BENZENE Disclaimer

Total Page:16

File Type:pdf, Size:1020Kb

BENZENE Disclaimer United States Office of Air Quality EPA-454/R-98-011 Environmental Protection Planning And Standards June 1998 Agency Research Triangle Park, NC 27711 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF BENZENE Disclaimer This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation of use. EPA-454/R-98-011 ii TABLE OF CONTENTS Section Page LIST OF TABLES.....................................................x LIST OF FIGURES.................................................. xvi EXECUTIVE SUMMARY.............................................xx 1.0 PURPOSE OF DOCUMENT .......................................... 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS.............................. 2-1 3.0 BACKGROUND INFORMATION ...................................... 3-1 3.1 NATURE OF POLLUTANT..................................... 3-1 3.2 OVERVIEW OF PRODUCTION AND USE ......................... 3-4 3.3 OVERVIEW OF EMISSIONS.................................... 3-8 4.0 EMISSIONS FROM BENZENE PRODUCTION ........................... 4-1 4.1 CATALYTIC REFORMING/SEPARATION PROCESS................ 4-7 4.1.1 Process Description for Catalytic Reforming/Separation........... 4-7 4.1.2 Benzene Emissions from Catalytic Reforming/Separation .......... 4-9 4.2 TOLUENE DEALKYLATION AND TOLUENE DISPROPORTIONATION PROCESS ............................ 4-11 4.2.1 Toluene Dealkylation .................................... 4-12 4.2.2 Toluene Disproportionation ............................... 4-13 4.3 ETHYLENE PRODUCTION .................................... 4-16 4.3.1 Process Description ..................................... 4-16 4.3.2 Benzene Emissions from Ethylene Plants and Benzene Recovery from Pyrolysis Gasoline................................... 4-32 4.4 COKE OVEN AND COKE BY-PRODUCT RECOVERY PLANTS ...... 4-36 4.4.1 Process Description ..................................... 4-36 4.4.2 Benzene Emissions...................................... 4-46 iii TABLE OF CONTENTS, continued Section Page 4.5 METHODS FOR ESTIMATING BENZENE EMISSIONS FROM EMISSION SOURCES ........................................ 4-61 4.5.1 Process Vent Emissions, Controls, and Regulations..............4-62 4.5.2 Equipment Leak Emissions, Controls, and Regulations........... 4-70 4.5.3 Storage Tank Emissions, Controls, and Regulations ............. 4-77 4.5.4 Wastewater Collection and Treatment System Emissions, Controls, and Regulations................................. 4-82 4.5.5 Product Loading and Transport Operations Emissions, Controls, and Regulations ........................................ 4-85 5.0 EMISSIONS FROM MAJOR USES OF BENZENE......................... 5-1 5.1 ETHYLBENZENE AND STYRENE PRODUCTION .................. 5-2 5.1.1 Process Description for Ethylbenzene and Styrene Production Using Benzene Alkylation and Ethylbenzene Dehydrogenation ...... 5-3 5.1.2 Process Description for Ethylbenzene Production from Mixed Xylenes................................................ 5-9 5.1.3 Process Description for Styrene Production from Ethylbenzene Hydroperoxidation ...................................... 5-10 5.1.4 Process Description for Styrene Production by an Isothermal Process............................................... 5-12 5.1.5 Benzene Emissions from Ethylbenzene and Styrene Production via Alkylation and Dehydrogenation......................... 5-14 5.1.6 Control Technology for Ethylbenzene/Styrene Processes..........5-19 5.2 CYCLOHEXANE PRODUCTION ............................... 5-20 5.2.1 Process Description for Cyclohexane Production via Benzene Hydrogenation ......................................... 5-21 5.2.2 Benzene Emissions from Cyclohexane Production via Benzene Hydrogenation ......................................... 5-23 5.2.3 Process Description for Cyclohexane Production via Separation of Petroleum Fractions................................... 5-24 5.2.4 Benzene Emissions from Cyclohexane Production via Separation of Petroleum Fractions................................... 5-26 5.3 CUMENE PRODUCTION ..................................... 5-26 5.3.1 Process Descriptions for Cumene Production by Alkylating Benzene with Propylene.................................. 5-27 5.3.2 Benzene Emissions From Cumene Production.................. 5-34 iv TABLE OF CONTENTS, continued Section Page 5.4 PHENOL PRODUCTION ...................................... 5-35 5.4.1 Phenol Production Techniques ............................. 5-39 5.4.2 Benzene Emissions from Phenol Production ................... 5-47 5.5 NITROBENZENE PRODUCTION ............................... 5-49 5.5.1 Process Descriptions for Continuous Nitration ................. 5-49 5.5.2 Benzene Emissions from Nitrobenzene Production .............. 5-53 5.6 ANILINE PRODUCTION ...................................... 5-58 5.6.1 Process Descriptions for Aniline Production for Nitrobenzene ...... 5-58 5.6.2 Benzene Emissions from Aniline Production ................... 5-61 5.7 CHLOROBENZENE PRODUCTION ............................. 5-62 5.7.1 Process Description for Chlorobenzene Production by Direct Chlorination of Benzene.................................. 5-62 5.7.2 Benzene Emissions from Chlorobenzene Production............. 5-67 5.8 LINEAR ALKYLBENZENE PRODUCTION ....................... 5-70 5.8.1 Process Description for Production of LAB Using the Olefin Process............................................... 5-70 5.8.2 Benzene Emissions from LAB Production Using the Olefin Process............................................... 5-74 5.8.3 Process Description for Production of LAB Using the Chlorination Process..................................... 5-74 5.8.4 Benzene Emissions from LAB Production Using the Chlorination Process............................................... 5-78 5.9 OTHER ORGANIC CHEMICAL PRODUCTION .................... 5-80 5.9.1 Hydroquinone.......................................... 5-80 5.9.2 Benzophenone ......................................... 5-81 5.9.3 Benzene Sulfonic Acid ................................... 5-81 5.9.4 Resorcinol............................................. 5-81 5.9.5 Biphenyl.............................................. 5-82 5.9.6 Anthraquinone ......................................... 5-82 5.10 BENZENE USE AS A SOLVENT................................5-82 6.0 EMISSIONS FROM OTHER SOURCES................................. 6-1 6.1 OIL AND GAS WELLHEADS ................................... 6-1 v TABLE OF CONTENTS, continued Section Page 6.1.1 Description of Oil and Gas Wellheads......................... 6-1 6.1.2 Benzene Emissions from Oil and Gas Wellheads................. 6-2 6.2 GLYCOL DEHYDRATION UNITS ............................... 6-4 6.2.1 Process Description for Glycol Dehydration Units................ 6-5 6.2.2 Benzene Emissions from Glycol Dehydration Units............... 6-8 6.2.3 Controls and Regulatory Analysis........................... 6-13 6.3 PETROLEUM REFINERY PROCESSES.......................... 6-14 6.3.1 Description of Petroleum Refineries ......................... 6-14 6.3.2 Benzene Emissions from Petroleum Refinery Processes and Operations ............................................ 6-17 6.3.3 Controls and Regulatory Analysis........................... 6-28 6.4 GASOLINE MARKETING..................................... 6-31 6.4.1 Benzene Emissions from Loading Marine Vessels............... 6-34 6.4.2 Benzene Emissions from Bulk Gasoline Plants and Bulk Gasoline Terminals............................................. 6-37 6.4.3 Benzene Emissions from Service Stations..................... 6-46 6.4.4 Control Technology for Marine Vessel Loading ................ 6-49 6.4.5 Control Technology for Gasoline Transfer .................... 6-53 6.4.6 Control Technology for Gasoline Storage..................... 6-53 6.4.7 Control Technology for Vehicle Refueling Emissions ............ 6-56 6.4.8 Regulatory Analysis ..................................... 6-58 6.5 PUBLICLY OWNED TREATMENT WORKS...................... 6-59 6.5.1 Process Description of POTWs............................. 6-59 6.5.2 Benzene Emissions From POTWs........................... 6-68 6.5.3 Control Technologies for POTWs........................... 6-69 6.5.4 Regulatory Analysis ..................................... 6-72 6.6 MUNICIPAL SOLID WASTE LANDFILLS........................ 6-72 6.6.1 Process Description of MSW Landfills ....................... 6-73 6.6.2 Benzene Emissions from MSW Landfills ...................... 6-74 6.6.3 Control Technologies for MSW Landfills ..................... 6-80 6.6.4 Regulatory Analysis ..................................... 6-81 6.7 PULP, PAPER, AND PAPERBOARD INDUSTRY .................. 6-81 6.7.1 Process Description for Pulp, Paper, and Paperboard Making Processes ............................................. 6-82 6.7.2 Benzene Emissions from Pulp, Paper and Papermaking Processes . 6-91 vi TABLE OF CONTENTS, continued Section Page 6.8 SYNTHETIC GRAPHITE MANUFACTURING..................... 6-93 6.8.1 Process Description for Synthetic Graphite Production........... 6-94 6.8.2 Benzene Emissions from Synthetic Graphite Production.......... 6-97 6.8.3 Control Technologies for Synthetic Graphite Production.......... 6-99 6.9 CARBON BLACK MANUFACTURE............................. 6-99 6.9.1 Process Description for Carbon Black Manufacture............. 6-101 6.9.2 Benzene Emissions from Carbon Black
Recommended publications
  • SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1
    SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Other means of : Not available. identification Product type : Gas. Product use : Synthetic/Analytical chemistry. SDS # : 002173 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. May increase respiration and heart rate. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight. Store in a well-ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation.
    [Show full text]
  • Phosphine and Ammonia Photochemistry in Jupiter's
    40th Lunar and Planetary Science Conference (2009) 1201.pdf PHOSPHINE AND AMMONIA PHOTOCHEMISTRY IN JUPITER’S TROPOSPHERE. C. Visscher1, A. D. Sperier2, J. I. Moses1, and T.C. Keane3. 1Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd., Houston, TX 77058-1113 2Baylor University, Waco, TX 76798, 3Department of Chemistry and Physics, The Sage Colleges, Troy, NY 12180, ([email protected], [email protected]) Introduction: The last comprehensive photo- tions involving the amino radical (NH2) play a larger chemical model for Jupiter’s troposphere was pre- role. We note that this is the first photochemical sented by Edgington et al. [1,2], based upon the work model to include P2H as an intermediate species in PH3 of Atreya et al. [3] and Kaye and Strobel [4-6]. Since photolysis. The equivalent N2Hx species are believed these early studies, numerous laboratory experiments to be important in the combustion chemistry of nitro- have led to an improvement in our understanding of gen compounds [15]. PH3, NH3-PH3, and NH3-C2H2 photochemistry [7-13]. Furthermore, recent Galileo, Cassini, and Earth-based observations have better defined the abundance of key atmospheric constituents as a function of altitude and latitude in Jupiter’s troposphere. These new results provide an opportunity to test and improve theoretical models of Jovian atmospheric chemistry. We have therefore developed a photochemical model for Jupi- ter’s troposphere considering the updated experimental and observational constraints. Using the Caltech/JPL KINETICS code [14] for our photochemical models, our basic approach is two- fold. The validity of our selected chemical reaction list is first tested by simulating the laboratory experiments of PH3, NH3-PH3, and NH3-C2H2 photolysis with pho- tochemical “box” models.
    [Show full text]
  • Petroleum Refinery Process Stream Additions
    American Petroleum Institute Petroleum Refinery Process Stream Additions CasNo Substance Definition Caveat 129813-66-7 Alkanes, C10-13 68551-17-7 Alkanes, C10-13-iso- 93924-07-3 Alkanes, C10-14 68551-18-8 Alkanes, C10-14-iso- 329909-27-5 Alkanes, C10-15-iso-, cyclic and linear 73138-29-1 Alkanes, C10-18 289711-49-5 Alkanes, C10-24 289711-48-4 Alkanes, C10-24-branched 129813-67-8 Alkanes, C12-14 68551-19-9 Alkanes, C12-14-iso- 68551-20-2 Alkanes, C13-16-iso- 90622-46-1 Alkanes, C14-16 74664-93-0 Alkanes, C14-30 70024-92-9 Alkanes, C7-8-iso- 68551-15-5 Alkanes, C8-10-iso- 68551-16-6 Alkanes, C9-11-iso- 68990-23-8 Alkenes, C12-26 .alpha.-, sulfated 93762-80-2 Alkenes, C15-18 68603-35-0 Alkenes, C18-24 .alpha.-, bisulfited 72162-34-6 Alkenes, C18-24 .alpha.-, sulfurized 93924-10-8 Alkenes, C20-24 .alpha.- 93924-11-9 Alkenes, C24-28 .alpha.- 131459-42-2 Alkenes, C24-54-branched and linear .alpha.- 68409-73-4 Aromatic hydrocarbons, biphenyl-rich A complex combination of hydrocarbons produced by the Substance found at hydrodealkylation and distillation of toluene. It consists refineries, but also may be predominantly of aromatic hydrocarbons having a carbon number produced in separate C6 or greater, primarily biphenyl, and boiling in the range of petrochemical approximately 79.degree.C to 398.degree.C (175.degree.F to manufacturing facilities. 750.degree.F). 68989-41-3 Aromatic hydrocarbons, biphenyl-rich, The complex combination of hydrocarbons obtained from a Substance found at thermal hydrodealkylation residues thermal hydrodealkylation process.
    [Show full text]
  • Analysis of Trace Hydrocarbon Impurities in 1,3-Butadiene Using Optimized Rt®-Alumina BOND/MAPD PLOT Columns by Rick Morehead, Jan Pijpelink, Jaap De Zeeuw, Tom Vezza
    Petroleum & Petrochemical Applications Analysis of Trace Hydrocarbon Impurities in 1,3-Butadiene Using Optimized Rt®-Alumina BOND/MAPD PLOT Columns By Rick Morehead, Jan Pijpelink, Jaap de Zeeuw, Tom Vezza Abstract Identifying and quantifying trace impurities in 1,3-butadiene is critical in producing high quality synthetic rubber products. Stan- dard analytical methods employ alumina PLOT columns which yield good resolution for low molecular weight hydrocarbons, but suffer from irreproducibility and poor sensitivity for polar hydrocarbons. In this study, Rt®-Alumina BOND/MAPD PLOT columns were used to separate both common light polar contaminants, including methyl acetylene and propadiene, as well as 4-vinylcy- clohexene, which is a high molecular weight impurity that normally requires a second test on an alternative column. By using an extended temperature program that employs the full thermal range of the column, 4-vinylcyclohexene, as well as all of the typical low molecular weight impurities in 1,3-butadiene, can be analyzed in a single test. Introduction 1,3-butadiene is typically isolated from products of the naphtha steam cracking process. Prior to purification, 1,3-butadiene can be contaminated with significant amounts of isobutene as well as other C4 isomers. In addition to removing these C4 isomeric contaminants during purification, it is also important that 1,3-butadiene be free of propadiene and methyl acetylene, which can interfere with catalytic polymerization. Alumina PLOT columns are the most commonly used GC column for this application, but the determination of polar hydrocarbon impurities at trace levels can be quite challenging and is highly dependent on the deactiva- tion of the alumina surface.
    [Show full text]
  • Status and Prospects of Organic Redox Flow Batteries Toward Sustainable Energy Storage Jian Luo,† Bo Hu,† Maowei Hu,† Yu Zhao,‡ and T
    Review Cite This: ACS Energy Lett. 2019, 4, 2220−2240 http://pubs.acs.org/journal/aelccp Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage Jian Luo,† Bo Hu,† Maowei Hu,† Yu Zhao,‡ and T. Leo Liu*,† † The Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States ‡ Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China ABSTRACT: Redox flow batteries (RFBs) are regarded a promising technology for large-scale electricity energy storage to realize efficient utilization of intermittent renewable energy. Redox -active materials are the most important components in the RFB system because their physicochemical and electrochemical proper- ties directly determine their battery performance and energy storage cost. Designable, tunable, and potentially low-cost redox- active organic compounds are promising alternatives to traditional redox-active inorganic compounds for RFB applications. Herein, the representative designs of redox-active molecules, recent development of organic RFBs (ORFBs), and advantages/ disadvantages of different ORFB are reviewed. Especially the relationship between redox-active molecules’ physicochemical properties and their battery performance is discussed with an emphasis on the side reactions that cause fading of battery capacity. Finally, we provide an outlook on the development of high-performance ORFBs for practical energy storage
    [Show full text]
  • Including Toluene Derivatives
    RSC Advances View Article Online PAPER View Journal | View Issue Catalytic C–H aerobic and oxidant-induced oxidation of alkylbenzenes (including toluene Cite this: RSC Adv., 2020, 10,23543 derivatives) over VO2+ immobilized on core–shell Fe3O4@SiO2 at room temperature in water† Pegah Mohammadpour and Elham Safaei * Direct C–H bond oxidation of organic materials, and producing the necessary oxygenated compounds under mild conditions, has attracted increasing interest. The selective oxidation of various alkylbenzenes 2+ was carried out by means of a new catalyst containing VO species supported on silica-coated Fe3O4 nanoparticles using t-butyl hydroperoxide as an oxidant at room temperature in H2O or solvent-free media. The chemical and structural characterization of the catalyst using several methods such as FTIR spectroscopy, XRD, FETEM, FESEM, SAED, EDX and XPS showed that VO2+ is covalently bonded to the silica surface. High selectivity and excellent conversion of various toluene derivatives, with less reactive Creative Commons Attribution 3.0 Unported Licence. Received 18th April 2020 aliphatic (sp3)C–H bonds, to related benzoic acids were quite noticeable. The aerobic oxygenation Accepted 15th May 2020 reaction of these alkylbenzenes was studied under the same conditions. All the results accompanied by DOI: 10.1039/d0ra03483e sustainability of the inexpensive and simple magnetically separable heterogeneous catalyst proved the rsc.li/rsc-advances important criteria for commercial applications. Introduction industrial communities. Among
    [Show full text]
  • Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor
    NASA Technical Paper 1181 I 1 Experimental and Analytical Study of Nitric Oxide Formation During / Combustion of Propane in a Jet-Stirred Combustor , ' N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson , TECH LIBRARY KAFB, NM 0134538 NASA Technical Paper 1181 Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Information Otfice 1978 '8' SUMMARY A jet-stirred combustor, constructed of castable zirconia and with an inconel injector, has been used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equiva­ lence ratios varying from 0.7 to 1.4. The residence time range was character­ istic of that found in the primary zones of aircraft turbines. Premixed propane-air formulations were subjected to intense and turbulent backmixed combustion within the cavity formed between the injector and the hemispherical inner walls of the zirconia shell. The volume of the combustor cavity was 12.7 cm3 and the mass loading was maintained in the range from 0.053 to 0.055 g/cm3-sec. Measurements were made of combustor operating tem­ perature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. Nitric oxide concentrations were predicted over the range of equivalence ratio by a computer program which employs a perfectly stirred'reactor (PSR) algorithm with finite-rate kinetics.
    [Show full text]
  • Ammonia As a Refrigerant
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL
    [Show full text]
  • Safer Cocktail for an Ethanol/Water/Ammonia Solvent
    L A S C P LSC in Practice C P O C L Safer Cocktail for an Ethanol/Water/ K T I A I C Ammonia Solvent Mixture L S A Problem T A laboratory had been under pressure to move towards Using this mixture, the sample uptake capacity of I the newer generation of safer liquid scintillation ULTIMA-Flo AP, ULTIMA-Flo M and ULTIMA Gold O cocktails. Unfortunately, the sample composition of LLT (PerkinElmer 6013599, 6013579 and 6013377, one of their targets kept giving the researchers problems. respectively) at 20 °C was determined and N Before the lead researcher contacted PerkinElmer, the results were: they had tried PerkinElmer’s Opti-Fluor®, ULTIMA ULTIMA-Flo AP 4.00 mL in 10 mL cocktail N Gold LLT, and ULTIMA Gold XR. All of the safer O ™ ULTIMA-Flo M 4.25 mL in 10 mL cocktail cocktails could incorporate each of the constituents T as indicated by their sample capacity graphs. ULTIMA Gold LLT 4.25 mL in 10 mL cocktail E The problematic sample was an extraction solvent From these results, we observed that it was possible consisting of 900 mL ethanol, 50 mL ammonium to get 4.0 mL of the sample into all of these cocktails. hydroxide, 500 mL water and an enzyme containing In addition, we determined that it was not possible to 14C. The mixture had a pH in the range of 10 to 11. get 4 mL sample into 7 mL of any of these cocktails. To complete this work, we also checked for lumines- Discussion cence using 4 mL of sample in 10 mL of each cocktail.
    [Show full text]
  • Molecular Modeling of the Reduction Mechanism in the Citrate- Mediated Synthesis of Gold Nanoparticles Isaac Ojea-Jimeneź † and Josep M
    Article pubs.acs.org/JPCC Molecular Modeling of the Reduction Mechanism in the Citrate- Mediated Synthesis of Gold Nanoparticles Isaac Ojea-Jimeneź † and Josep M. Campanera‡,* † Centre d’Investigacióen Nanociencià i Nanotecnologia (CIN2, ICN-CSIC), Campus UAB, 08193, Cerdanyola del Valles,̀ Spain ‡ Departament de Fisicoquímica, Facultat de Farmacia,̀ Universitat de Barcelona, Av. Joan XXIII, s/n, Diagonal Sud, 08028 Barcelona, Spain *S Supporting Information ABSTRACT: The synthesis of gold nanoparticles (Au NPs) via the reduction of tetrachloroauric acid by sodium citrate has become a standard procedure in nanotechnology. Simultaneously, gold- mediated reactions are gaining interest due to their catalytic properties, unseen in other metals. In this study, we have investigated the theoretical mechanism of this reaction under three different pH conditions (acid, mild acid, and neutral) and have corroborated our findings with experimental kinetic measurements by UV−vis absorption spectroscopy and transmission electron microscopy (TEM) analysis of the final particle morphology. We have demonstrated that, indeed, the pH of the medium ultimately determines the reaction rate of the reduction, which is the rate-limiting step in the Au NPs formation and involves decarboxylation of the citrate. The pH sets the dominant species of each of the reactants and, consequently, the reaction pathways slightly differ in each pH condition. The mechanism highlights the effect of the number of Cl− ligands in the metallocomplex, which ultimately originates the energetic
    [Show full text]
  • Alternatives to High Propane Prices Interest Expense and the Cost of Utilities Are the Two Largest “Out of Pocket” Expenses Facing Most Broiler Growers
    ThePoultry Engineering, Economics & Management NEWSLETTER Critical Information for Improved Bird Performance Through Better House and Ventilation System Design, Operation and Management Auburn University, in cooperation with the U.S. Poultry & Egg Association Issue No 29, May 2004 Alternatives to High Propane Prices Interest expense and the cost of utilities are the two largest “out of pocket” expenses facing most broiler growers. There is little a grower can do to reduce interest costs, short of major mortgage refinancing. However, costs associated with utilities are another matter. The topics we have addressed in most past issues of this newsletter have all dealt with housing and ventilation factors which can result in improved flock performance and in reduced levels of energy being used, which directly reduces costs to the grower. Electricity rates are typically fixed and are highly regulated. However, the price of heating fuel, specifically propane (liquefied petroleum gas or LPG), has varied widely up and down in most recent years, depending on the time of year and numerous supply and demand conditions. Growers can choose What growers should be aware of is that there are ways to reduce the from several good risk that they will have to buy propane at one of those times when the alternatives to paying price is highest. This newsletter explains several alternative methods consistently high prices growers can use to get lower and more stable propane costs over time. for propane. Understanding the Basics of Propane Pricing The most fundamental factor in propane pricing is that propane is basically a fossil fuel, being derived from raw natural gas during the oil refining process.
    [Show full text]
  • (1) Title: Gas-Phase Oxidation and Disproportionation of Nitric Oxide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Community Repository of Fukui 1 Title (1) Title: Gas-phase oxidation and disproportionation of nitric oxide (2) Running title: Gas-phase oxidation and disproportionation of NO (3) Authors: Hirokazu Tsukahara*, Takanobu Ishida†, Mitsufumi Mayumi* *Department of Pediatrics, Faculty of Medicine, Fukui Medical University, Fukui 910-1193, Japan †Department of Chemistry, State University of New York at Stony Brook, New York 11794-3400, USA (4) Correspondence: Hirokazu Tsukahara, M.D., Ph.D. Department of Pediatrics, Faculty of Medicine, Fukui Medical University, Fukui 910-1193, Japan Telephone: 81-776-61-3111 (ex. 2316), FAX: 81-776-61-8129 E-mail: [email protected] 2 Introduction Nitrogen and oxygen together comprise over 98% of the air we breathe. Nitric oxide (NO) is a simple molecule, consisting of a single nitrogen bonded to one oxygen atom, which makes its chemistry accessible to study in great detail.1,2 However, it is only recently that mammalian cells were discovered to produce NO as a short-lived intercellular messenger.3,4 NO participates in blood pressure control, neurotransmission and inflammation. Moreover, NO is the biologically active species released from a variety of cardiovascular drugs such as nitroglycerin and isosorbide dinitrate.5 One important function of NO is in the macrophage-dependent killing of invaders, and possibly cancer cells, indicating the potential of this free radical to mediate cytotoxic and pathological effects.6 When inhaled, NO acts as a selective pulmonary vasodilator. There is intense clinical interest in inhalation of low doses of NO (less than 1 to 80 ppm) in the treatment of diseases characterized by pulmonary hypertension and hypoxemia (Table I).7,8 The inhaled NO therapy is fairly inexpensive, but it seems that it is not indicated for everybody with regards to the paradigm of its efficiency and potential toxicity.
    [Show full text]