para-isomer selective technology on process economics and product recovery strategy is discussed. Furthermore, perspective trends in related research and development are provided. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Disproportionation; Transalkylation;
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • BENZENE Disclaimer
    United States Office of Air Quality EPA-454/R-98-011 Environmental Protection Planning And Standards June 1998 Agency Research Triangle Park, NC 27711 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF BENZENE Disclaimer This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation of use. EPA-454/R-98-011 ii TABLE OF CONTENTS Section Page LIST OF TABLES.....................................................x LIST OF FIGURES.................................................. xvi EXECUTIVE SUMMARY.............................................xx 1.0 PURPOSE OF DOCUMENT .......................................... 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS.............................. 2-1 3.0 BACKGROUND INFORMATION ...................................... 3-1 3.1 NATURE OF POLLUTANT..................................... 3-1 3.2 OVERVIEW OF PRODUCTION AND USE ......................... 3-4 3.3 OVERVIEW OF EMISSIONS.................................... 3-8 4.0 EMISSIONS FROM BENZENE PRODUCTION ........................... 4-1 4.1 CATALYTIC REFORMING/SEPARATION PROCESS................ 4-7 4.1.1 Process Description for Catalytic Reforming/Separation........... 4-7 4.1.2 Benzene Emissions from Catalytic Reforming/Separation .......... 4-9 4.2 TOLUENE DEALKYLATION AND TOLUENE DISPROPORTIONATION PROCESS ............................ 4-11 4.2.1 Toluene Dealkylation
    [Show full text]
  • United States Patent (19) (11) 4,172,813 Feinstein Et Al
    United States Patent (19) (11) 4,172,813 Feinstein et al. (45) Oct. 30, 1979 (54) PROCESS FOR SELECTIVELY (56) References Cited HYDRODEALKYLATING/TRANSALKYLAT. U.S. PATENT DOCUMENTS ING HEAVY REFORMATE 3,677,973 7/1972 Mitsche et al. .................. 252/455 Z 3,780,121 12/1973 Suggitt et al. ...... ... 260/672 T (75) Inventors: Allen I. Feinstein, Wheaton, Ill.; 3,862,254 1/1975 Eisenlohr et al. ... ... 260/674 SE Ralph J. Bertolacini, Chesterton, Ind. 3,957,621 5/1976 Bonacci et al. ........................ 208/60 Primary Examiner-Herbert Levine 73) Assignee: Standard Oil Company (Indiana), Attorney, Agent, or Firn-William C. Clarke; Arthur G. Chicago, Ill. Gilkes; William T. McClain 57 ABSTRACT (21) Appl. No.: 849,594 Fractionated heavy reformate containing ethyltoluenes and propylbenzenes is selectively hydrodealkylated and transalkylated to produce ethylbenzene-lean xylenes, (22 Filed: Nov. 8, 1977 benzene and C2-C4 paraffins in the presence of a cata lyst comprising a tungsten/molybdenum component of 51) Int. C.’......................... C07C3/58; C10G 37/04 WO3 and Moos and an acidic component of 60 (wt)% 52 U.S. C. .................................... 585/475; 208/111; of mordenite and 40 (wt)% of catalytically active alu 208/92; 252/455 Z; 585/489; 585/752 a. 58) Field of Search ........................... 208/92, 64, 111; 260/672 T 11 Claims, 1 Drawing Figure MAKE-UP O CS2 REACTION /5 y PARAFFINS XYENES U.S. Patent Oct. 30, 1979 4,172,813 SENETAX ÅHLBWlè?J.NEZNEIGTSE 49'09"0sollywogae 22/ 9/N38ENEZ 1EINETTO 4/ 9/ 6/ or UH-- OZ C--O2 NO2 9/ a UH - O2 CH-Of @ºso ? 02 LL CU H - O2 CCH- Of / (O) ————o 4,172,813 1.
    [Show full text]
  • 2 Reactions Observed with Alkanes Do Not Occur with Aromatic Compounds 2 (SN2 Reactions Never Occur on Sp Hybridized Carbons!)
    Reactions of Aromatic Compounds Aromatic compounds are stabilized by this “aromatic stabilization” energy Due to this stabilization, normal SN2 reactions observed with alkanes do not occur with aromatic compounds 2 (SN2 reactions never occur on sp hybridized carbons!) In addition, the double bonds of the aromatic group do not behave similar to alkene reactions Aromatic Substitution While aromatic compounds do not react through addition reactions seen earlier Br Br Br2 Br2 FeBr3 Br With an appropriate catalyst, benzene will react with bromine The product is a substitution, not an addition (the bromine has substituted for a hydrogen) The product is still aromatic Electrophilic Aromatic Substitution Aromatic compounds react through a unique substitution type reaction Initially an electrophile reacts with the aromatic compound to generate an arenium ion (also called sigma complex) The arenium ion has lost aromatic stabilization (one of the carbons of the ring no longer has a conjugated p orbital) Electrophilic Aromatic Substitution In a second step, the arenium ion loses a proton to regenerate the aromatic stabilization The product is thus a substitution (the electrophile has substituted for a hydrogen) and is called an Electrophilic Aromatic Substitution Energy Profile Transition states Transition states Intermediate Potential E energy H Starting material Products E Reaction Coordinate The rate-limiting step is therefore the formation of the arenium ion The properties of this arenium ion therefore control electrophilic aromatic substitutions (just like any reaction consider the stability of the intermediate formed in the rate limiting step) 1) The rate will be faster for anything that stabilizes the arenium ion 2) The regiochemistry will be controlled by the stability of the arenium ion The properties of the arenium ion will predict the outcome of electrophilic aromatic substitution chemistry Bromination To brominate an aromatic ring need to generate an electrophilic source of bromine In practice typically add a Lewis acid (e.g.
    [Show full text]
  • Alkylation of Aromatic Hydrocarbons with Divinylbenzene by Solid Polymeric Oxo Acids
    Polymer Journal, Vol. 13, No.9, pp 915-917 (1981) NOTE Alkylation of Aromatic Hydrocarbons with Divinylbenzene by Solid Polymeric Oxo Acids Hiroshi HASEGAWA and Toshinobu HIGASHIMURA Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan. (Received February 28, 1981) KEY WORDS Solid Polymeric Oxo Acid I Alkylation I Bis(l-arylethyl)- benzene I Nafion-H I Amberlyst 151 Divinylbenzene I Aromatic Hydrocar­ bons I In our recent papers on the alkylation of aromatic hydrocarbons with styrene (eq 1),u we have shown that solid polymeric oxo acids as catalysts can bring about higher yields of 1-phenyl-1-arylethane (I) than the corresponding soluble oxo acids [e.g., poly(styrenesulfonic acid) (Amberlyst 15) vs. p­ CH3C6H4S03H; perfluorinated resinsulfonic acid (Nafion-H) vs. CF S0 H]. In view of the easy 3 3 yH3 yH3 separation of the product from the catalyst, the use (2) of these effective polymeric oxo acids should be H H industrially more advantageous than homogeneous (II) processes using soluble acidic catalysts. H H EXPERIMENTAL ) CH3-t-Ar + ift' CH2© ) Aromatic Hydrocarbons © Materials (I) (1) The DVB used in most experiments was an isomeric mixture (m-DVB/p-DVB = 70/30, purity;::: This article deals with the alkylation of aromatic 98%) separated from a commercial mixture of hydrocarbons (toluene and m-xylene) with divinyl­ DVB (60%) and ethylvinylbenzene (40%) by benzene (DVB) catalyzed by solid polymeric oxo preparative liquid chromatography.5 p-DVB and m­ acids (Nafion-H and Amberlyst 15). If the two vinyl DVB were isolated from the commercial mixture by groups in DVB, as in the case of styrene, react the method of Storey et a/.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • United States Patent Office Patented Apr
    3,178,485 United States Patent Office Patented Apr. 13, 1965 2 3,178,485 alcohol, capryl alcohol, n-decyl alcohol, and the like; poly THERMAL, HYDROIDEALKYLATION OF ALKYL hydric aliphatic alcohols, such as ethylene glycol, propyl AROMATICS ene glycol, glycerol, trimethylene glycol, and the like; John W. Myers, Bartlesville, Okla., assig or to Philips monocarboxylic aliphatic acids, such as formic acid, acetic Petroleism Company, a corporation of Delaware acid, propionic acid, n-butyric acid, isobutyric acid, n No Drawing. Filed Dec. 6, 1961, Ser. No. 57,566 Valeric acid, caproic acid, n-heptylic acid, caprylic acid, 2 Claims. (CI. 260-672) pelargonic acid, and the like; esters of such carboxylic This invention relates to the thermal hydrodealkylation acids, such as methyl formate, ethyl formate, methyl of alkyl aromatics. More particularly, it relates to a acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, process for the thermal hydrodealkylation of alkyl aro O n-amyl acetate, n-octyl acetate, ethyl propionate, isoamyl matics, such as toluene, in admixture with an oxygen-sub n-butyrate, ethyl n-heptylate, and the like; anhydrides of stituted organic compound. such carboxylic acid, such as acetic anhydride, propionic There is increasdi interest and activity today in the anhydride, n-butyric anhydride, n-valeric anhydride, and chemical and allied industries in the production of aro the like; aldehydes, such as acetaldehyde, chloral glyoxal, matics such as benzene and naphthalene. Attention has propionaldehyde, n-butyraldehyde, isobutyraldehyde, n been given in particular to the catalytic hydrodealkyla valeraldehyde, acrolein, crotonaldehyde, benzaldehyde, tion of alkyl aromatics for the production of these valu furfural, and the like; ketones, such as acetone, methyl able aromatics.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Lewis Acid/Hexafluoroisopropanol
    Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective ortho-C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes Shengdong Wang, Guillaume Force, Régis Guillot, Jean-François Carpentier, Yann Sarazin, Christophe Bour, Vincent Gandon, David Lebœuf To cite this version: Shengdong Wang, Guillaume Force, Régis Guillot, Jean-François Carpentier, Yann Sarazin, et al.. Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective ortho-C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, American Chemical Society, 2020, 10 (18), pp.10794-10802. 10.1021/acscatal.0c02959. hal-02961178 HAL Id: hal-02961178 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02961178 Submitted on 8 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 10 ACS Catalysis 1 2 3 4 5 6 7 Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective 8 ortho-C-Alkylation of Anilines with Deactivated Styrene Derivatives 9 10 and Unactivated Alkenes 11 a a a b b 12 Shengdong Wang, Guillaume Force, Régis Guillot, Jean-François Carpentier, Yann Sarazin, 13 Christophe Bour,a Vincent Gandon*,a,c and David Lebœuf*,d 14 15 a Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 16 420, 91405 Orsay, France.
    [Show full text]
  • Highly-Chemoselective Step-Down Reduction of Carboxylic Acids to Aromatic Hydrocarbons Via Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons via Cite this: Chem. Sci.,2019,10,5736 † All publication charges for this article palladium catalysis have been paid for by the Royal Society b c c c ab of Chemistry Chengwei Liu, Zhi-Xin Qin, Chong-Lei Ji, Xin Hong * and Michal Szostak * Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, proceeding via well-defined Pd(0)/(II) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. The utility of this reaction is highlighted in the direct defunctionalization of pharmaceuticals and natural products, and further Received 21st February 2019 emphasized in a range of traceless processes using removable carboxylic acids under mild, redox- Accepted 27th April 2019 Creative Commons Attribution 3.0 Unported Licence. neutral conditions orthogonal to protodecarboxylation. Extensive DFT computations were conducted to DOI: 10.1039/c9sc00892f demonstrate preferred selectivity for the reversible oxidative addition and indicated that a versatile rsc.li/chemical-science hydrogen atom transfer (HAT) pathway is operable. Introduction Herein, we report the rst highly selective method for the direct step-down reduction of ubiquitous carboxylic acids to The reduction of carboxylic acid derivatives represents one of arenes (decarbonylative pathway), proceeding via well-dened the most fundamental transformations in synthetic chemistry Pd(0)/(II) cycle (Fig.
    [Show full text]