C-C BOND FORMATION 72 Carbon- Carbon Bond Formation 1

Total Page:16

File Type:pdf, Size:1020Kb

C-C BOND FORMATION 72 Carbon- Carbon Bond Formation 1 C-C BOND FORMATION 72 Carbon- Carbon Bond Formation 1. Alkylation of enolates, enamines and hydrazones C&S: Chapt. 1, 2.1, 2.2 problems Ch 1: 1; 2; 3, 7; 8a-d; 9; 14 Ch. 2: 1; 2; 4) Smith: Chapt. 9 2. Alkylation of heteroatom stabilized anions C&S :Chapt. 2.4 - 2.6) 3. Umpolung Smith: Chapt. 8.6 4. Organometallic Reagents C&S: Chapt. 7, 8, 9 problems ch 7: 1; 2; 3, 6; 13 Ch. 8: 1; 2 Smith: Chapt. 8 5. Sigmatropic Rearrangements . C&S Chapt. 6.5, 6.6, 6.7 # 1e,f,h,op Smith Chapt. 11.12, 11.13 Enolates Comprehensive Organic Synthesis 1991, vol. 2, 99. - a -deprotonation of a ketone, aldehyde or ester by treatment with a strong non- nucleophillic base. - carbonyl group stabilizes the resulting negative charge. O O O - B: H H - H R R R H H H H - Base is chosen so as to favor enolate formation. Acidity of C-H bond must be greater (lower pKa value) than that of the conjugate acid of the base (C&S table 1.1, pg 3) O MeO- pK = 15 unfavorable enolate pK = 20 a H C CH a - concentration 3 3 tBuO pKa = 19 O O more favorable pKa = 10 enolate concentration H3C CH2 OEt - Common bases: NaH, EtONa, tBuOK, NaNH2, LiNiPr2, M N(SiMe3)2, Na CH2S(O)CH3 Enolate Formation: - H+ Catalyzed (thermodynamic) O OH H+ - Base induced (thermodynamic or kinetic) O O - :B +B:H H Regioselective Enolate Formation Tetrahedron 1976, 32, 2979. - Kinetic enolate- deprotonation of the most accessable proton (relative rates of deprotonation). Reaction done under essentially irreversible conditions. O O - Li+ LDA, THF, -78°C C-C BOND FORMATION 73 typical conditions: strong hindered (non-nucleophilic) base such as LDA R2NH pKa= ~30 Li N Ester Enolates- Esters are susceptible to substitution by the base, even LDA can be problematic. Use very hindered non-nucleophillic base (Li isopropylcyclohexyl amide) O O OR' LDA, THF, -78°C N E+ R R O O- Li+ N Li R OR' OR' R THF, -78°C - Thermodynamic Enolate- Reversible deprotonation to give the most stable enolate: more highly substituted C=C of the enol form - + O K O O - K+ - + tBuO K , tBuOH kinetic thermodynamic typical conditions: RO- M+ in ROH , protic solvent allows reversible enolate formation. Enolate in small concentration (pKa of ROH= 15-18 range) - note: the kinetic and thermodynamic enolate in some cases may be the same - for a,b -unsaturated ketones O thermodynamic kinetic site site Trapping of Kinetic Enolates - enol acetates 1) NaH, DME 2) Ac O Ph Ph 2 Ph + O O kinetic O O O isolatable separate & purify CH3Li, THF CH3Li, THF Regiochemically pure enolates Ph Ph O- Li+ O- Li+ C-C BOND FORMATION 74 - silyl enolethers Synthesis 1977, 91. Acc. Chem. Res. 1985, 18, 181. 1) LDA 2) Me SiCl Ph Ph 3 Ph + OTMS O kinetic OTMS isolatable separate & purify CH3Li, THF CH Li, THF -or- 3 Bu4NF -or- TiCl4 Geometrically Ph Ph pure enolates O- M+ O- M+ - tetraalkylammonium enolates- "naked" enolates - TMS silyl enol ethers are labile: can also use Et3Si-, iPr3Si- etc. - Silyl enol ether formation with R3SiCl+ Et3N gives thermodyanamic silyl enol ether - From Enones 1) MeLi 1) Li, NH3 + 2) TMS-Cl 2) E O TMSO O H H E O OSiMe OSiMe3 3 TMS-Cl, Et3N TMS-OTf Et3N O OSiMe3 Li, NH3, tBuOH TMS-Cl - From conjugate (1,4-) additions O O- Li+ O + (CH3)2CuLi E E Trap or use directly - From reduction of a -halo carbonyls O O- M+ Br Zn or Mg Alkylation of Enolates (condensation of enolates with alkyl halides and epoxides) Comprehensive Organic Synthesis 1991, vol. 3, 1. 1° alkyl halides, allylic and benzylic halides work well 2° alkyl halides can be troublesome 3° alkyl halides don't work C-C BOND FORMATION 75 O O a) LDA, THF, -78°C Me b) MeI - Rate of alkylation is increased in more polar solvents (or addition of additive) O O O O NMe2 (Me2N)3P O S CH3N CH3N NCH3 R NMe2 H3C CH3 HMPA Me2N R= H DMF DMSO R-CH3 DMA TMEDA Mechanism of Enolate Alkylation: SN2 reaction, inversion of electrophile stereochemistry X C 180 ° M+ -O Alkylation of 4-t-butylcyclohexanone: O O E R R equitorial anchor E H A E H tBu A favored Chair tBu R O R B O- M+ H E O Twist Boat B tBu R E on cyclohexanone enolates, the electrophile approaches from an "axial" trajectory. This approach leads directly into a chair-like product. "Equitorial apprach leads to a higher energy twist-boat conformation. Alkylation of a,b -unsaturated carbonyls - + O M O R R E 1 2 R1 R2 O Kinetic H E H R1 R2 H H O- M+ O E R1 R2 R1 R2 H H E Thermodynamic C-C BOND FORMATION 76 Stork-Danheiser Enone Transposition: - overall g-alkylation of an a,b -unsaturated ketone O O LDA HO CH3 CH3 PhCH OCH Cl CH Li H O+ 2 2 PhO 3 3 PhO PhO OMe OMe OMe O J. Org. Chem. 1995, 60, 7837. Chiral enolates- Chiral auxilaries. D.A. Evans JACS 1982, 104 , 1737; Aldrichimica Acta 1982,15 , 23. Asymmetric Synthesis 1984, 3, 1. - N-Acyl oxazolidinones O O H N OH R 2 N O Me Ph Me Ph norephedrine O O R H2N OH N O valinol O O O O O R LDA, THF R O O LiOH, H2O, THF R N N OH Et-I Me Ph Me Ph Complimentary Methods major product for enantiospecific alkylations (96:4) O O O O O Diastereoselectivity: 92 - 98 % R LDA, THF N O R LiOH, H2O, THF R for most alkyl halides N O OH Et-I major product (96:4) Enolate Oxidation Chem. Rev. 1992, 92, 919. O O O O NaN(SiMe ) , R 3 2 R N O THF, -78°C N O O OH N (88 - 98 % de) Ph SO2Ph 1) HO- O O 2) CH N LDA, THF 2 2 O R 3) TFA N O R O Boc N 4) Raney Ni OMe N OtBu NH2 tBuO N HN (94 - 98 % de) O Boc C-C BOND FORMATION 77 Bu Bu O O B O O O O NBS - R Bu2BOTf, Et3N N3 N O R R N O N O Br Ph Ph Ph O O 1) LiOH O R 2) H2, Pd/C N O R OH N3 NH2 Ph D- amino acids O O O O R KN(SiMe3)2, THF R N O N O N3 SO2N3 Ph Ph Oppolzer Camphor based auxillaries Tetrahedron, 1987, 43, 1969. diastereoselectivities on the order of 50 : 1 SO2Ph R N Ar Ar N O R O SO2Ph R O O O N O S O SO2N(C6H11)2 O R 2 H H Et Cu•BF LDA, NBS H O 2 3 O O Br HO O O NH O 2 SO2N(C6H11)2 SO2N(C6H11)2 O SO2N(C6H11)2 Asymmetric Acetate Aldol O S O TIPSO O 1) Br H N O J. Am. Chem. Soc. 1998, 120, 591 Br NH2 J. Org. Chem. 1986, 51, 2391 Sn(OTf)2, CH2Cl2, R3N, -40°C 2) TIPS-OTf, pyridine 85 %, 19:1 de 3) NH3 Chiral lithium amide basess CH3 CH Ph N OMe 3 MeO Li MeO O CO2Et THF, -78°C (CH3)2C=O OMe OMe O (72% ee) C-C BOND FORMATION 78 H N Ph OTMS O But H N Ph N N O Li Li N THF, HMPA (97 % ee) TMSCl N tBu tBu Me Lewis Acid Mediated Alkylation of Silyl Enolethers- SN1 like alkylations OTMS O tBu-Cl, TiCl4, CH3 CH2Cl2, -40°C note: alkylation with a 3° alkyl halide (79%) C(CH3)3 ACIEE1978, 17, 48 SPh TL 1979, 1427 OTMS O SPh O Raney Ni R Cl R R (95 %) TiCl4, CH2Cl2, -40°C (78%) Enamines Gilbert Stork Tetrahedron 1982, 38, 1975, 3363. - Advantages: mono-alkylation, usually gives product from kinetic enolization O O N N can not become coplanar "Kinetic" "Thermodynamic" O O O O •• + N N N O H R-I H2O R E + H , (-H2O) enamine -Chiral enamines O N E Imines Isoelectronic with ketones Me Ph O Li OMe Ph O E = -CH , -Et, Pr, N N 1) E 3 + PhCH2-, allyl- LDA, THF, -20°C 2) H3O E ee 87 - 99 % C-C BOND FORMATION 79 Hydrazones isoelectronic with ketones Comprehensive Organic Synthesis 1991, 2, 503 N N O N N N - N Me2N-NH2 LDA, THF - + H , (-H2O) N + N O E hydrolysis E E - Hydrazone anions are more reactive than the corresponding ketone or aldehyde enolate. - Drawback: can be difficult to hydrolyze. - Chiral hydrazones for asymmetric alkylations (RAMP/SAMP hydrazones- D. Enders "Asymmetric Synthesis" vol 3, chapt 4, Academic Press; 1983) OMe MeO N N NH2 H2N SAMP RAMP N N LDA O N OMe N OMe O3 H I OTBS (95 % de) TBSO TBSO 1) LDA N 2) Ts-CH3, THF N -95 - -20 °C O OMe 3) MeI, 2N HCl CH3 (100 % ee) Me O Li •• MeO R1 N N R1 N N E (C,C) R R2 H 2 H Z (C,N) E E Aldol Condensation Comprehensive Organic Synthesis 1991, 2, 133, 181. O a) LDA, THF, -78°C O OH b-hydroxyl aldehyde b R'CHO (aldol) R H H R' R - The effects of the counterion on the reactivity of the enolates can be important Reactivity Li+ < Na+ < K+ < R4N+ addition of crown ethers C-C BOND FORMATION 80 - The aldol reaction is an equilibrium which can be "driven" to completion.
Recommended publications
  • UMPOLUNG in REACTIONS CATALYZED by THIAMINE PYROPHOSPHATE DEPENDENT ENZYMES Umpolung En Reacciones Catalizadas Por Enzimas Dependientes De Pirofosfato De Tiamina
    Ciencia, Ambiente y Clima, Vol. 2, No. 2, julio-diciembre, 2019 • ISSN (impreso): 2636-2317 • ISSN (en línea): 2636-2333 DOI: https://doi.org/10.22206/cac.2019.v2i2.pp27-42 UMPOLUNG IN REACTIONS CATALYZED BY THIAMINE PYROPHOSPHATE DEPENDENT ENZYMES Umpolung en reacciones catalizadas por enzimas dependientes de pirofosfato de tiamina Carlos José Boluda Emily Soto Instituto Tecnológico de Santo Domingo (INTEC), Instituto Tecnológico de Santo Domingo (INTEC), Área de Ciencias Básicas y Ambientales, Av. de Los Área de Ciencias Básicas y Ambientales Próceres 49, Santo Domingo, República Dominicana Correo-e: [email protected] *Corresponding author: Carlos J. Boluda Darah de la Cruz Correo-e: [email protected] Instituto Tecnológico de Santo Domingo (INTEC), Carolina Juncá Área de Ciencias Básicas y Ambientales Instituto Tecnológico de Santo Domingo (INTEC), Correo-e: [email protected] Área de Ciencias Básicas y Ambientales Anny Peña Correo-e: [email protected] Instituto Tecnológico de Santo Domingo (INTEC), Área de Ciencias Básicas y Ambientales Correo-e: [email protected] Recibido: 25/9/2019 • Aprobado: 19/10/2019 Cómo citar: Boluda, C. J., Juncá, C., Soto, E., de la Cruz, D., & Peña, A. (2019). Umpolung in reactions catalyzed by thiamine pyrophos- phate dependent enzymes. Ciencia, Ambiente Y Clima, 2(2), 27-42. Doi: https://doi.org/10.22206/cac.2019.v2i2.pp27-42 Abstract Resumen The temporal exchange of the electrophilic/nucleophilic El intercambio temporal del carácter electrofílico/nucleofí- character of an atom by chemical manipulation is known lico de un átomo mediante manipulación química, es cono- in organic chemistry as umpolung. This inversion of polarity cido con el vocablo alemán de umpolung.
    [Show full text]
  • Synthesis of Y,Δ-Unsaturated Amino Acids by Claisen Rearrangement - Last 25 Years
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2021, part ii, 0-0 Organic Chemistry to be inserted by editorial office Synthesis of y,δ-unsaturated amino acids by Claisen rearrangement - last 25 years Monika Bilska-Markowska,a Marcin Kaźmierczak,*a,b and Henryk Koroniaka aFaculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland bCentre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland Email: [email protected] In dedication to Professor Zbigniew Czarnocki on the occasion of his 66th anniversary Received mm-dd-yyyy Accepted mm-dd-yyyy Published on line mm-dd-yyyy Dates to be inserted by editorial office Abstract This mini review summarizes achievements in the synthesis of y,δ-unsaturated amino acids via Claisen rearrangements. The multitude of products that can be obtained using the discussed protocol shows that it is one of the most important reactions in organic synthesis. Moreover, many Claisen rearrangement products are building blocks in the synthesis of more complex molecules with potential biological activity. Keywords: y,δ-Unsaturated amino acids, Claisen rearrangement, fluorine-containing γ,δ-unsaturated amino acids, diastereoselectivity, optically active compounds DOI: https://doi.org/10.24820/ark.5550190.p011.335 Page 1 ©AUTHOR(S) Arkivoc 2021, ii, 0-0 Bilska-Markowska, M. et al. Table of Contents 1. Introduction 2. Chelated Claisen Rearrangement 3. Related Versions of Claisen Rearrangement for γ,δ-Unsaturated Amino Acids 4. Application of Claisen Rearrangement to the Synthesis of Fluorine-containing γ,δ-Unsaturated Amino Acids 5.
    [Show full text]
  • CHEM 345 Problem Set 18 Key 1.) Write the Mechanism for The
    CHEM 345 Problem Set 18 Key 1.) Write the mechanism for the following reactions. O a.) KCN EtOH O OH racemic 1.) Write the mechanism for the following reactions. b.) KCN AcOH O NC OH racemic O c.) N S R O NEt3 OH racemic 2.) What is the structure of AcOH?Why does changing the solvent from EtOH to AcOH make such a big difference? O OH AcOH acetic acid The pKa of acetic acid is approximately 5. The pKa of ethanol is approximately 15. When you take a proton off of ethanol, you generate ethoxide which is about 1010 times stronger of a base than acetate. 3.) Give two instances when you need to use the thiazolium salt and triethylamine rather than KCN and EtOH. If the aldehydes contain an enolizable proton then you cannot use KCN/EtOH, instead you must use the thiazolium. Also, if the electrophile is a Michael acceptor to give a 1,4 dicarbonyl, then the thiazolium catalyst should be used. 4.) Break the following compound down as far as you can using Aldol, Michael, and Claisen reactions. Above each retrosynthetic arrow, write the name of the reaction. O HO O HO Aldol O Michael HO O O HO O Aldol O O Aldol HO O O HO Michael O O O Aldol There are other possibilities for order. O O HO Aldol O O 5.) Synthesize the following molecules. All carbons in the molecules must come from benzene or compounds with 5C’s or less. a.) O H2SO4 O HNO3 O2N AlCl3 O O SOCl2 HO Cl H2CrO4 1.) BuLi, Et2O + O 2.) H3O HO b.) O O O Cl + H3O NaOEt, EtOH O O O O Cl O AlCl3 Cl Cl AlCl3 Cl2 c.) O OMe NaOMe MeOH O O 1.) POCl3, DMF 2.) H2O OMe OMe O AlCl3 MeI Cl ONa HCl NaOH ZnHg 1.) NaOH + mcpba O 2.) H3O O OH O O AlCl3 Cl 6.) Write the mechanism for the following reactions.
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • 2 Reactions Observed with Alkanes Do Not Occur with Aromatic Compounds 2 (SN2 Reactions Never Occur on Sp Hybridized Carbons!)
    Reactions of Aromatic Compounds Aromatic compounds are stabilized by this “aromatic stabilization” energy Due to this stabilization, normal SN2 reactions observed with alkanes do not occur with aromatic compounds 2 (SN2 reactions never occur on sp hybridized carbons!) In addition, the double bonds of the aromatic group do not behave similar to alkene reactions Aromatic Substitution While aromatic compounds do not react through addition reactions seen earlier Br Br Br2 Br2 FeBr3 Br With an appropriate catalyst, benzene will react with bromine The product is a substitution, not an addition (the bromine has substituted for a hydrogen) The product is still aromatic Electrophilic Aromatic Substitution Aromatic compounds react through a unique substitution type reaction Initially an electrophile reacts with the aromatic compound to generate an arenium ion (also called sigma complex) The arenium ion has lost aromatic stabilization (one of the carbons of the ring no longer has a conjugated p orbital) Electrophilic Aromatic Substitution In a second step, the arenium ion loses a proton to regenerate the aromatic stabilization The product is thus a substitution (the electrophile has substituted for a hydrogen) and is called an Electrophilic Aromatic Substitution Energy Profile Transition states Transition states Intermediate Potential E energy H Starting material Products E Reaction Coordinate The rate-limiting step is therefore the formation of the arenium ion The properties of this arenium ion therefore control electrophilic aromatic substitutions (just like any reaction consider the stability of the intermediate formed in the rate limiting step) 1) The rate will be faster for anything that stabilizes the arenium ion 2) The regiochemistry will be controlled by the stability of the arenium ion The properties of the arenium ion will predict the outcome of electrophilic aromatic substitution chemistry Bromination To brominate an aromatic ring need to generate an electrophilic source of bromine In practice typically add a Lewis acid (e.g.
    [Show full text]
  • Ring Opening of Donor–Acceptor Cyclopropanes with N-Nucleo- Philes
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2017, 49, 3035–3068 short review 3035 en Syn thesis E. M. Budynina et al. Short Review Ring Opening of Donor–Acceptor Cyclopropanes with N-Nucleo- philes Ekaterina M. Budynina* Konstantin L. Ivanov Ivan D. Sorokin Mikhail Ya. Melnikov Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation [email protected] Received: 06.02.2017 Accepted after revision: 07.04.2017 Published online: 18.05.2017 DOI: 10.1055/s-0036-1589021; Art ID: ss-2017-z0077-sr Abstract Ring opening of donor–acceptor cyclopropanes with various N-nucleophiles provides a simple approach to 1,3-functionalized com- pounds that are useful building blocks in organic synthesis, especially in assembling various N-heterocycles, including natural products. In this review, ring-opening reactions of donor–acceptor cyclopropanes with amines, amides, hydrazines, N-heterocycles, nitriles, and the azide ion are summarized. 1 Introduction 2 Ring Opening with Amines Ekaterina M. Budynina studied chemistry at Lomonosov Moscow 3 Ring Opening with Amines Accompanied by Secondary Processes State University (MSU) and received her Diploma in 2001 and Ph.D. in Involving the N-Center 2003. Since 2013, she has been a leading research scientist at Depart- 3.1 Reactions of Cyclopropane-1,1-diesters with Primary and Secondary ment of Chemistry MSU, focusing on the reactivity of activated cyclo- Amines propanes towards various nucleophilic agents, as well as in reactions
    [Show full text]
  • Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers: a Synthetic and Mechanistic Approach Kassem M
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2011 Gold (I)-Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers: A Synthetic and Mechanistic Approach Kassem M. Hallal Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES GOLD (I)-CATALYZED CLAISEN REARRANGEMENT OF ALLENYL VINYL ETHERS; A SYNTHETIC AND MECHANISTIC APPROACH By KASSEM M. HALLAL A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2011 The members of the committee approve the dissertation of Kassem M. Hallal defended on March 18, 2011. _______________________________________ Marie E. Krafft Professor Directing Dissertation _______________________________________ Thomas C. S. Keller III University Representative _______________________________________ Robert A. Holton Committee Member _______________________________________ Gregory B. Dudley Committee Member _______________________________________ William T. Cooper Committee Member Approved: ____________________________________________________________ Joseph B. Schlenoff, Chair, Department of Chemistry and Biochemistry The Graduate School has verified and approved the above-named committee members. ii This work is dedicated To My soul mate, lovely wife zeinab, My baby Mohammad And also to my parents Mohammad & Kamela And to My brothers and lovely sister Youssef, Hamzeh and Fatima & My Great professor Prof. Marie E. Krafft iii ACKNOWLEDGEMENTS Starting my PhD career at Florida State University was one of the most important stages in my life. Throughout the past five years, I learned a lot of things about chemistry and science, however, the most important thing which I learned was the chemistry of life.
    [Show full text]
  • Predicting Glycosylation Stereoselectivity Using Machine Learning† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Predicting glycosylation stereoselectivity using machine learning† Cite this: Chem. Sci.,2021,12,2931 ab a ab All publication charges for this article Sooyeon Moon, ‡ Sourav Chatterjee, ‡ Peter H. Seeberger have been paid for by the Royal Society and Kerry Gilmore §*a of Chemistry Predicting the stereochemical outcome of chemical reactions is challenging in mechanistically ambiguous transformations. The stereoselectivity of glycosylation reactions is influenced by at least eleven factors across four chemical participants and temperature. A random forest algorithm was trained using a highly reproducible, concise dataset to accurately predict the stereoselective outcome of glycosylations. The steric and electronic contributions of all chemical reagents and solvents were quantified by quantum mechanical calculations. The trained model accurately predicts stereoselectivities for unseen nucleophiles, electrophiles, acid catalyst, and solvents across a wide temperature range (overall root mean square error 6.8%). All predictions were validated experimentally on a standardized microreactor platform. The model helped to identify novel ways to control glycosylation stereoselectivity and Creative Commons Attribution 3.0 Unported Licence. Received 11th November 2020 accurately predicts previously unknown means of stereocontrol. By quantifying the degree of influence Accepted 24th December 2020 of each variable, we begin to gain a better general understanding of the transformation, for example that DOI: 10.1039/d0sc06222g environmental factors influence the stereoselectivity of glycosylations more than the coupling partners in rsc.li/chemical-science this area of chemical space. Introduction retrosynthesis,9 reaction performance10 and products,11,12 the identication of new materials and catalysts,13–15 as well as Predicting the outcome of an organic reaction generally enantioselectivity16,17 have been addressed.
    [Show full text]
  • A New Reaction Mechanism of Claisen Rearrangement Induced by Few-Optical-Cycle Pulses: Demonstration of Nonthermal Chemistry by Femtosecond Vibrational Spectroscopy*
    Pure Appl. Chem., Vol. 85, No. 10, pp. 1991–2004, 2013. http://dx.doi.org/10.1351/PAC-CON-12-12-01 © 2013 IUPAC, Publication date (Web): 13 August 2013 A new reaction mechanism of Claisen rearrangement induced by few-optical-cycle pulses: Demonstration of nonthermal chemistry by femtosecond vibrational spectroscopy* Izumi Iwakura1,2,3,‡, Atsushi Yabushita4, Jun Liu2, Kotaro Okamura2, Satoko Kezuka5, and Takayoshi Kobayashi2 1Innovative Use of Light and Materials/Life, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; 2University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; 3Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan; 4Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan; 5Department of Applied Chemistry, School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan Abstract: Time-resolved vibration spectroscopy is the only known way to directly observe reaction processes. In this work, we measure time-resolved vibration spectra of the Claisen rearrangement triggered and observed by few-optical-cycle pulses. Changes in molecular structure during the reaction, including its transition states (TSs), are elucidated by observ- ing the transient changes of molecular vibration wavenumbers. We pump samples with visi- ble ultrashort pulses of shorter duration than the molecular vibration period, and with photon energies much lower than the minimum excitation energy of the sample. The results indicate that the “nonthermal Claisen rearrangement” can be triggered by visible few-optical-cycle pulses exciting molecular vibrations in the electronic ground state of the sample, which replaces the typical thermal Claisen rearrangement.
    [Show full text]
  • Aldol Reactions: E-Enolates and Anti-Selectivity
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2005 Aldol Reactions: E-Enolates and Anti-Selectivity Matthew Grant Anderson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Organic Chemistry Commons Recommended Citation Anderson, Matthew Grant, "Aldol Reactions: E-Enolates and Anti-Selectivity" (2005). All Graduate Plan B and other Reports. 1312. https://digitalcommons.usu.edu/gradreports/1312 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALDOL REACTIONS: E-ENOLATES AND ANTI-SELECTIVITY Prepared By: MATTHEW GRANT ANDERSON A non-thesis paper submitted in partial fulfillment of the requirement for a Plan B Degree of Masters of Science in Organic Chemistry UTAH STATE UNIVERSITY Logan, Utah 2005 Contents Page CONTENTS ...................................................................................... .i LIST OF TABLES, FIGURES AND SCHEMES ....................................... ii,iii ABSTRACT .................................................................................... iv CHAPTER I. ALDOL REACTIONS:E-ENOLATES AND ANTI SELECTIVITY ......... 1 CHAPTER II. SECTION 1. MODELS OF E-ENOLATE FORMATION ...... .... ....... ... 12 SECTION 2. PATERSON ENOLATE PAPER ..... .........................
    [Show full text]
  • Stereoselectivity in Atmospheric Autoxidation Kristian H
    Subscriber access provided by Caltech Library Clusters, Radicals, and Ions; Environmental Chemistry Stereoselectivity in Atmospheric Autoxidation Kristian H. Møller, Eric Joseph Praske, Lu Xu, John D. Crounse, Paul O. Wennberg, and Henrik Grum Kjaergaard J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.jpclett.9b01972 • Publication Date (Web): 23 Sep 2019 Downloaded from pubs.acs.org on September 24, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • 20.3 Alkylation of Enolate Anions
    Hornback_Ch20_858-917 12/16/04 12:05 PM Page 864 864 CHAPTER 20 ■ ENOLATE AND OTHER CARBON NUCLEOPHILES which precipitates as a yellow solid, provides a positive test for the presence of a methyl ketone. The reaction can also be used in synthesis to convert a methyl ketone to a car- boxylic acid with one less carbon. An example is provided in the following equation: O O X X C– C– CH3 NaOH HCl OH ϩ 3 Cl2 (88%) A methyl ketone A carboxylic acid PROBLEM 20.3 Show the products of these reactions: O X C– CH3 O CH CH CO H W X 3 ϩ 3 2 – – excess Br2 H2SO4 a) Br2 b) H3C C C CH3 W NaOH Br CH3 20.3 Alkylation of Enolate Anions Enolate anions generated from ketones, esters, and nitriles can be used as nucleophiles in SN2 reactions. This results in the attachment of an alkyl group to the ␣-carbon in a process termed alkylation. Aldehydes are too reactive and cannot usually be alkylated in this manner. Alkylation of cyclohexanone is illustrated in the following equation: . – .O. H . O .O O H – H . œ + – H – œ CH2CH CH2 Na . NH Br CH2CH CH2 H 2 1 2 (62%) 1 A strong base must be used to ensure complete 2 Because this is an SN2 reaction, it works only when the leaving deprotonation in this step. The solvent must not group is attached to an unhindered carbon (primary or second- have any acidic hydrogens. An ether (diethyl ether, ary). When the leaving group is attached to a tertiary carbon, E2 DME, THF, dioxane) or DMF is commonly used.
    [Show full text]