<<

ISSN-0034-7744

San José, Costa Rica • Volumen 60 (Supl. 1) • Marzo, 2012 • www.biologiatropical.ucr.ac.cr

Proceedings of the 35th Scientific Meeting of the Memorias de la 35ta Reunión Científica de la

Association of Marine Laboratories of the (AMLC)

Asociación de Laboratorios Marinos del Caribe (ALMC)

Jorge Cortés Scientific Editor / Editor Científico

Astrid Sánchez Jiménez Assistant Editor / Editora Asistente

San José, Costa Rica, 23-27 de mayo, 2011 Telefax (506) 2511-5550 • (506) 2511-8982 [email protected] • www.ots.ac.cr/tropiweb • www.biologia.ucr.ac.cr/rbt/

Revista de Biología Tropical • Universidad de Costa Rica • 11501-2060 San José, Costa Rica

Editor Gráfico / Graphic Editor: Sergio Aguilar Mora

Fotografía de portada / Cover photograph: Fotografías tomadas durante la 35ta Reunión Científica de la Asociación de Laboratorios Marinos del Caribe (ALMC-2011- Costa Rica), Ciudad de la Investigación, Universidad de Costa Rica, San José, Costa Rica, 23-27 de mayo, 2011. Fotografías por Jaime Nivia Ruiz Photographs during the 35th Scientific Meeting of the Association of Marine Laboratories of the Caribbean (AMLC-2011- Costa Rica), Campus for Research, University of Costa Rica, San José, Costa Rica, 23-27 May, 2011. Photographs by Jaime Nivia Ruiz

574.05 R Revista de Biología Tropical / Universidad de Costa Rica. ––Vol. 1 (1953)– . –– San José, C. R. : Editorial Universidad de Costa Rica, 1953– v.

ISSN–0034–7744

1. Biología – Publicaciones periódicas, 2. Publicaciones periódicas costarricenses.

BUCR

Edición aprobada por la Comisión Editorial de la Universidad de Costa Rica

© Editorial Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica. Apdo. 11501-2060 • Tel.: 2511-5310 • Fax: 2511-5257 E-mail: [email protected] • Página web: www.editorial.ucr.ac.cr

Prohibida la reproducción total o parcial. Todos los derechos reservados. Hecho el depósito de ley. Volumen 60 (Supl. 1) contenido Marzo, 2012

Proceedings of the 35th Scientific Meeting of the Memorias de la 35ta Reunión Científica de la Association of Marine Laboratories of the Caribbean (AMLC) Asociación de Laboratorios Marinos del Caribe (ALMC)

Organizadores Locales / Local Organizers • Local Sponsors / Patrocinadores Locales . . VII

Asociación de Laboratorios Marinos del Caribe (Almc) ...... IX Association of Marine Laboratories of the Caribbean (Amlc) ...... X

Programa ...... XI

A sketch of Arnfried Antonius (1934 - 2010) / Arnfried Antonius (1934 – 2010): una semblanza Sascha C.C. Steiner ...... 1-12

Arnfried Antonius, coral diseases, and the AMLC Laurie L. Richardson ...... 13-20

Insights into migration and development of Coral Black Band Disease based on fine struc- ture analysis Aaron W. Miller, Patricia Blackwelder, Husain Al-Sayegh, Laurie L. Richardson ...... 21-27

Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Carolina Bastidas, David Bone, Aldo Croquer, Denise Debrot, Elia Garcia, Adriana Humanes, Ruth Ramos, Sebastian Rodríguez ...... 29-37

Static measurements of the resilience of Caribbean coral populations andrew W. Bruckner ...... 39-57

Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution Virginia H. Garrison & Greg Ward ...... 59-70

Benthic and fish population monitoring associated with a marine protected area in the near- shore waters of , Eastern Caribbean Robert Anderson, Clare Morrall, Steve Nimrod, Robert Balza, Craig Berg, Jonathan Jossart . . 71-87

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 V Abundancia y distribución de larvas de Strombus gigas (Mesogastropoda: Strombidae) duran- te el período reproductivo de la especie en el Caribe Mexicano José Francisco Chávez Villegas, Martha Enríquez Díaz, Jorge Arturo Cid Becerra & Dalila Aldana Aranda ...... 89-97

Coral recruitment to two vessel grounding sites off southeast Florida, USA Alison L. Moulding, Vladimir N. Kosmynin, David S. Gilliam ...... 99-108

Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton sur- face of living corals Ian M. Sandeman ...... 109-126

Growth and population assessment of the queen Strombus gigas (Mesogastropoda: Strombidae) by capture mark-recapture sampling in a natural protected area of the Mexican Caribbean Joanne Rebecca Peel & Dalila Aldana Aranda ...... 127-137

Comparison of three quick methods to estimate crab size in the land crabs Cardisoma guan- humi Latreille, 1825 and Ucides cordatus (Crustacea: Brachyura: Gecarcinidae and Ucididae) Carlos Alberto Carmona-Suárez & Edlin Guerra-Castro ...... 139-149

Crecimiento somático y relación ARN/ADN en estadios juveniles de Eucinostomus argenteus (Pisces: Gerreidae) en dos localidades del Caribe de Venezuela Ana Teresa Herrera-Reveles, Mairin Lemus y Baumar Marín ...... 151-163

Comparación de la abundancia, estructura de tallas y fecundidad de musica (: ) en tres sitios de la costa norte de la Península de Araya, Venezuela Ana Carolina Peralta, Patricia Miloslavich & Gregorio Bigatti ...... 165-172

VI Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 Proceedings of the 35th Scientific Meeting of the Memorias de la 35ta Reunión Científica de la Association of Marine Laboratories of the Caribbean (AMLC) Asociación de Laboratorios Marinos del Caribe (ALMC)

San José, Costa Rica, del 23 al 27 de mayo, 2011

Organizadores Locales / Local Organizers

Jorge Cortés Solciré Martínez Jiménez Alex Rodríguez Arrieta Victoria Bogantes Astrid Sánchez Jiménez Allan Carillo Baltodano Celeste Sánchez Noguera

Local Sponsors / Patrocinadores Locales

Asociación de Laboratorios Marinos del Caribe Centro de Investigación en Ciencias del Mar y Limnología Universidad de Costa Rica

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 VII ASOCIACIÓN DE LABORATORIOS MARINOS DEL CARIBE (ALMC)

La ALMC es una confederación de más de materna. En reuniones recientes hemos usado 30 instituciones de investigación, educación y traducción simultanea (Inglés/Español/Inglés) gestión marina, dedicada a estimular la produc- para las presentaciones. ción y el intercambio de información científica La ALMC publica un boletín en español y de manejo de recursos, facilitar la coopera- e inglés, “Ciencias Marinas en el Caribe” dos ción y asistencia mutual entre sus miembros, veces al año para informar a sus miembros y y fomentar la educación marina y ambiental personas interesadas sobre las actividades de en la región. la Asociación, conferencias y mesas de trabajo La ALMC fue fundada en 1956 por inves- u otros eventos pertinentes, cursos de verano tigadores interesados en las ciencias marinas resultados de investigaciones relevantes y nue- del Atlántico tropical y del Caribe. Creada vos libros de interés. principalmente como una organización científi- Los objetivos de la ALMC son: ca, la fuerza de la ALMC está en la diversidad • Estimular el interés y el avance en de sus miembros institucionales, laboratorios las ciencias marinas del Caribe y Atlántico occidental. marinos en su mayoría, y de la experiencia • Promover el intercambio de información y de sus miembros individuales, que incluyen resultados de investigaciones. profesores, investigadores, estudiantes y otras • Fomentar proyectos cooperativos de personas interesadas. Para incorporarse a este investigación. diverso grupo, la Asociación ofrece membre- • Exponer a estudiantes a nueva infor- sías institucionales, individuales, de estudiantes mación y desarrollos tecnológicos en y de miembros patrocinadores. ciencias marinas. La ALMC tiene su reunión científica cada • Facilitar la interacción entre científicos dos años (la próxima será en Jamaica en el y entre científicos y estudiantes de la 2013). Esta es organizada por alguno de los región para establecer contactos y relacio- miembros institucionales. La institución orga- nes productivas. nizadora se encarga de la logística de la reunión, • Participar/recomendar en la toma de incluyendo, invitaciones, información sobre decisiones de países y organizacio- transporte y hoteles, inscripciones, asegurar la nes internacionales concernientes a los sala de sesiones la organización y producción ambientes marinos. del programa de la reunión y las recepciones. La ALMC no tiene un idioma oficial por lo que Para más información, por favor revise: los participantes pueden presentar en su lengua http://www.amlc-carib.org/index.html

VIII Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 ASSOCIATION OF MARINE LABORATORIES OF THE CARIBBEAN (AMLC)

AMLC is a confederation of more than 30 official language so researchers are free to marine research, education, and resource mana- make their presentations in their native langua- gement institutions endeavoring to encourage ge. In some meetings, simultaneous Spanish/ the production and exchange of research and English/Spanish translation has been provided resource management information, advance the for the presentations. cause of marine and environmental education The AMLC publishes a biannual newslet- in the region, and facilitate cooperation and ter in English and Spanish, “Caribbean Marine mutual assistance among its membership. Science” to inform members of current AMLC The AMLC was founded in 1956 by activities, meetings, workshops and other perti- researchers with interests in the marine scien- nent events, relevant research, summer courses ce of the tropical Atlantic and the Caribbean. and new books. Founded primarily as a scientific organization, Goals of AMLC the strength of AMLC lies in the diversity of its • To advance common interests in the mari- member institutions and the extensive expertise ne sciences in the Caribbean and western of its membership. Institutional, Individual Atlantic. Scientist, Student, and Sponsoring members- • To encourage the exchange of information hips are available. Every other year AMLC Scientific mee- and research results. tings (the next will be in Jamaica in 2013) • To foster cooperative research projects. are hosted by member institutions actively • To expose students to scientists, new conducting marine research in the Caribbean. research and technological advances in The host institution provides overall organiza- marine sciences in the region. tion of logistics and management of the mee- • To participate/make recomendations in ting, securing a venue and accommodations decisions made by national and inter- for participants, providing travel, safety and national organizations concerning the other important information, producing the and marine environment. organizing the program and logistics for oral and poster presentation, and the coffee breaks For more information please check: http:// and receptions. The AMLC has no designated www.amlc-carib.org/index.html

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 IX re alyc re alyc

X Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 Proceedings of the 35th Scientific Meeting of the Memorias de la 35ta Reunión Científica de la Association of Marine Laboratories of the Caribbean (AMLC) Asociación de Laboratorios Marinos del Caribe (ALMC)

San José, Costa Rica, del 23 al 27 de mayo, 2011

Programa

Lunes / Monday / 23 Mayo, 2011

8:00-9:00 a.m. INSCRIPCIÓN / REGISTRATION CEREMONIA DE APERTURA / OPENING CEREMONY 9:00-9:20 Jorge Cortés Organizador de la Reunión / Meeting Organizer Autoridad Universitaria / University Authority PLENARY PRESENTATION 9:20-10:00 Peter Mumby Measuring and Managing Coral Reef Resilience 10:00-10:20 Café / Break CORAL DISEASE I: Laurie Richardson, Moderador/Chair Hora/Time Presentador/Presenter Títulos / Title 10:20-10:40 Laurie Richardson Arnfried Antonius, coral diseases, and the AMLC 10:40-11:00 Carolyn Rogers Are corals growing in mangroves less vulnerable to climate change? 11:00-11:20 Francisco Soto Prevalence of Caribbean Yellow Band Disease in La Parguera, 11:20-11:40 Aaron Miller Mat formation by cyanobacteria in Black Band Disease of corals 11:40-12:00 Chatchanit Arif Bacterial profiling of White Plague Disease in a comparative coral 12:00-13:30 Almuerzo / Lunch CORAL DISEASE II: Laurie Richardson, Moderador/Chair 13:30-13:50 Ernesto Weil Species composition and diseases affecting mesophotic coral communities off the southwest shelf edge of Puerto Rico 13:50-14:10 Esteban Soto Francisella asiatica (syn. F. noatunensis subsp. orientalis) and its imnplications as a marine pathogen 14:10-14:30 Stephen McCauley Understanding differences in recovering Diadema antillarum densities following mass- mortality in the Caribbean: testing hypotheses in St. Thomas, U.S. 14:30-14:50 Ernesto Weil Variability and impact of coral disease and bleaching in La Parguera, Puerto Rico 2003-2007 14:50-15:10 Carolina Bastidas The 2010 bleaching event at Los Roques, Venezuela: An unprecedented loss of live coral 15:10-15:30 Café / Break REEF RESILIENCE AND REPAIR: Andrew Bruckner, Moderador/Chair 15:30-15:50 Andrew Bruckner Measuring ecological resilience of Caribbean coral reefs 15:50-16:10 Mark Ladd Managing for resilience: refinement and implementation of a resilience index to improve natural resource management 16:10-16:30 Virginia Garrison Survival of transplanted fragments of Acropora and Porites over 12 years 16:30-16:50 Aaron Hutchins Coral nurseries as an approach to reef resilience Adjourn Session 17:00-19:00 Sesión #1 de Afiches y Actividad de Bienvenida / Poster Session #1 and Welcoming Activity

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 XI Martes / Tuesday / 24 Mayo, 2011

PLENARY PRESENTATION AND DISCUSSION Hora/Time Presentador/Presenter Títulos / Title 9:00-9:40 Patricia Miloslavich Purpose and Progress: Census of Marine Life 9:40-10:00 Café / Break REEF-ASSOCIATED BENTHOS: Michael Crosby, Moderador/Chair 10:00-10:20 Dalila Aldana-Aranda Variabilidad del patrón reproductivo del Ostión Americano, Crassostrea virginica (Gmelin, 1791), en el Golfo de México 10:20-10:40 Robert Anderson Benthic and fish population monitoring in the near shore waters of Grenada, Eastern Caribbean 10:40-11:00 Jose Chavez Villegas Abundancia y distribución de larvas de Strombus gigas (Linnaeus, 1758) durante su period reproductive 11:00-11:20 Alex Mercado-Molina Demography of the demosponge Amphimedon compressa: Evaluation of the importance of sexual vs. asexual recruitment to its population 11:20-11:40 Cristina Sanchez-Godinez Estado actual de los corales duros de algunos arrecifes del Mar Caribe y la estructura bentica asociada 11:40-12:00 Harlan Dean The polychaetes of the Caribbean 12:00-13:30 Almuerzo / Lunch APPLICATIONS OF HABITAT MAPPING: David Zawada, Moderador/Chair 13:30-13:50 David Zawada Revealing habitat-use patterns of Loggerhead Sea Turtles during inter-nesting periods 13:50-14:10 Sarah Manuel Environmental assessment and planning for coastal development 14:10-14:30 Maria Liceaga-Correa Mapping morphometric characteristics of Caribbean seagrasses 14:30-14:50 Natalia Barrantes-Rojas Environmental interpretation for reef management on Quiribrí Island National Monument, Caribbean, of Costa Rica 14:50-15:10 Café / Break NOAA SESSION: Brian Walker, Moderador/Chair 15:10-15:30 Brian Walker Small-scale mapping of dynamic arborescent coral (Acropora cervicornis) thickets 15:30-15:50 Alison Moulding Coral recruitment to vessel grounding sites off Ft. Lauderdale, Florida USA 15:50-16:10 Paola Espitia Effectiveness and success of different octocoral reattachment methods 16:10-16:30 María Liceaga-Correa Coastal morphology, stratigraphy and benthic community characterization north of the Yucatan Peninsula 16:30-16:50 Clark Sherman Sedimentation patterns at reef sites adjacent to the Guanica Bay watershed, Southwest Puerto Rico 17:00-19:00 Sesión #2 de Afiches / Poster Session #2

Miércoles / Wednesday / 25 Mayo, 2011

OPTIONAL PARTICIPATION: GIRAS DE CAMPO / FIELD TRIPS OR WORKSHOP: MARINE LIFE CENSUS Hora/Time Presentador/Presenter Títulos / Title 9:00-4:30 Patricia Miloslavich Marine Life Census Workshop

XII Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 Jueves / Thursday / 26 Mayo, 2011

PLENARY PRESENTATION Hora/Time Presentador/Presenter Títulos / Title 9:00-9:40 Robin Mahon The role of the Caribbean Sea Commission (CSC) in regional ocean governance and how the AMLC can contribute 9:40-10:00 Puerto Rico Sea Grant Opportunities for Inter-laboratory Collaboration 10:00-10:40 Robin Mahon Free Discussion 10:40-11:00 Café / Break INTERNATIONAL COLLABORATION INITIATIVES: Juan José Cruz-Motta, Moderador/Chair 11:00-11:20 James Mair Benefits and issues related to marine research collaborative networking at national, regio- nal and international scales 11:20-11:40 Juan José Cruz-Motta South American Research Group on Coastal Ecosystems: A NAGISA legacy 11:40-12:00 Juan Carlos Silva Tamayo Introducing the IberoAmerican network on the study of the effects of high atmospheric

PCO2 and ocean acidification on ancient and recent marine ecosystems 12:00-13:30 Almuerzo / Lunch FISH & FISHERIES: John Ogden, Moderador/Chair 13:30-13:50 Stephen Box Similarities between small scale and commercial coral reef fisheries in Honduras: The need to develop frameworks that can integrate fisheries management across different scales 13:50-14:10 Annemarie Kramer Habitat complexity and reef fish assemblages in shallow coral reefs in South Caicos, Turks and Caicos Islands 14:10-14:30 Arthur Potts Evaluating the needs of the fishing and associated livelihoods in the coastal fishing sector of Trinidad & Tobago-plus next steps 14:30-14:50 Helena Molina-Ureña Marine protected areas and the lionfish invasion of Costa Rican reefs 14:50-15:10 Steven Canty Defining spatially and temporally explicit fishing mortality rates of fish traps on coral reefs as a crucial step in developing management limits for Caribbean trap fisheries 15:10-15:40 Café / Break GENETICS: Nathan Truelove, Moderador/Chair 15:40-16:00 Nathan Truelove Genetic connectivity of Spiny Lobster in the MesoAmerican barrier reef 16:00-16:20 Monica Rojas Genetic population structure of two brittle stars (Ophiocoma echinata and Amphipholis squamata) with contrasting life histories 16:20-16:40 Daniel Lancheros Molecular identification of the loggerhead sea turtle Caretta caretta (Stejneger, 1901) (Testudines: Cheloniidae) using the gene MTDNA Cytochrome C Oxidase I 16:40-17:00 Nikolaos Schizas Genetic variation of Symbiodinium of the coral host Agarica lamarcki between shallow and mesophotic habitats 17:00-18:00 Encuentro Investigadores-Estudiantes / Researchers-Students Exchange 18:30-21:00 PREMIACIONES Y CENA/CONFERENCE DINNER

Viernes / Friday / 27 de Mayo, 2011

PLENARY PRESENTATION Hora/Time Presentador/Presenter Títulos / Title 9:00-9:40 Peter Sale Managing Caribbean coral reefs-the challenge for the next forty years OCEANOGRAPHIC INFLUENCES: Clare Fitzsimmons, Moderador/Chair 9:40-10:00 Eric Alfaro Atmospheric forcing of cool sea subsurface temperature water events in Bahia Culebra, Costa Rica 10:00-10:20 Tomson Oliver Significant changes in living polycystine radiolarian and planktonic foraminifera caused by the Orinoco River plume, Southeastern Caribbean Sea 10:20-10:40 Café / Break

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 XIII CORAL ECOLOGY: Mark Vermeij, Moderador/Chair 10:40-11:00 Mark Vermeij The ecology of coral larvae: Recent findings 11:00-11:20 Brittany Huntington The influence of spatial reef heterogeneity on coral diversity 11:20-11:40 Benjamin Mueller The bottom of coral reefs: A net source of DOC 11:40-12:00 Michael Hellberg Population isolation and introgression in Eastern Pacific Porites 12:00-13:30 Almuerzo / Lunch GOVERNANCE & POLICY: Salina Stead, Moderador/Chair 13:30-13:50 Salina Stead Linking marine science and socio-economics to governance and policy-spotlight on the Cayos Cochinos, Honduras 13:50-14:10 Eduardo Klein Planning for the conservation of marine biodiversity in face of offshore gas exploitation in Venezuela 14:10-14:30 Lia Ortiz From the open sea to a pot of kallaloo: The significance of the USVI fishery in identifying you 14:30-14:50 Ken Lindeman Erosion of coastal climate adaptation policies in strategically critical regions 14:50-15:10 Café / Break GENERAL ECOLOGY: Carlos Carmona, Moderador/Chair 15:10-15:30 Clark Sherman Submerged outer-shelf hummock reefs, Southwest Puerto Rico: Record of a regional reef give-up event? 15:30-15:50 Lina Barrios Responses of Caribbean shallow and deep water marine invertebrates to ocean acidification 15:50-16:10 Ian Sandeman Evidence that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals 16:10-16:30 Joanne Peel Growth estimation of the Pink Queen Conch (S. gigas) by direct methods in a natural pro- tected area of the Mexican Caribbean 16:30-17:00 Asamblea General-Premiación Estudiantes y Cierre / General Meeting-Student Awards and Adjourn

ADJOURN Lunes / Monday, 23 de Mayo, 2011

17:00-19:00 SESIÓN #1 DE AFICHES / POSTER SESSION #1 Afiche # Presentador(es) & Título / Presenter(s) & Title Poster # 1 Amaro, María-Comunidad de esponjas marinas asociadas a substratos rocosos-coralinos de Isla de Tortuga, Dependencia Federal, Venezuela 2 Alvarez-Barco, Julia A.-Moluscos asociados al arrecife coralino de Isla Larga, Parque Nacional San Esteban, Carabobo, Venezuela 3 Arora, S.-Diversity of bacteria associated with Montastraea spp. Across sea water quality gradient in the Virgin Islands 4 Barrios, Jorge-Evaluación química y actividad biologica de Caulerpa racemosa (Chlorophyta Caulerpaceae) proveniente de Isla de Cubagua, Venezuela 5 Barrios, Jorge-Evaluación faunística de arrecifes coralinos invidados por Kappaphycus alvarezii (Rhodophyta) en Isla Cubagua, Venezuela 6 Bastidas, Carolina-Ecological, ecotoxicological and environmental coral reefs monitoring at Los Roques, Venezuela 7 Broderick, Emily-What is that pink crust? Making identification of crustose coralline algae more tractable 8 Carmona-Suárez, Carlos Alberto-Comparison of methods for indirect estimation of body size in Cardisoma guanhumi (Crustacea: Brachyura: Gecarcinidae) 9 Chávez Villegas, José Francisco-Efecto climático en la abundancia larval del Caracol Rosa, Strombus gigas (Linnaeus, 1758) en el Caribe Mexicano 10 Cole, Linda-Diversity and distribution of Tunicata (Urochordata) of Tobago 11 D’Armas, Haydelba-Constituyentes químicos bioactivos provenientes de la esponja Aaptos pernucleata (Porifera: Demospongiae) recolectada en la Bahía de Mochima, Estado Sucre, Venezuela 12 Colon-Alvarado, Wilmarie Del C.-Patterns of dispersion and association of four scleractinian coral species in Culebra Island, Puerto Rico

XIV Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 13 Fariñas, Milagros-Evaluación morfológica y ultraestructura de Cliona varians (Porifera: Demospongiae) por microscopía electrónica 14 Fariñas, Milagros-Es Cliona varians (Porifera: Demospongiae) fuente de lectinas? 15 Gayle, Peter-Assessing the health status of a coastal habitat: Priorities for impact mitigation and ecosystem restoration 16 González, Carmen-Analysis of the spatial-temporal abundance of the sea urchin Diadema antillarum in five sites of Puerto Rico 17 Habegger, Leigh-The 2010 coral bleaching season and coral recovery in South Caicos, Turks and Caicos Islands 18 Herrera-Reveles, Ana Teresa-Crecimiento somático y relación ARN/ADN en estadios juveniles de Eucinostomus argen- teus (Pisces: Gerridae) dentro de la Bahia de Mochima y en el Golfo de Cariaco, Venezuela 19 Huete-Perez, Jorge A.-The Ocean Genome Program: Archiving the genomes of the seas 20 Klein, Eduardo-Cartografia y estado de conservación de las comunidades coralinas de la Isla de Blanquilla, Venezuela 21 Knapp, Charles R.-Multidisciplinary uses of a public aquarium-owned research vessel 22 McCoy, Croy-Quantifying the impact of recreational and artisanal fisheries in the Cayman Islands using of socio- economic questionnaires 23 Kramer, Annemarie-Rugosity as a predictor for density of commercially fished grouper (Serranidae) in shallow coral reefs in South Caicos, Turks and Caicos Islands 24 Liceaga, Correa María de los Angeles-Distribución potencial del Manatí (Trichechus manatus manatus) en Bahía de la Ascensión, Quintana Roo, México 25 Sandra Schleier-Abundance and size frequency of in Acropora cervicornis aquaculture farms in Culebra, Puerto Rico

Martes / Tuesday / 24 de Mayo, 2011

17:00-19:30 SESIÓN #2 DE AFICHES / POSTER SESSION #2 Afiche # Presentador(es) & Título / Presenter(s) & Title Poster # 1 Lucas, Matthew-Acquisition of spectral characteristics of the dominant reef species in Parguera, Puerto Rico to support hyperspectral assessment of reef biodiversity 2 Lucas, Matthew-Genetic diversity and connectivity of shallow and mesophotic reefs 3 Maduro, Dmitri-Investigation of chemical aggregation cues of Caribbean Spiny Lobsters (Panulirus argus) 4 Maldonado, Antonio-Detección de norovirus y rotavirus en tejidos de ostras expendidas en Cumaná, Venezuela 5 Manuel, Sarah-Distributions of tropical species in ’s benthic habitats in relation to light availability 6 Manuel, Sarah-A mangement challenge: Are Green Turtles destroying seagrass beds in Bermuda? 7 Márquez-Rojas, Brightdoom-Estructura de la comunidad de Copépodos en el Golfo de Cariaco, Venezuela 8 Martínez, Kimberly-Status of Acropora palmata populations in Cayo Sombrero, Morrocoy National Park, Venezuela 9 Martínez, Neidibel –Does Diadema antillarum enhance biodiversity in the coral reefs they inhabit? 10 Mellein, Jennifer R.-Juvenile scleractinian coral abundance, composition, and influence on population size frequency distribution (Southeast Florida) 11 Miloslavich, Patricia-Comparación de la abundancia, estructura de tallas y fecundidad de Voluta musica (Caenogastropoda: Volutidae) an tres sitios de la Costa Norte de la Península de Araya, Venezuela 12 Montañez Acuña, Alfredo-Spatial-temporal analysis of coral and algae cover with respect to abundances of the sea urchin Diadema antillarum in five sites of Puerto Rico 13 Nielsen, Vanessa-2005 coral bleaching event in Cahuita, Caribbean Coast of Costa Rica 14 Otaño, Abimarie-Patterns of abundance and diversity of sponge and octocorals along a depth gradient in Mona Island, Puerto Rico 15 Oxenford, Hazel A.-Goliath Conch, Strombus goliath, in : Range extension of a Brazilian marine endemic 16 Oxenford, Hazel A.-Quantitative assessment of coral diseases in Barbados: A comparison of prevalence between 2002 and 2010 17 Palmerín Ruiz, Claudia-Evaluación de plaguicidas organoclorados en Laguna de Alvaredo, Vercruz, México

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 XV Afiche # Presentador(es) & Título / Presenter(s) & Title Poster # 18 Richardson, Laura-Estimating marine reserve effects through quantification of macro-algal biomass on a Central Caribbean coral reef 19 Rodriguez Barreras, Ruber-Echinoderm communities in the Western Region of the Sabana-Camaguey Archipelago, Cuba 20 Samper-Villarreal, Jimena-Seagrass dynamics in Cahuita National Park, Caribbean Coast of Costa Rica 21 Samper-Villarreal, Jimena-Manicina areolata bleaching in seagrass meadows on the reef flat at Cahuita National Park, Caribbean Coast of Costa Rica 22 Settar, Christine-“The reef is closer than you think:” An assessment of a multi-media campaign in the USVI 23 Tanis, Michael-Evidence for harvesting sexually immature conch despite marine protection in Little Cayman’s Bloody Bay Marine Park 24 Diaz-Ortega, Geraldine-Relationship between water quality and densities of the sea urchin Diadema antillarum

XVI Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 A sketch of Arnfried Antonius (1934 - 2010)

Sascha C.C. Steiner1,2 1. Trostgasse 16, 2500 Baden, Austria 2. Institute for Tropical Marine Ecology Inc., P.O. Box 944, Roseau, Dominica; [email protected]

Received 28-vi-2011. Corrected 20-ix-2011. Accepted 20-xii-2011.

Arnfried Antonius (Fig. 1) studied Zool- ogy, Paleontology and Ethnology at the Uni- versity of Vienna, Austria, gradually focusing his attention on the ecology and graphic micro- anatomical reconstructions of marine inver- tebrates (Antonius 1965). He completed his Ph.D. in 1967 with a dissertation on convolutid Platyhelminthes from the Red Sea (Antonius 1967). The Marine Biology Institute in Rovinj (then Yugoslavia, now Croatia) and the Muse- um of Natural History in Venice, Italy, were some of the places where he conducted his work during that time. Arnfried then explored Apulia (Italy), assisting Michele Sarà from Fig. 1. Arnfried Antonius at Carry Bow Cay in 2001. Detail from a photo by Mike Carpenter. the University at Bari, Italy, in search of an adequate location to establish a littoral research field station. Three sites were identified for a final consideration, but Michele Sarà relo- Congress, held in Caracas in 1968, Arnfried cated to Genoa and the project was abandoned. met Jocelyn López Montes de Oca, who was Driven to explore and see the world, Arnfried studying chitons at the Universidad Autónoma accepted an invitation by the hydrobotanist de Santo Domingo (incidentally the first gradu- Fritz Gessner, to work at a new facility in ate of marine biology from that institution), Cumaná, Venezuela, in 1968, and joined the and whom he later married. In 1969, when faculty of the Universidad de Oriente. Despite Acanthaster planci outbreaks on coral reefs in ample funding for the time, the facilities did the Pacific brought forth panic and funding, not have a histology laboratory or microscopes. Arnfried was invited to join research teams Arnfried thus started working with “larger” assessing the situation in Ifaluk and Woleei, organisms, namely stony corals of the Golfo Micronesia (Antonius 1971). de Cariaco, where cold-water upwelling made In 1972 Arnfried visited Klaus Rützler, a for an interesting environmental setting (Anto- fellow graduate from Vienna, at the Smithson- nius 1968, 1980), and (Antonius ian Institution’s National Museum of Natural 1972). During the 4th Latin American Zoology History in Washington D.C., to examine the

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 1-5, March 2012 1 coral collections. This visit followed previous joint coral reef surveys and developed into a postdoctoral fellowship (Fig. 2). It also marked the beginning of Arnfried’s continued involve- ment in Caribbean marine science, starting with reef surveys off the shore of Belize (then British Honduras) and a historic turn of events involving a briefly disoriented boat crew. Together with Klaus, he was assigned to char- ter a boat and retrieve an inflatable boat, outboard engine, compressor and other equip- ment from Glover’s Reef. The equipment had Fig. 2. Acklins Island, Bahamas, 1970. Left to right: Walter Adey, Arthur Dahl, Tom Walker, Klaus Rützler and previously been deposited there by a group of Arnfried Antonius. Photo by Mary Rice. young, enthusiastic biologists and geologists, convinced that they would receive funding for the establishment of a research facility on one of the Caribbean’s few atolls, following (now Association of Marine Laboratories of extensive surveys and a proposal-development the Caribbean). The paper was published in workshop with representatives from approxi- the meeting’s proceedings in 1976 and was the mately 40 institutions (Rützler 2009). Glover’s first report on what Arnfried later named Black Reef atoll is situated about 20 km east of Band Disease. From this time on, his work on the Mesoamerican Barrier Reef, Belize; the a wide range of coral ailments became well group’s proposition was to compare it with a known among coral reef researchers (Anto- Pacific atoll, 10 years down the road. That nius 1976, 1977a, 1977b, 1981a, 1981b, 1984a, grant never came through. Having retrieved the 1984b, 1985a, 1985b, 1987, 1988a, 1988b, equipment, Arnfried and Klaus were returning 1989, 1991, 1993, 1995a, 1995b, 1995c, 1995d, from Glover’s Reef when the boat captain lost 1996, 1998, 1999a, 1999b, 2000a, 2000b, Dahl his orientation and couldn’t find Tobacco Cay et al. 1974, Antonius et al. 1978, 1990, Dodge Entrance. Instead, he found another cut through et al. 1983, Rützler et al. 1983, Antonius & the reef, next to which there was a small island. Riegl 1997, 1998, Antonius & Ballesteros Arnfried, Klaus and the rest of the crew went 1998, Antonius & Lipscomb 2000, Verlaque et on land. The island was deserted but there was al. 2000, Antonius & Alfonso-Carrillo 2001, a sign saying, “Welcome to Carrie Bow Caye”. Riegl & Antonius 2003). His contributions to And the rest is history, colloquially put, and has our understanding of specific coral diseases been well documented in Rützler’s (2009) sum- and afflictions were summarized by Richard- mary of the studies that have been carried out son (2011), and the complete bibliography is at the Smithsonian’s Carrie Bow Cay Marine included here. Field Station since its inception in 1972. Arnfried accepted a new position in Jed- In 1973 Arnfried joined the Harbor Branch dah, Saudi Arabia, and moved there with Foundation in Fort Pierce, Florida. At this time Jocelyn in 1980. He joined the faculty at the he had already started to address reef degrada- King Abdulaziz University and began expand- tion of all kinds, supplementing field observa- ing his observations on coral pathology to tions with experimentation and methods of the Red Sea and the Indo-Pacific (Antonius pathology. In the same year he co-founded the 1984a). In 1989, Arnfried and his family, now Florida Reef Foundation and presented his first with daughter Anya, moved on to Austria article on a “coral killing blue-green alga” at where he continued his studies, gave lectures, the 10th scientific meeting of the Association was actively involved in the establishment of Island Marine Laboratories of the Caribbean of marine parks in Sinai, Egypt (late 1990s),

2 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 1-5, March 2012 regularly visited the Caribbean, and guided several hours at a nearby tavern talking about graduate students until 2002. He concluded our work experiences, our opinions on the sta- his research endeavors with the examination tus of coral reefs and research in the Caribbean, of “coral-killing” red algae and ciliates. After among other things. This was not our first or sudden health complications, which emerged last encounter, but for me it was particularly in late December 2009, Arnfried passed away memorable because it was then that I realized th on January 13 , 2010. what I appreciated about Arnfried and where I th The coral pathology session of the 35 felt a kinship to him. It was his passion for his AMLC scientific meeting in Costa Rica (2011) work and fieldwork in particular, regardless of was dedicated to Arnfried Antonius, as pro- the logistic and environmental constraints, the posed by Jorge Cortés. Arnfried’s contribution popularity of the topic, or the institutional flag, in kicking off awareness about coral pathol- if any, under which work was carried out. He ogy, amidst the widespread initial indifference was a kind man, a good listener, and always about the topic among his peers, is well known and so my account does not pivot on his first ready to help. Arnfried was keenly perceptive descriptions of Black Band Disease. Instead, I of regional differences in environmental ethics intended to outline the path he walked through- and was very objective as to the importance of out his years of involvement in marine science, marine research. It is thus not surprising that many of which he spent in the Caribbean (Fig. he had a great sense of humor and never took 3). Fourteen years ago, at the 28th AMLC himself too seriously, or the science circus with meeting, which was also held at the CIMAR which we often surround ourselves. in San José, Costa Rica, Arnfried and I spent ACKNOWLEDGMENTS

I am deeply grateful to Jocelyn Antonius and Klaus Rützler for the information they have shared with me. Klaus Rützler provided the photos, and Bernhard Riegl shared a few accounts form Sinai. My thanks also go to Jorge Cortés for asking me to write this article, which I happily accepted.

REFERENCES

Antonius, A. 1965. Methodischer Beitrag zur mikrosko- pischen Anatomie und graphischen Rekonstruktion sehr kleiner zoologischer Objekte. Mikroskopie 20: 145-153.

Antonius, A. 1967. Neue Convolutidae (Turbellaria acoela) aus dem Roten Meer. Ph.D.Thesis, University of Vienna, Vienna, Austria.

Antonius, A. 1968. The distribution of stony corals in the Gulf of Cariaco, Venezuela, an area of extreme envi- ronmental conditions. Abstract, Assoc. Island Marine Labs Carib. 8: 3. Fig. 3. Arnfried Antonius in 1980, photographing Black Band Disease progressions at Carry Bow Cay. Photo by Antonius, A. 1971. Das Acanthaster Problem im Pazifik. Klaus Rützler. Int. Rev. Ges. Hydrobiol. 56: 283-313.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 1-5, March 2012 3 Antonius, A. 1972. Occurrence and distribution of stony Antonius, A. 1991. La maladie de coreaux dans les zones- corals ( and Hydrozoa) in the vecinity of tests no. 1 et 2. In J. Muller (ed.). Etude des ecosys- Santa Marta, Colombia. Mitt. Inst. Colombo-Alemán temes littoreaux de Maurice. ECC projet 946/89, 5 : Invest. Cient. Punta Betín, 6: 89-103. 145-165.

Antonius, A. 1976. New observations on coral destruction Antonius, A. 1993. Coral reef health in Mauritius. Proc. 1st in reefs. Assoc. Island Marine Labs Carib.10: 17. European Meet. Int. Soc. Reef Stud., Vienna. Austria. Abstracts: 2. Antonius, 1977a. Kranke Korallen: Riffzerstörung. Umschau Wiss. Techn.76: 493-494. Antonius, A. 1995a. Pathologic syndromes as indicators on reef corals: a review. Proc. 2nd European Meet. Int. Antonius, 1977b. Coral mortality in reefs: a problem for Soc. Reef Stud., Publ. Serv. Geol. Lux. 29: 161-169. science and management. Proc. 3rd Inst. Coral Reef Symp., Miami 2: 617-623. Antonius, A. 1995b. Pathologic syndromes as indicators on reef corals: field methods. Proc. 2nd European Antonius, A. 1980. Occurrence and distribution of stony Meet. Int. Soc. Reef Stud., Publ. Serv. Geol. Lux. corals in the Gulf of Cariaco, Venezuela. Int. Rev. 29: 231-235. Ges. Hydrobiol., 65: 321–338. Antonius, A. 1995c. Sinai coral reef health survey I: first Antonius, A. 1981a. Coral reef pathology: a review. Proc. spot checks. Rep. Ras Mohamed Nat. Park Serv., 4th Int. Coral Reef Symp., Manila 2: 3-6. Sinai, Egypt. 7 p.

Antonius, A. 1981b. The “band” diseases in coral reefs. 4th Antonius, A. 1995d. Incidence and prevalence of coral Int. Coral Reef Symp., Manila 3: 7-14. diseases on coral reefs: what progress in research? Coral Reefs 14: 224. Antonius, A. 1984a. Korallenkrankheiten: erstmals im Indo-Pazifik nachgewiesen. Umschau Wiss. Techn. Antonius, A. 1996. Sinai coral reef health survey II: Gulf of 84: 706-798. Aqaba, Straits of Tiran and Ras Mohamed. Rep. Ras Mohamed Nat. Park Serv., Sinai, Egypt. 19 p. Antonius, A. 1984b. Human impacts on corals in fringing reefs near Jeddah. Symp. Coral Reef Environment, Antonius, A. 1998. Some parameters of Indo-Pacific and Fac. Mar. Sci., King Abdulaziz Univ., Jeddah, Saudi Caribbean reef health: changes over time. Abtsarct, Arabia, 1984: 363-389. Proc. 3rd European Meet. Int. Soc. Reef Stud., Per- pignan, France. Antonius, A. 1985a. Coral diseases in the Indo-Pacific: a first record. P.S.Z.N.I: Mar. Ecol. 6: 197-218. Antonius, A. 1999a. Metapeyssonnelia corallepida, a new coral-killer red alga on Caribbean reefs. Coral Reefs Antonius, A. 1985b. Black band disease infection expe- 18: 301. riments on hexacorals and octocorals. Proc 5th Int Coral Reef Symp., Tahiti 6: 155-161. Antonius, A. 1999b. Halofolliculina corallasia, a new coral-killing ciliate on Indo-Pacific reefs. Coral Reefs Antonius, A. 1987. Survey of Red Sea coral health. 18: 300. 1-Jeddah to Jizan. Proc. 10th Symp. Biological Aspects of Saudia Arabia, Saudi Biol. Soc. 1987: Antonius, A. 2000a. Biogeography of old and new coral 363-389. diseases. Abstract, 9th Int Coral Reef Symp. Bali: 280.

Antonius, A. 1988a. Distribution and dynamics of coral Antonius, A. 2000b. Bioerrosion on Indo-Pacific reef diseases in the eastern Red Sea. Proc. 6th Int. Coral corals: the skeleton eroding band (SEB) disease. Abs- Reef Symp., Townsville 2: 293-297. tract, 3rd Int. Bioerosion Workshop, Barcelona: 13.

Antonius, A. 1988b. Black Band Disease behavior on Red Antonius, A. & J. Alfonso-Carrillo. 2001. Pneophyllum Sea reef corals. Proc. 6th Int. Coral Reef Symp., conicum killing reef corals in Mauritius: A new Indo- Townsville 3: 145-150. Pacific syndrome? Bull. Mar. Sci. 69: 613-618.

Antonius, A. 1989. Coral pathology and sewater pollution Antonius, A. & E. Ballesteros. 1998. Epizoism: a new in the eastern Red Sea. Int. Soc. Reef Stud., Annual threat to coral health in Caribbean reefs. Rev. Biol. Meeting, Abstracts: 25. Trop. 46 (Supl. 5): 145-156.

4 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 1-5, March 2012 Antonius, A. & D. Lipscomb. 2000. First protozoan coral- Dodge, R.E., A. Logan & A. Antonius. 1983. Quantitative killer identified in the Indo-Pacific. Atoll Res. Bull. reef assessment studies in Bermuda: a comparison 481: 1-21. of methods and preliminary results. Bull. Mar. Sci. 32: 745-760. Antonius, A. & B. Riegl. 1997. A possible link between coral diseases and a corallivorous snail ( Richardson, L.L. 2011. Arnfried Antonius, coral diseases cornus) outbreak in the Red Sea. Atoll Res. Bull. and the AMLC. Rev. Biol. Trop. XX (Suppl.X): X-X. 447: 1-9. Riegl, B. & A. Antonius. 2003. Halofolliculina skeleton Antonius A. & B. Riegl. 1998. Coral diseases and Drupella eroding band (SEB): a coral disease with fossilization cornus invasion in the northern Red Sea. Coral Reefs potential? Coral Reefs 22: 48. 17:84. Rützler, K. 2009. Caribbean Coral Reef Ecosystems: Thir- Antonius, A. & A. Weiner. 1982. Reefs under fire. P.S.Z.N.I: ty-five years of Smithsonian marine science in Belize. Mar. Ecol. 3: 255-277. Proc. Smithsonian Mar. Sci. Symp., Smithsonian Antonius, A., A. Weiner, J. Halas & E. Davidson. 1978. Contr. Mar. Sci. 38: 43-71. Looe Key reef resource inventory. Florida Reef Foun- dation Report to US Dept. Commerce, NOAA, 63 p. Rützler, K., D.L. Santavy & A. Antonius. 1983. The black band disease of reef corals 3: Distribution, ecology Antonius, A., G. Scheer & C. Bouchon. 1990. Corals of the and course of disease. Mar. Ecol. 4: 329-358. eastern Red Sea. Atoll Res. Bull. 334: 1-22. Verlaque, M., E. Ballesteros & A. Antonius. 2000. Meta- Dahl, A.L., I.G. Macintyre, & A. Antonius. 1974. A com- peyssonnelia corallepida sp. nov. (Peyssonneliacea, parative survey of coral reef research sites. Atoll Res. Rhodophyta), an Atlantic encrusting red alga over- Bull. 172: 37-120. growing corals. Bot. Mar. 43: 191-200.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 1-5, March 2012 5

Arnfried Antonius (1934 – 2010): una semblanza

Sascha C.C. Steiner1,2 1. Trostgasse 16, 2500 Baden, Austria 2. Institute for Tropical Marine Ecology Inc., P.O. Box 944, Roseau, Dominica; [email protected]

Received 28-vi-2011. Corrected 20-ix-2011. Accepted 20-xii-2011.

Arnfried Antonius (Fig. 1) estudio Zoo- logía, Paleontología y Etnología en la Univer- sidad de Viena, en Austria, pero luego centró su atención en Ecología y Reconstrucción grá- fica micro-anatómica de invertebrados mari- nos (Antonius 1965). Completó su doctorado en 1967 con una tesis sobre Platyhelminthes retorcidos del Mar Rojo (Antonius 1967). El Instituto de Biología Marina de Rovinj (antes Yugoslavia, ahora Croacia) y el Museo de Historia Natural de Venecia en Italia eran algu- nos de los lugares en los que llevaba a cabo su trabajo. Más adelante viaja a Italia donde explora la región de Apulia mientras ayuda Fig. 1. Arnfried Antonius en Cayo Carry Bow en 2001. Detalle de una foto por Mike Carpenter. a Michele Sarà de la Universidad de Bari a buscar un lugar para establecer una estación para estudiar el litoral. Tres lugares reúnen las condiciones, pero antes de elegir uno M. Sarà (Antonius 1968, 1980), como de Colombia se trasladó a Génova y se abandonó el proyecto. (Antonius 1972). En 1968, en el IV Congreso En 1968, siguiendo su deseo de ver el mundo Latinoamericano de Zoología celebrado en y explorarlo, Arnfried acepta la invitación del Caracas, conoce a Jocelyn López Montes de hidrobotánico Fritz Gessner de la Universidad Oca, que en ese entonces estudiaba quitones en de Oriente, en Venezuela, para trabajar en un la Universidad Autónoma de Santo Domingo nuevo Centro de Investigación en Cumaná, y (siendo la primera persona que se gradua en pasa a ser profesor de esa institución. Aun- biología marina en esa Universidad) y poste- que contaba con financiamiento —significativo riormente se casan. En 1969, la aparición de para la época— el Centro no tenía ni labora- cantidades masivas de Acanthaster planci en torio de histología ni microscopios, así que el Pacífico genera pánico pero también fondos Arnfried empieza a trabajar con animales “más para evaluar la situación. Arnfried recibe una grandes”, concretamente con corales duros, invitación para viajar a Micronesia y participar tanto del Golfo de Cariaco, sitio que posee de este esfuerzo en las islas de Ifaluk y Woleei una zona de afloramiento muy interesante (Antonius 1971).

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 7-11, March 2012 7 En 1972, Arnfried visita a Klaus Rützler –colega suyo también graduado de la Universi- dad de Viena–, en el Museo de Historia Natural del Instituto Smithsoniano en Washington D.C., para examinar las colecciones de corales. Ante- riormente ya habían colaborado en estudios sobre arrecifes coralinos y la visita se traduce en una posición post-doctoral (Fig. 2). También marca el inicio de la continuada participación de Arnfried en las ciencias marinas del Caribe que comienza con estudios sobre los arrecifes de Belice (British Honduras en ese momento) y Fig. 2. Isla Acklins, Bahamas, 1970. De izquierda a con un acontecimiento histórico, involucrando derecha: Walter Adey, Arthur Dahl, Tom Walker, Klaus Rützler and Arnfried Antonius. Foto por Mary Rice. la momentánea pérdida del rumbo por parte de la tripulación. Arnfried y Klaus debían fletar un bote para recuperar un bote de hule, un motor, un compresor y otros aparatos que habían En 1973 Arnfried empieza a trabajar para sido dejados en el Arrecife de Glover por un la Harbor Branch Foundation en Fort Pierce, grupo de biólogos y geólogos, jóvenes y entu- Florida. Ya había comenzado a ponerle aten- siastas, que estaban convencidos de que iban ción a la degradación de los arrecifes en todas a recibir fondos para establecer una estación sus formas y apariencias, suplementando las de investigación en uno de los pocos atolónes observaciones de campo con experimentos del Caribe. Su convencimiento derivaba de los y métodos de patología. Ese mismo año co- amplios estudios que habían llevado a cabo en funda la Florida Reef Foundation y presen- la región y del hecho de que se habían reunido ta su primer artículo sobre algas que matan con representantes de unas 40 instituciones en corales durante la X Reunión Científica de la un taller cuyo objetivo era formalizar la pro- Asociación de Laboratorios Marinos Isleños puesta para dicha estación (Rützler 2009). El del Caribe (ahora Asociación de Laboratorios Arrecife de Glover es un atolón situado a unos Marinos del Caribe). El trabajo se publica en 20 km al este de la barrera arrecifal de Belice. 1976 en las memorias de la reunión. Los traba- La propuesta del grupo de investigadores era jos que publica de ahí en adelante constituyen estudiar el Arrecife de Glover por un período lectura obligatoria entre los investigadores de de 10 años, para después compararlo a un un arrecifes coralinos (Antonius 1976, 1977a, atolón del Pacífico, pero el financiamiento no 1977b, 1981a, 1981b, 1984a, 1984b, 1985a, llegó nunca. Tras retirar el equipo, Arnfried y 1985b, 1987, 1988a, 1988b, 1989, 1991, 1993, Klaus emprendieron el regreso. El capitán per- 1995a, 1995b, 1995c, 1995d, 1996, 1998, dió momentáneamente el rumbo y no encontró 1999a, 1999b, 2000a, 2000b, Dahl et al. 1974, la entrada por Cayo Tabaco. Encontró, sin Antonius et al. 1978, 1990, Dodge et al. 1983, embargo, otro pasaje, al lado del cual había una Rützler et al. 1983, Antonius & Riegl 1997, islita. Arnfried, Klaus y el resto de la tripula- 1998, Antonius & Ballesteros 1998, Antonius & ción desembarcaron en el lugar. La isla estaba Lipscomb 2000, Verlaque et al. 2000, Antonius desierta, pero los recibió un rótulo que decía & Alfonso-Carrillo 2001, Riegl & Antonius “Bienvenidos a Cayo Carrie Bow”. El resto 2003). Sus contribución a nuestro conocimien- es historia, como se dice en inglés, y está bien to de enfermedades especificas de los corales documentado en el resumen de los estudios que fueron resumidos por Richardson (2011) y aquí se han llevado a cabo en la Estación Biológica se incluye la bibliografía completa. de Cayo Carrie Bow, desde su establecimiento En 1980, Arnfried y Jocelyn se mudan en 1972 (Rützler 2009). a Jeddah, Arabia Saudita. Arnfried se une

8 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 7-11, March 2012 al cuerpo docente de la Universidad King estudio de las patologías coralinas, pese a la Abdulaziz y amplía el ámbito de sus estudios indiferencia con que el tema era mirado en un sobre patologías coralinas al Mar Rojo y al inicio por sus colegas, es de sobra conocida. Indo-Pacífico (Antonius 1984a). En 1989, él y De ahí que mis comentarios no hayan girado su familia, ahora con una hija, Anya, regresan alrededor de sus primeras descripciones de la a Austria, donde el investigador prosigue sus “enfermedad de banda negra” que afecta a los estudios, imparte clases, colabora en el esta- corales. Mi intención ha sido, más bien, reco- blecimiento de parques marinos en el Sinaí, en rrer la ruta tomada por Arnfried durante los Egipto (finales de la década de 1990), continúa años que dedicó a las ciencias marinas, muchos visitando el Caribe regularmente y ofrece con- de los cuales los pasó en el Caribe (Fig. 3). sejos a estudiantes de posgrado hasta el 2002. Hace catorce años, durante la XXVIII Reunión Concluye sus esfuerzos de investigación estu- Científica de la ALMC, que también se efectuó diando algas rojas y organismos ciliados que en el CIMAR en San José de Costa Rica, Arn- colonizan y matan corales. Su salud se compli- fried y yo pasamos varias horas en una taberna ca súbitamente a finales de diciembre de 2009 hablando de nuestras experiencias de trabajo, y muere el 13 de enero de 2010. intercambiando opiniones sobre el estado de La sesión sobre patología de corales de los arrecifes y comentando sobre la investiga- la XXXV Reunión Científica de la ALMC ción marina en el Caribe, entre otras cosas. No celebrada en Costa Rica en el 2011 estuvo fue ni nuestro primer encuentro ni el último, dedicada a Arnfried Antonius, a petición de pero sí un encuentro memorable, porque ahí me Jorge Cortés. La contribución de Arnfried al di cuenta de qué era lo que yo más apreciaba de Arnfried y por qué sentía que “éramos de los mismos”: era su pasión por el trabajo, sobre todo el trabajo de campo, al que se entregaba sin importar la popularidad del tema, los retos logísticos o ambientales o la bandera institucio- nal, si es que la había. Era un hombre amable, sabía escuchar y siempre estaba dispuesto a ayudar. Su agudeza mental le permitió percibir claramente las diferencias regionales en mate- ria de ética ambiental y ver con objetividad la importancia de las investigaciones marinas. Por eso, no sorprende que tuviera tan buen sentido del humor y que nunca se tomara demasiado en serio, ni a sí mismo, ni al circo científico del que a menudo solemos rodearnos.

AGRADECIMIENTOS

Quedo profundamente agradecido con Jocelyn Antonius y con Klaus Rützler por la información que compartieron conmigo. Klaus Rützler aportó las fotos y Bernhard Riegl com- partió conmigo muchas de las experiencias vividas en el Sinaí. Gracias también a Jorge Fig. 3. Arnfried Antonius en 1980, tomando fotos de la progresión de la enfermedad de banda negra en Cayo Carry Cortés, que me pidió que escribiera este artícu- Bow. Foto por Klaus Rützler. lo, lo que acepté con gran alegría.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 7-11, March 2012 9 BIBLIOGRAFIA Antonius, A. 1987. Survey of Red Sea coral health. 1-Jeddah to Jizan. Proc. 10th Symp. Biological Antonius, A. 1965. Methodischer Beitrag zur mikrosko- Aspects of Saudia Arabia, Saudi Biol. Soc. 1987: pischen Anatomie und graphischen Rekonstruktion 363-389. sehr kleiner zoologischer Objekte. Mikroskopie 20: 145-153. Antonius, A. 1988a. Distribution and dynamics of coral diseases in the eastern Red Sea. Proc. 6th Int. Coral Antonius, A. 1967. Neue Convolutidae (Turbellaria acoela) Reef Symp., Townsville 2: 293-297. aus dem Roten Meer. Ph.D. Thesis, University of Vienna, Vienna, Austria. Antonius, A. 1988b. Black Band Disease behavior on Red Sea reef corals. Proc. 6th Int. Coral Reef Symp., Antonius, A. 1968. The distribution of stony corals in the Townsville 3: 145-150. Gulf of Cariaco, Venezuela, an area of extreme envi- ronmental conditions. Abstract, Assoc. Island Marine Antonius, A. 1989. Coral pathology and sewater pollution Labs Carib. 8: 3. in the eastern Red Sea. Int. Soc. Reef Stud., Annual Meeting, Abstracts: 25. Antonius, A. 1971. Das Acanthaster Problem im Pazifik. Int. Rev. Ges. Hydrobiol. 56: 283-313. Antonius, A. 1991. La maladie de coreaux dans les zones- tests no. 1 et 2. In J. Muller (ed.). Etude des ecosys- Antonius, A. 1972. Occurrence and distribution of stony temes littoreaux de Maurice. ECC projet 946/89, 5 : corals (Anthozoa and Hydrozoa) in the vecinity of 145-165. Santa Marta, Colombia. Mitt. Inst. Colombo-Alemán Invest. Cient. Punta Betín, 6: 89-103. Antonius, A. 1993. Coral reef health in Mauritius. Proc. 1st European Meet. Int. Soc. Reef Stud., Vienna. Austria. Antonius, A. 1976. New observations on coral destruction Abstracts: 2. in reefs. Assoc. Island Marine Labs Carib.10: 17. Antonius, A. 1995a. Pathologic syndromes as indicators on Antonius, 1977a. Kranke Korallen: Riffzerstörung. reef corals: a review. Proc. 2nd European Meet. Int. Umschau Wiss. Techn.76: 493-494. Soc. Reef Stud., Publ. Serv. Geol. Lux. 29: 161-169.

Antonius, 1977b. Coral mortality in reefs: a problem for Antonius, A. 1995b. Pathologic syndromes as indicators science and management. Proc. 3rd Inst. Coral Reef on reef corals: field methods. Proc. 2nd European Symp., Miami 2: 617-623. Meet. Int. Soc. Reef Stud., Publ. Serv. Geol. Lux. 29: 231-235. Antonius, A. 1980. Occurrence and distribution of stony corals in the Gulf of Cariaco, Venezuela. Int. Rev. Antonius, A. 1995c. Sinai coral reef health survey I: first Ges. Hydrobiol., 65: 321–338. spot checks. Rep. Ras Mohamed Nat. Park Serv., Sinai, Egypt. 7 p. Antonius, A. 1981a. Coral reef pathology: a review. Proc. 4th Int. Coral Reef Symp., Manila 2: 3-6. Antonius, A. 1995d. Incidence and prevalence of coral diseases on coral reefs: what progress in research? Antonius, A. 1981b. The “band” diseases in coral reefs. 4th Coral Reefs 14: 224. Int. Coral Reef Symp., Manila 3: 7-14. Antonius, A. 1996. Sinai coral reef health survey II: Gulf of Antonius, A. 1984a. Korallenkrankheiten: erstmals im Aqaba, Straits of Tiran and Ras Mohamed. Rep. Ras Indo-Pazifik nachgewiesen. Umschau Wiss. Techn. Mohamed Nat. Park Serv., Sinai, Egypt. 19 p. 84: 706-798. Antonius, A. 1998. Some parameters of Indo-Pacific and Antonius, A. 1984b. Human impacts on corals in fringing Caribbean reef health: changes over time. Abtsarct, reefs near Jeddah. Symp. Coral Reef Environment, Proc. 3rd European Meet. Int. Soc. Reef Stud., Per- Fac. Mar. Sci., King Abdulaziz Univ., Jeddah, Saudi pignan, France. Arabia, 1984: 363-389. Antonius, A. 1999a. Metapeyssonnelia corallepida, a new Antonius, A. 1985a. Coral diseases in the Indo-Pacific: a coral-killer red alga on Caribbean reefs. Coral Reefs first record. P.S.Z.N.I: Mar. Ecol. 6: 197-218. 18: 301.

Antonius, A. 1985b. Black band disease infection expe- Antonius, A. 1999b. Halofolliculina corallasia, a new riments on hexacorals and octocorals. Proc 5th Int coral-killing ciliate on Indo-Pacific reefs. Coral Reefs Coral Reef Symp., Tahiti 6: 155-161. 18: 300.

10 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 7-11, March 2012 Antonius, A. 2000a. Biogeography of old and new coral Antonius, A., G. Scheer & C. Bouchon. 1990. Corals of the diseases. Abstract, 9th Int Coral Reef Symp. Bali: 280. eastern Red Sea. Atoll Res. Bull. 334: 1-22.

Antonius, A. 2000b. Bioerrosion on Indo-Pacific reef Dahl, A.L., I.G. Macintyre, & A. Antonius. 1974. A com- corals: the skeleton eroding band (SEB) disease. Abs- parative survey of coral reef research sites. Atoll Res. rd tract, 3 Int. Bioerosion Workshop, Barcelona: 13. Bull. 172: 37-120. Antonius, A. & J. Alfonso-Carrillo. 2001. Pneophyllum Dodge, R.E., A. Logan & A. Antonius. 1983. Quantitative conicum killing reef corals in Mauritius: A new Indo- reef assessment studies in Bermuda: a comparison Pacific syndrome? Bull. Mar. Sci. 69: 613-618. of methods and preliminary results. Bull. Mar. Sci. Antonius, A. & E. Ballesteros. 1998. Epizoism: a new 32: 745-760. threat to coral health in Caribbean reefs. Rev. Biol. Trop. 46 (Supl. 5): 145-156. Richardson, L. L. 2011. Arnfried Antonius, coral diseases and the AMLC. Rev. Biol. Trop. XX (Suppl.X): X-X. Antonius, A. & D. Lipscomb. 2000. First protozoan coral- killer identified in the Indo-Pacific. Atoll Res. Bull. Riegl, B. & A. Antonius. 2003. Halofolliculina skeleton 481: 1-21. eroding band (SEB): a coral disease with fossilization potential? Coral Reefs 22: 48. Antonius, A. & B. Riegl. 1997. A possible link between coral diseases and a corallivorous snail (Drupella Rützler, K. 2009. Caribbean Coral Reef Ecosystems: cornus) outbreak in the Red Sea. Atoll Res. Bull. Thirty-five years of Smithsonian marine science in 447: 1-9. Belize. Proc. Smithsonian Mar. Sci. Symp., Smithso- nian Contr. Mar. Sci. 38: 43-71. Antonius A. & B. Riegl. 1998. Coral diseases and Drupella cornus invasion in the northern Red Sea. Coral Reefs Rützler, K., D.L. Santavy & A. Antonius. 1983. The black 17:84. band disease of reef corals 3: Distribution, ecology Antonius, A. & A. Weiner. 1982. Reefs under fire. P.S.Z.N.I: and course of disease. Mar. Ecol. 4: 329-358. Mar. Ecol. 3: 255-277. Verlaque, M., E. Ballesteros & A. Antonius. 2000. Meta- Antonius, A., A. Weiner, J. Halas J. & E. Davidson. 1978. peyssonnelia corallepida sp. nov. (Peyssonneliacea, Looe Key reef resource inventory. Florida Reef Foun- Rhodophyta), an Atlantic encrusting red alga over- dation Report to US Dept. Commerce, NOAA, 63 p. growing corals. Bot. Mar. 43: 191-200.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 7-11, March 2012 11

Arnfried Antonius, coral diseases, and the AMLC

Laurie L. Richardson Department of Biological Sciences, Florida International University, Miami, Florida 33199 USA; [email protected]

Received 22-VII-2011. Corrected 17-XI-2011. Accepted 20-XII-2011.

Abstract: The study of coral diseases, coral pathogens, and the effects of diseases on tropical and subtropical coral reefs are all current, high-profile research areas. This interest has grown steadily since the first report of a coral disease in 1973. The author of this report was Arnfried Antonius and the publication was an abstract in the proceedings of a scientific meeting of the Association of Marine Laboratories of the Caribbean, or AMLC (then known as the Association of Island Marine Laboratories of the Caribbean). Since Antonius’ pioneering communication he continued working on coral diseases on reefs throughout the world, often documenting the first observation of a novel pathology in a novel location. Each of the coral diseases Antonius first described, in particular black band disease, is the subject of current and ongoing investigations addressing pathogens, etiology, and their effects on coral reefs. Many of the points and observations he made in his early papers are highly relevant to research today. This paper reviews aspects of Antonius’ early work, highlighting contribu- tions he made that include the first in situ experimental studies aimed at discerning coral epizootiology and the first quantitative assessments of the role of environmental factors in coral disease. Antonius’ early findings are discussed in terms of relevant current controversies in this research area. Rev. Biol. Trop. 60 (Suppl. 1): 13-20. Epub 2012 March 01.

Key words: Caribbean coral diseases, black band disease, white band disease, Arnfried Antonius.

In 1973, at the 10th meeting of the Asso- exponentially since the early 1990s (Sokolow ciation of Island Marine Laboratories of the 2009). The increase in both coral disease Caribbean, Arnfried Antonius gave the first research and the number of associated papers report of a coral disease. Abstracts from this appearing in the literature has unfortunately meeting were published in 1976, and Anto- been matched by an increase in coral disease nius’ report, titled “New observations on coral incidence and prevalence on tropical and sub- destruction in reefs”, is now widely cited as the tropical reefs worldwide, along with an increase first published documentation of coral disease. in the appearance and spread of novel coral dis- This abstract is reproduced in Fig. 1. Although eases (Sutherland et al. 2004, Weil 2004). the publication was produced in 1976, this Although widely recognized as the “father report has been consistently cited as Antonius of coral disease” for his first reports in this (1973) by Antonius himself in his subsequent research area, Antonius’ early work also is publications and by subsequent investigators in highly notable in that he was the first to com- the field. The actual first publication of a coral bine field observations with experimental work disease was by Garrett and Ducklow in 1975. in the laboratory using controlled conditions; In the four decades since this report the the first to document the relationships between study of coral diseases has increased steadily coral disease incidence and environmental fac- and dramatically, with the number of pub- tors (temperature, nutrient enrichment, and lished papers focusing on this topic increasing pollution); the first to point out that some coral

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 13 Fig. 1. The first report of a coral disease, presented in a talk by Arnfried Antonius in 1973 at the 10th Meeting of the Association of Island Marine Laboratories of the Caribbean (now called the Association of Marine Laboratories of the Caribbean) and published in 1976.

diseases may have similar disease signs but RECOGNITION AND DESCRIPTION different potential pathogens; and the first to OF THE FIRST CORAL DISEASES extrapolate coral disease activity on reefs to overall reef ecology. Examples of his contribu- Black Band Disease: The subject of Anto- tions in each of these areas are summarized and nius’ first coral disease report (Antonius 1976) discussed below. was black band disease (BBD). Although not

14 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 referred to as a disease in his report (Fig. 1), the cyanobacterium, a sulfide-oxidizing bac- he conferred this name in the literature in a terium (Ducklow & Mitchell 1979), various later publication (Antonius 1981a). In addition heterotrophic bacteria (Cooney et al. 2002, to describing the pattern of coral tissue death Frias-Lopez et al. 2004), and a marine fungus that results from BBD he identified a blue- (Ramos-Flores 1983). BBD was also pro- green algal (cyanobacterial) pathogen which posed as a polymicrobial disease, i.e. caused he identified as Oscillatoria submembranacea by a community of bacteria with no primary (Fig. 1) based on a personal communication pathogen (Richardson et al. 1997). A recent with Drouet (Antonius 1985a). At that time meta-analysis of clone libraries constructed Drouet was a recognized expert in cyanobac- from 87 BBD samples collected between 2002 terial , using morphological char- and 2010 (Miller & Richardson 2011) revealed acteristics as the defining criteria. Antonius that by far the most common 16S rRNA gene described the BBD cyanobacterial pathogen as sequence was for R. reptotaenium, detected an unbranched filamentous type with “differ- in 78% of the clone libraries examined. The ing end cells, one tapering, the other rounded” three next most abundant sequences, each (Antonius 1985a). Since this early work this detected in 13% of clone libraries, were three cyanobacterium was redescribed as Phormi- heterotrophic bacteria, each of which was dium corallyticum in three back-to-back papers detected previously in BBD samples (Miller & (Rützler & Santavy 1983, Rützler et al. 1983, Richardson 2011). These were an alphaproteo- Taylor 1983) on which Antonius was co-author bacterium, Roseovarius crassostreae, known of one (Rützler et al. 1983). In the 2000s the to be the pathogen of Juvenile Oyster Disease, new application of molecular genetics (16S an uncultured alphaproteobacterium associated rRNA gene sequencing) to the study of BBD with Juvenile Oyster Disease, and a Cytophaga led to much controversy in the literature as to sp. (Cooney et al. 2002, Frias-Lopez et al. the identification of the dominant BBD cya- 2002, Sekar et al. 2008). Recently, a unialgal nobacterium, with various genera proposed laboratory culture of R. reptotaenium was that included Oscillatoria, Geitlerinema, and shown to infect coral in the laboratory and Leptolyngbya (Cooney et al. 2002, Frias-Lopez produce BBD (Casamata et al. 2012). While et al. 2003, Myers et al. 2007) in the Caribbean the culture has bacterial contaminants, none and Oscillatoria and Pseudoscillatoria in the of these were found in the BBD-derived clone Indo-Pacific and Red Sea (Sussman et al. 2006, libraries (Miller & Richardson 2011). Since the Rasoulouniriana et al. 2009, Sato et al. 2009). culture cannot live without associated bacteria Only very recently has this cyanobacterium (a pure culture could not maintain viability) been formally described under the International Koch’s Postulates cannot be fulfilled and thus Code of Botanical Nomenclature as the new the “proof” of R. reptotaenium as the BBD pri- cyanobacterial and species Roseofilum mary pathogen is currently not feasible. For a reptotaenium (Casamata et al. 2012), which discussion of this issue in general see Fredricks translates as “creeping band of red thread”. The & Relman (1996). In 1981 (Antonius 1981a) formal characterization includes description of Antonius modified his identification of a single an identifying morphology, that of one tapering (cyanobacterial) BBD pathogen to a cyanobac- and one rounded end cell, as noted and reported terial pathogen “in association with bacteria”. by Antonius (1985a). It appears that he has been right all along. As seen in Antonius’ first report (Fig. 1), BBD was attributed to the “coral killing” cya- White Band Disease: White band disease nobacterium he described. This contention (WBD), first described by Antonius in 1981 also became a subject of investigation and (Antonius 1981a, 1981b), was described as controversy, and for many years the BBD “a band of brilliant white skeleton always vis- pathogen was proposed to be, in addition, to ible in the wake of a moving front of tissue

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 15 destruction” (Antonius 1981b). As is the case recognized this as separate from BBD attests with BBD, WBD has been, since Antonius’ to his exceptional observational skills, for it is first report, the subject of ongoing and contro- only by close visual examination that one can versial research and discussion. In particular, tell the difference between the two. Antonius a bacterial pathogen of WBD has been elusive reported SEB on corals in the Indo-Pacific. A and confusing to the point that it has been sug- similar protozoan infection on Caribbean cor- gested that various disease signs given names als has only relatively recently been noted such white plague and white death, in addition (Croquer et al. 2006) to white band, should be referred to as “white syndrome” (reviewed in Pantos et al. 2003). COMBINING FIELD OBSERVATIONS This same point was made by Antonius in his AND EXPERIMENTAL WORK first report of the disease (1981a) in which he states that WBD is “variously called White While it is well-known that Antonius was Death, Plague, etc.” Antonius experimentally the first to report and name several coral dis- demonstrated that WBD could not be trans- eases, less well know is the fact that he was mitted between coral hosts, either by direct the first to conduct the combination of field contact or by injection with fresh disease mate- and laboratory experimental work required to rial (Antonius 1981b), and could not be cured understand coral disease etiology. One example using antibiotics (Antonius 1985b). In contrast, will be provided. in his 1985 study he successfully demonstrated In Antonius’ ongoing work to determine the that BBD could be easily transmitted and pathogens associated with BBD and WBD, sum- was curable with antibiotics. Antonius’ overall marized above, he made the observations that: i) conclusions about WBD etiology, that it is a BBD could be easily transmitted between corals, “physiological syndrome that needs only a trig- whereas WBD could not; ii) inoculation of a ger” (Antonius 1981b), remains the most viable healthy coral with BBD would produce an infec- working hypothesis today. tion on a healthy coral whereas inoculation with WBD would not; iii) exposure of infected coral Shut Down Reaction: In 1977 Antonius colonies in situ to antibiotics would cure a BBD first described the coral disease he termed shut infected coral but not one infected with WBD; down reaction (SDR). He noted that this dis- and iv) new BBD infections appeared to occur ease only occurred in corals maintained in only on corals infected with WBD, specifically aquaria (Antonius 1977), an observation that at the site of WBD infection. holds true today (Sutherland et al. 2004). The The last observation (reported in Antonius name is based on the extremely rapid rate of 1981a, 1981b, and 1985b) was the basis for a tissue destruction, 10 cm per hour along a mov- remarkable seven year field/laboratory experi- ing front, that can be transmitted using infected ment carried out to determine how BBD infec- tissue or contact with an infected colony, but tions initiate on the reef (Antonius 1985a). The only when the recipient colony is under stress time required to complete the experiment was (Antonius 1981b). No definitive work has been due to the fact that, since WBD could not be carried out to define the etiology of SDR. artificially transmitted, experiments relied on finding naturally occurring WBD-infected colo- Skeleton Eroding Band: The final coral nies in situ on the reef for experimental use. Fur- disease that Antonius was the first to describe thermore, indicative of Antonius’ detailed and is skeleton eroding band (SEB) (Antonius & exhaustive approach to research, the experiment Lipscomb 2000). This disease is caused by a included corals on reefs of both the Caribbean protozoan, Halofolliculina corallasia, which and the Indo-Pacific. In each region four species appears as a dark band that moves across cor- of WBD and BBD susceptible corals were stud- als while lysing tissue. The fact that Antonius ied, a total of eight coral species investigated.

16 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 Finally, all experiments were replicated 12 times As remarkable as these experiments is the at three different temperatures (26, 28 and 30˚C, fact that in the 27 years since this paper was selected based on his observations of tempera- published none of the many investigators in ture thresholds for BBD - see below). coral disease research has further investigated Antonius’ experimental design (Antonius these fascinating and compelling findings. 1985a) consisted of field experiments in which a BBD-infected coral was placed near a WBD- CORAL DISEASE INCIDENCE AND infected coral, and laboratory experiments using ENVIRONMENTAL FACTORS aquaria in which he manipulated WBD and BBD-infected corals. BBD-infected corals were In the last few decades, as coral disease easy to obtain since he could artificially and incidence and prevalence have increased on easily infect healthy corals, but WBD-infected reefs world-wide, there has been a major focus corals for laboratory experiments had to be on the relationship between coral disease and collected on the reef. Field experiments con- environmental factors, in particular those asso- sisted of monitoring WBD-infected corals for ciated with human activity. Virtually all of the which BBD-infected corals were placed 0.5-1 m studies that found a positive relationship were upstream. Control WBD-infected colonies were preceded by similar work by Antonius. in areas of the reef that were free of BBD, or had Antonius was the first to report a tem- BBD-infected corals placed a minimum of 10 m perature threshold for coral disease, specifi- downstream. Laboratory experiments consisted cally BBD and WBD. His first mention of of placing BBD-infected corals into aquaria with this (Antonius 1981a) was the observation that WBD-infected corals, controls being aquaria both BBD and WBD were seasonal on reefs with WBD-infected corals together with healthy of high latitude (Bermuda and Florida), with or injured corals (no BBD). All experiments diseased colonies present in the summer but consisted of observing whether or not the WBD- not the winter and with the BBD season longer infected corals developed BBD. than that for WBD on the same reefs. Based on Antonius’ results were, in his word, extensive field surveys on reefs in the Red Sea combined with temperature data, he demon- “unequivocal” proof of the positive relationship strated that BBD activity was strongest at 30˚C between BBD and WBD. Analysis of the results but did not occur at or below 26˚C (Antonius of the 12 experiments showed that at 30˚C the 1985b). In this same study he noted that WBD appearance of a BBD infection on a WBD lesion was not affected by temperature except for one ranged, for Caribbean corals, from 58-83% on period when it fell to an unusual low of 22˚C. the reef and from 69-92% in aquaria. For Indo- At this time WBD frequency decreased, but Pacific corals the values were 62-86% on the was still present. reef and 71-93% in aquaria. At 28˚C Caribbean Antonius was also the first to report a cor- corals exhibited 54-78% BBD infection on the relation of a disease (BBD) with nutrients and reef and 67-85% in aquaria, and Indo-Pacific sewage outflow. His first observation occurred corals 42-80% and 50-92% respectively. At 26˚C when he was conducting BBD infection (below the field temperature threshold of BBD) experiments to determine coral host species there were zero cases of BBD infection on the susceptibility and an aquarium water source reef, and a maximum of 8% infection in aquaria, became “contaminated” (Antonius 1981a). He where stress may have been a factor. Half of the observed that two normally non-susceptible species tested (both Caribbean and Indo-Pacific coral species were infected and killed by BBD corals) did not become infected in aquaria with and concluded that the newly observed suscep- BBD at 26˚C. None of the controls on the reef or tibility was due to a 400x increase in nitrate and in aquaria became infected with BBD. 10x increase in phosphate in the water (which

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 17 he called “artificial hypernutrition”). He also that BBD often began at the site of a clump of observed that WBD progression was not affect- green algae growing near or onto a coral colo- ed by exposure to this water. His correlation ny. His interpretation was that the pathogenic of the disease with sewage was noted during BBD cyanobacterium resided in the green algal extensive surveys of disease at 33 sites along turf, which served as a reservoir, and that as the the Red Sea (Antonius 1988a). In this study he turf moved against the coral via wave action it documented the highest BBD frequency near abraded the coral surface, resulting in an open- Jeddah, which he attributed to “sea water pol- ing into which the BBD cyanobacterium could lution, especially eutrophication”. Since this invade (Antonius 1985a). This was the first work other investigators have shown a positive consideration of a reservoir for a coral patho- correlation between BBD and elevated nutri- gen on the reef. ents (Bruckner & Bruckner 1997, Kuta & Rich- Finally, Antonius showed that susceptibil- ardson 2002, Kaczmarsky et al. 2005). ity to coral disease could be used as a coral taxonomic tool. In Antonius (1988b) he noted CORAL DISEASES AND that there was confusion as to whether Platy- CORAL REEF ECOLOGY gyra lamellina and P. daedalea were one or two species. The controversy was resolved when Antonius’ body of work also illustrates his he determined that P. daedalea could not be insight into the effect of coral diseases on coral infected with BBD, whereas P. lamellina was biology and coral reef ecology. Three examples susceptible. In addition to these three examples are summarized. The first, part of his ongo- there are many more cases of extrapolation of ing study on BBD infection and transmission, his work to coral reef ecology in his papers. involved experimentally testing the hypothesis that wounds on corals caused by lysing of tis- sue by mesenterial filaments of aggressive cor- CORAL DISEASES AND THE AMLC als of other species could be infected by BBD Since Antonius’ first report of a coral dis- (Antonius 1985a). He did document successful ease at the AMLC meeting in 1973 there has infection, which he recorded as lower than been a steady stream of papers presented at BBD infections on WBD lesions (40-50% on AMLC scientific meetings that focused on, or the reef, 30-40% in aquaria) – a difference he were related to, coral diseases (see proceedings attributed to the fact that wounds due to aggres- on the AMLC website, http://www.amlc-carib. sion were stationary and temporary, whereas org/). And, beginning in 1997 and at every WBD induced lesions on infected colonies AMLC scientific meeting since, there were ses- were present over days to weeks due to the sions dedicated to studies on coral diseases. As steadily advancing disease front. Of note is his interpretation of his observation in the context research in this field continues AMLC marine of coral biology. He concluded that BBD sus- laboratories and individual AMLC members ceptibility was an “unexpected bonus for the continue to contribute to the advancement of aggressor” in that BBD infection would likely knowledge in this critical area of research. completely remove the encroaching coral from the reef. This outcome confers a much greater ACKNOWLEDGMENTS benefit when compared to the limited ability of the aggressor to inflict tissue damage on a Arnfried Antonius passed away in 2010. small area of an immediately adjacent compet- The coral disease session at the 35th Scientific ing coral colony via extrusion of mesenterial Meeting of the AMLC, held at the Universidad filaments (Antonius 1985a). de Costa Rica, San Pedro, Costa Rica, was The second example also arose from BBD dedicated to his memory as is this paper, pre- infection studies. In this case Antonius noted sented at the meeting.

18 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 RESUMEN Antonius, A. 1985b. Coral diseases in the Indo-Pacific: a first record. P.S.Z.N.I: Mar. Ecol. 6: 197-218. El estudio de las enfermedades de los corales, los patógenos de los corales y los efectos de estas enferme- Antonius, A. 1988a. Distribution and dynamics of coral dades sobre los arrecifes tropicales y subtropicales son diseases in the Eastern Red Sea. Proc. 6th Intl. Coral actualmente áreas importantes de investigación. El interés Reef Symp., Townsville 2: 293-298. en este tema ha crecido continuamente desde el primer informe sobre una enfermedad de coral que se publicó Antonius, A. 1988b. Black band disease behavior on Red en 1973. El autor de este informe fue Arnfried Antonius Sea reef corals. Proc. 6th Intl. Coral Reef Symp., y la publicación fue un resumen en el Libro de Programa Townsville 3: 145-150. y Resúmenes de la Décima Reunión de la Asociación de Laboratorios Marinos Isleños del Caribe (conocida ahora Antonius, A.A. & D. Lipscomb. 2000. First protozoan como la Asociación de Laboratorios Marinos del Caribe). coral-killer identified in the Indo-Pacific. Atoll Res. Desde esta comunicación pionera, Antonius siguió traba- Bull. 48: 1-21. jando sobre las enfermedades de los corales en arrecifes alrededor del mundo, a menudo documentando la primera Bruckner, A. & R. Bruckner. 1997. The persistence of observación de una nueva enfermedad en un nuevo lugar. black band disease in Jamaica: impact on community Cada enfermedad de coral descrita por primera vez por structure. Proc. 8th Intl. Coral Reef Symp., Panama Antonius es actualmente el objeto de investigaciones actua- 1: 601-606. les en lo que se refiere a patógenos, ecología de las enfer- medades y los efectos sobre los arrecifes de coral. Muchas Casamata, D.A., D. Stanić, M. Gantar & L.L. Richardson. de las observaciones en sus trabajos tempranos siguen 2012. Characterization of Roseofilum reptotaenium siendo relevantes en la investigación actual. Este trabajo (Cyanobacteria, Oscillatoriales) gen. et sp. nov. iso- examinará ciertos aspectos de los estudios tempranos de lated from Caribbean black band disease. Phycologia Antonius sobre las enfermedades de los corales, poniendo (in press). de relieve sus contribuciones novedosas que incluyen los primeros experimentos in situ que tenían como objetivo el Cooney, R., O. Pantos, M. Le Tissier, M. Barer, A. estudio de la etiología de las enfermedades de los corales O’Donnell & J. Bythell. 2002. Characterization of y los primeros análisis cuantitativos de la incidencia de las the bacterial consortium associated with black band enfermedades de corales y de los patrones de distribución disease in coral using molecular microbiological en función de los factores ambientales. Las contribuciones techniques. Env. Microbiol. 4: 401-413. iniciales de Antonius se discuten en términos de las contro- versias actuales sobre el tema. Croquer, A.C. Bastidas & D. Lipscomb. 2006. Folliculinid ciliates: a new threat to Caribbean corals? Dis. Aqua. Palabras clave: Enfermedades de corales, enfer- Org. 69: 75-78. medad de banda negra, enfermedad de banda blanca, Ducklow, H. & R. Mitchell. 1979. Observations on natura- Arnfried Antonius lly and artificially diseased tropical corals: a scanning electron microscope study. Microb. Ecol. 5: 215-223. REFERENCES Fredricks, D. & D. Relman. 1996. Sequence-based iden- Antonius, A. 1976. New observations on coral destruction tification of microbial pathogens: a reconsideration in reefs. 10th Mtg. Assoc. Isl. Mar. Lab. Carib., of Koch’s postulates. Clin. Microbiol. Rev. 9: 18-33. Mayagüez, Puerto Rico, 10: 3. Frias-Lopez,J., A. Zerkle, G.T. Bonheyo & B.W. Fouke. Antonius, A. 1977. Coral mortality in reefs: a problem for 2002. Partitioning of bacterial communities between science and management. Proc. 3rd Intl. Coral Reef seawater and healthy, black band diseased, and dead Symp., Miami 2: 618-623. coral surfaces. Appl. Env. Microbiol. 68: 2214-2228.

Antonius, A. 1981a. The “band” diseases in coral reefs. Frias-Lopez, J., G.T. Bonheyo, J. Qusheng & B.W. Fouke. Proc. 4th Intl. Coral Reef Symp., Manila 2: 7-14. 2003. Cyanobacteria associated with coral black band disease in Caribbean and Indo-Pacific reefs. Appl. Antonius, A. 1981b. Coral reef pathology: a review. Proc. Env. Microbiol. 69: 2409-2413. 4th Intl. Coral Reef Symp., Manila 2: 3-6. Frias-Lopez, J., J.S. Klaus, G.T. Bonhey & B.W. Fouke. Antonius, A. 1985a. Black band disease infection experi- 2004. Bacterial community associated with black ments on hexacorals and octocorals. Proc. 5th Intl. band disease in corals. Appl. Env. Microbiol. 70: Coral Reef Symp. Tahiti 6: 155-160. 5955-5962.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 19 Garrett, P. & H. Ducklow. 1975. Coral disease in Bermuda. Rützler, K. & D.L. Santavy. 1983. The black band disease Nature 253: 349-350. of Atlantic reef corals. I. Description of the cyano- phyte pathogen. P.S.Z.N.I: Mar. Ecol. 4: 301-319. Kaczmarsky, L.T., M. Draud & E.H. Williams. 2005. Is there a relationship between proximity to sewage Rützler, K., D.L. Santavy & A. Antonius. 1983. The black effluent and the prevalence of coral disease? Car. J. band disease of Atlantic reef corals. III. Distribution, Sci. 41: 124–137. ecology and development. P.S.Z.N.I: Mar. Ecol. 4: 329-358. Kuta, K.G. & L.L. Richardson. 2002. Ecological aspects of black band disease of corals: relationships between Sato, Y., B.L. Willis & D.G. Bourne. 2009. Successional disease incidence and environmental factors. Coral changes in bacterial communities during the deve- Reefs 21: 393-398. lopment of black band disease on the reef coral, Montipora hispida. ISME J. 1-12. Miller, A.W. & L.L. Richardson. 2011. A meta-analysis of 16S rRNA gene clone libraries from the polymicro- Sekar, R., L.T. Kaczmarsky & L.L. Richardson. 2008. bial black band disease of corals. FEMS Microbiol. Microbial community composition of black band Ecol. 75: 231-241. disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar. Ecol. Myers, J.L., R. Sekar & L.L. Richardson. 2007. Molecular Prog. Ser. 362: 85-98. detection and ecological significance of the cyano- bacteria Geitlerinema and Leptolyngbya in black Sokolow. S.H. 2009. Effects of a changing climate on the band disease of corals. Appl. Env. Microbiol. 73: dynamics of coral infectious disease: a review of the 5173-5182. evidence. Dis. Aqua. Org. 87: 5-18. Pantos, O., R. Cooney, M. Le Tissier, M. Barer, A. Sussman, M., D. Bourne & B. Willis. 2006. A single O’Donnell & J. Bythell. 2003. The bacterial ecology of a plague-like disease affecting the Caribbean coral cyanobacterial ribotype is associated with both red Montastraea annularis. Env. Microbiol. 5: 370-382. and black bands on diseased corals from Palau. Dis. Aqua. Org. 69: 111-118. Ramos-Flores, T. 1983. Lower marine fungus associated with black line disease in star corals (Montastraea Sutherland, K.P., J.W. Porter & C. Torres. 2004. Disea- annularis). Biol. Bull. 165: 429-435. se and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar. Ecol. Prog. Ser. 266: Rasoulouniriana, D., N. Siboni, E, Ben-Dov, E. Kramars- 273-302. ky-Winter, Y. Loya & A. Kushmaro. 2009. Pseudos- cillatoria coralii gen. nov., sp. nov., a cyanobacterium Taylor, D. 1983. The black band disease of Atlantic associated with coral black band disease (BBD). Dis. reef corals. II. Isolation, cultivation, and growth of Aqua. Org. 87: 91-96. Phormidium corallyticum. P.S.Z.N.I: Mar. Ecol. 4: 320-328. Richardson, L.L., K.G. Kuta, S. Schnell & R.G. Carlton. 1997. Ecology of the black band disease microbial Weil, E. 2004. Coral reef diseases in the Wider Caribbean, consortium. Proc. 8th Intl. Coral Reef Symp., Panama p. 35-68. In: Y. Loya & E. Rosenberg (eds). Coral 1: 597-600. Health and Disease. Springer-Verlag, Berlin.

20 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 13-20, March 2012 Insights into Migration and Development of Coral Black Band Disease Based on Fine Structure Analysis

Aaron W. Miller1*, Patricia Blackwelder2,3,4, Husain Al-Sayegh2,3, Laurie L. Richardson1 1. Department of Biological Sciences, Florida International University, Miami, Florida 33199 USA 2. University of Miami Center for Advanced Microscopy (UMCAM), Miami, Florida 33124, USA 3. Marine Geology and Geophysics, University of Miami, Miami, Florida 33149,USA 4. Nova Southeastern University Oceanographic Center, Dania, Florida 33004,USA * Corresponding author: email addresses: [email protected], [email protected], [email protected], [email protected]

Received 15-VII-2011. Corrected 12-XII-2011. Accepted 20-XII-2011.

Abstract: In many diverse ecosystems, ranging from natural surfaces in aquatic ecosystems to the mammalian gut and medical implants, bacterial populations and communities exist as biofilms. While the process of biofilm development has been well-studied for those produced by unicellular bacteria such Pseudomonas aeruginosa, little is known about biofilm development associated with filamentous microorganisms. Black band disease (BBD) of corals is characterized as a polymicrobial biofilm (mat) community, visually-dominated by filamen- tous cyanobacteria. The mat migrates across a living coral host, completely lysing coral tissue and leaving behind exposed coral skeleton. It is the only known cyanobacterial biofilm that migrates across a substratum, thus eliciting questions about the mechanisms and unique characteristics of this system. Fragments of the coral Montastraea annularis, five artificially infected with BBD and two collected from a naturally BBD-infected colony, were used to address these questions by detailed examination using scanning and transmission electron microscopy (SEM and TEM). In areas close to the interface of coral tissue and the mature disease band two types of clusters of cyanobacteria were observed, one with random orientation and one with parallel orientation of filaments. The latter exhibited active secretion of extracellular polysaccharide (EPS) while the randomly oriented clusters did not. Within the well developed band cyanobacterial filaments were observed to be embed- ded in EPS and were present as layers of filaments in parallel orientation. These observations suggest that BBD cyanobacteria orient themselves and produce EPS in a sequential process during migration to form the complex BBD matrix. Rev. Biol. Trop. 60 (Suppl. 1): 21-27. Epub 2012 March 01.

Key words: black band disease, biofilm, microbial mat, corals.

Black band disease (BBD) of corals exists Biofilms have been studied in depth for as a thick biofilm, or thin mat, that migrates decades, and in natural ecoystems they can be across coral colonies completely degrading found on virtually any surface in aquatic envi- coral tissues (Rützler et al. 1983). While the ronments. Much interest has been focused on mechanisms that control band migration and pathogenic biofilms, which are very common development are not known, this horizontal for (including human) hosts. Evidence migration of the intact biofilm/mat community, suggests that biofilm-forming bacteria exist in and it’s migration across a living coral host, are a transient, planktonic form, which colonizes unique (Richardson 1996). The pathogenicity a surface to produce a biofilm (Wolcott and of a polymicrobial mat dominated by filamen- Ehrlich 2008). Bacteria growing in biofilms tous cyanobacteria is also unique and is an differ markedly from their free-living counter- important aspect of the disease. parts. One important difference is the excretion

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 21 of extracellular polysaccharides (EPS) by bio- mat, which can range from a few millimeters to film-associated microorganisms, which facili- several centimeters in width (Rützler and San- tates the adhesion of microorganisms within tavy 1983, Carlton and Richardson 1995). The the biofilm (Rickard et al. 2003). Such EPS biomass of the mat is dominated by gliding, fil- secretion, which is a conspicuous component amentous cyanobacteria of the newly described of BBD, may play an important role in forming genus Roseofilum (Casamata et al., 2012) and the complex polymicrobial structure associated may also contain members of the cyanobacte- with this disease. It is well-documented that, rial genera Oscillatoria, Geitlerinema, Lep- when associated in biofims, bacteria exhibit an tolyngbya and Phormidium (Cooney et al. increased resistance to fluctuating environmen- 2002, Frias-Lopez et al. 2003, 2004, Sussman tal conditions, including avoidance of antibiot- et al. 2006, Barneah et al. 2007, Myers et al. ics and antagonistic cells associated with host 2007). Together, BBD cyanobacteria provide immune systems (Govan and Deretic 1996, the structural framework for the mat and have Costerton et al. 1999, O’Toole et al. 2000). It recently been shown to be directly involved in has been estimated that 65%-80% of human BBD pathobiology. BBD-associated coral mor- diseases are caused by biofilms (Wolcott and tality occurs as the contiguous band migrates Ehrlich 2008). The latter fact alone has made across the coral colony, at a rate of three milli- the initiation and development of biofilms meters to one centimeter a day, lysing coral tis- important areas of research. sue and leaving behind exposed coral skeleton. Perhaps the most well-studied of patho- This coral tissue lysis is aided by a cyanotoxin, genic biofilms are those associated with lung microcystin, produced by BBD cyanobacteria infections in individuals with cystic fibrosis, (Richardson et al., 2007, 2009; Miller and caused by the unicellular species Pseudomonas Richardson 2011). Here we use SEM and aeruginosa (O’Toole et al. 2000). Polymicro- TEM to examine the fine structure of the BBD bial biofilm development has also been studied, biofilm/mat to elucidate mechanisms that may for example focusing on biofilms associated contribute to the development and progression with dental plaque, a system that may contain of the BBD mat across a coral colony. as many as 300 different species of microor- ganisms (Paster et al. 2001). Model systems MATERIALS AND METHODS have been used to directly examine the process of biofilm development in the laboratory. Such Sample collection and preparation for model systems have made use of both single microscopy are described in detail in Miller and multiple species, including Escherichia et al. (2011). Briefly, seven BBD-infected coli, P. fluorescens, and Vibrio cholerae, among fragments of the coral Montastraea annularis others (Pratt and Kolter 1998, Watnick et al. species complex were used for this study. Five 1999). However, all of these model systems fragments, from aquarium maintained colonies have focused on unicellular bacteria, and little or from apparently healthy colonies on Horse- is known about the development of biofilms shoe Reef at Lee Stocking Island, Bahamas, associated with filamentous bacteria. were artificially infected with freshly col- BBD is known to infect at least 64 scler- lected BBD. The resultant band was allowed to actinian coral species worldwide, and is con- migrate for a period of 2-3 days after which the sidered to be an important disease contributing fragment was immersed in a fixture composed to the loss of coral cover due to its often lethal, of 2% glutaraldehyde in sodium cacodylate preferential infection of massive, reef-building buffered seawater. The remaining two frag- corals (Rützler et al. 1983, Edmunds 1991, Kuta ments, collected from a naturally BBD-infected and Richardson 1996, Sutherland et al. 2004, coral colony at Algae Reef in Key Largo, Flor- Voss and Richardson 2006). It is caused by a ida, which appeared to have been infected over polymicrobial biofilm, or very thin (<1mm) several seasons due to the significant tissue

22 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 loss observed on the colony, were fixed imme- to each other, with few filaments in alignment, diately after collection. Natural and artificial and had no associated EPS. Other clusters infections have previously been shown to be were observed to exhibit active EPS secretion indistinguishable both macroscopically (Rich- that was associated with individual filaments ardson et al. 2009) and at the fine structural that were oriented primarily in parallel, with level (Miller et al. 2011). In the laboratory after groups of filaments generally aligned together a buffer wash all fragments were post-fixed (Figure 1B). In some cases, such filaments in 1% osmium tetroxide, rinsed with buffer, appeared to be enveloped in EPS, but there dehydrated in a graded series of ethanols, and was no distinct layer of EPS matrix holding the processed for SEM (critical point dried) and/or filaments together. TEM (embedded in Spurr© resin) analysis (see The differentiation between EPS and non- Miller et al., 2011). EPS producing BBD cyanobacteria can be clearly seen in TEM micrographs (Figure 2). RESULTS Some clusters of cyanobacteria penetrating through coral tissue had no ring of EPS sur- Examination of the BBD biofilm/mat on rounding each cyanobacterial filament (shown infected fragments using SEM revealed that, in cross-section in Figure 2A), while other despite the homogenous appearance of the dis- cyanobacteria, also present in clusters and pen- ease band macroscopically, the mat exhibited etrating through coral tissue, had no apparent spatial heterogeneity. In both artificially and ring of EPS (Figure 2B). naturally infected coral fragments cyanobacte- Examination of the BBD in the center rial filaments were found millimeters ahead of of the mat (between the leading edge and the mature band (Figure 1). These filaments the exposed coral skeleton behind the band) were present as loose aggregations that formed revealed a much more organized band structure clusters between and underneath coral tissue (Figure 3). Thick layers of cyanobacteria were layers, and could be seen separating the coral observed to be oriented in parallel and were in tissue from the coral skeleton. Some of the much closer physical association than those in clusters (Figure 1A) consisted of cyanobacteria the coral tissue in front of the band, providing that appeared to be randomly oriented relative a distinct structural framework (Figure 3A). It

Fig. 1. SEM images of coral tissue in front of the leading edge of the BBD mat. A. Cluster of cyanobacteria exhibiting random orientation, and no apparent EPS, underneath the coral tissue. B. Close up of EPS secretion associated with individual cyanobacterial filaments within a cluster of filaments with parallel orientation. White circle indicates ringed EPS structure around terminal cell; black circle indicates a disk of EPS covering the terminal cell. CY: cyanobacteria, TI: coral tissue.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 23 Fig. 2. TEM images of EPS secretion from cyanobacteria at the interface with coral tissue and the disease band. A. Cross-section of cyanobacteria within coral tissue exhibiting no ring of EPS surrounding the filament. B. Cross-section of cyanobacteria within coral tissue surrounded by a ring of EPS. CY: cyanobacteria, TI: coral tissue, EPS: exopolysaccharides.

Fig. 3. Development of EPS matrix in the BBD biofilm/mat. A. Layering of cyanobacterial filaments in parallel orientation on top of coral tissue at the interface between coral tissue and the mature BBD mat. B. Parallel BBD filaments embedded in EPS matrix. EPS: exopolysaccharides, CY: cyanobacteria.

was also observed that parallel filaments were coral tissue. Previous studies have shown that embedded in a distinct EPS matrix (Figure 3B). BBD cyanobacteria are able to penetrate into coral tissue (Rützler et al. 1983, Barneah et al. 2007, Sato et al. 2009, Miller et al. 2011), and DISCUSSION into coral skeleton (Miller et al. 2011). In this study, SEM and TEM examina- The BBD cyanobacteria ahead of the tion of BBD-infected coral fragments revealed mature band in the current study were aggre- that clusters of cyanobacteria were present gated in clusters that exhibited both primar- millimeters ahead of the pathogenic disease ily random (Figure 1A), or primarily parallel band. These clusters could be seen penetrating (Figure 1B), orientation. In these areas of the through (Figure 2), and underneath (Figure 1A) infected coral the BBD cyanobacteria either

24 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 exhibited no EPS secretion (Figure 1A, 2A), or mat in a spatial, longitudinal fashion. As BBD were associated with EPS on the surface of fila- cyanobacteria migrate into tissue ahead of ments (Figure 1B, 2B). Some of these clusters the band, they appear to stop producing EPS. were fully embedded in EPS (Figure 3B). The clusters of filaments behind these leading There appeared to be a transition between BBD cyanobacteria produce small amounts the clusters of cyanobacteria in the tissue in of EPS that accumulate and bind the filamen- front of the band, and the fully formed band tous matrix into new biofilm that thickens to itself. Specifically, randomly oriented, non- become a mat. This secretion of EPS embeds EPS forming clusters appeared to transition not only the surrounding cyanobacteria but into parallel-oriented filaments that produced also the many other BBD-associated bacte- EPS, which then appeared to transition into ria into a distinct layer that constitutes the more closely packed, layered clusters. In some mature biofilm/mat. of the transitional clusters where cyanobacteria Our results reveal new insights into the exhibited parallel orientation there was signifi- development of the BBD biofilm/mat and its cant layering, leading to aggregations that were association with coral tissue in apparently several filaments thick (Figure 3A), which healthy areas ahead of the band. One of the could provide a distinct structural framework most intriguing questions about BBD biofilm/ for the growth of associated microorganisms mat remains unanswered – what is the cue that in the BBD mat. These aggregations can be causes the mat to migrate across and through considered to be biofilms, which may further coral tissue? aggregate to form the mature mat. Previous studies have suggested that BBD RESUMEN cyanobacteria, which are the dominant com- ponent of the BBD community, provide the En muchos ecosistemas diversos, que van desde structural framework of the BBD mat (Rützler ecosistemas acuáticos hasta los intestinos de mamíferos e and Santavy 1983). This hypothesis is sup- implantes médicos, las poblaciones y comunidades de bac- terias existen como biopelículas (biofilms). El proceso de ported by the results presented in the current desarrollo de las biopelículas ha sido bien estudiado para study. Furthermore, the observed layering of aquellos producidos por bacterias unicelulares como Pseu- filaments, and differentiation in EPS produc- domonas aeruginosa, pero se conoce muy poco acerca del tion, are consistent with the results of other desarrollo de biopelículas asociadas con microorganismos studies focused on formation of biofilms. In filamentosos. La Enfermedad de Banda Negra (EBN) de coral es caracterizada como una comunidad polimicrobiana well-studied, model biofilm systems composed que forma una biopelícula (lecho), visualmente-dominada of unicellular bacteria, the development of the por una cianobacteria filamentosa. El lecho migra a través biofilm occurs after free-living, planktonic de un huésped de coral vivo, rompiendo completamente el bacteria attach to a surface and begin to secrete tejido del coral y dejando atrás el esqueleto de coral expues- EPS. This EPS then embeds and surrounds the to. Es la única biopelícula cianobacteriana que migra a tra- vés de un sustrato, por lo tanto esto genera preguntas acerca biofilm-forming bacteria in an adhesive matrix de los mecanismos y las características únicas de este sis- (Gacesa 1998, Kolenbrander et al. 1999, Flem- tema. Fragmentos del coral Montastraea annularis, cinco ming et al. 2000, O’Toole et al. 2000, Handley artificialmente infectados con EBN y dos colectados de una et al. 2001, Rickard et al. 2003). Mutations in colonia EBN-infectada, fueron usados para abordar estas preguntas mediante exámenes detallados con microscopía the genes controlling EPS secretion lead to both electrónica de barrido y de transmisión (MEB y MET). En altered attachment behavior and biofilm forma- zonas cercanas a la interfaz de tejido del coral y la banda de tion, further strengthening this relationship la enfermedad madura, se han observado dos tipos de gru- between EPS and biofilm formation (Makin pos de cianobacterias, uno con orientación aleatoria y otro and Beveridge 1996, Genevaux et al. 1999). con una orientación paralela de los filamentos. Este último exhibe la secreción activa de polisacáridos extra-celulares In contrast to the temporal basis of unicel- (PEC), mientras que los grupos orientados al azar no lo lular biofilm formation, it appears that fila- hicieron. Dentro de la banda de filamentos cianobacteria- mentous BBD cyanobacteria form the biofilm/ nas bien desarrollados se observó que estaban integradas en

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 25 PEC y que se presentaban como capas de cianobacteria con Gacesa, P. 1998. Bacterial alginate biosynthesis: recent orientación paralela. Estas observaciones sugieren que la progress and future prospects. Microbiol. 144: cianobacteria de EBN se orienta a sí misma y produce PEC 1133-1143. en un proceso secuencial durante la migración para formar la matriz complejo de EBN. Genevaux, P., P. Bauda, M.S. DuBow & B. Oudega. 1999. Identification of the Tn10 insertions in the rfaG, rfaP, Palabras clave: enfermedad banda negra, biopelícula, and galU genes involved in lipopolysaccharide core lecho microbiano, corales biosynthesis that affect Escherichia coli adhesion. Arch. Microbiol. 172: 1-8.

REFERENCES Govan, J.R.W. & V. Deretic 1996. Microbial pathogen- esis in cystic fibrosis: mucoid Pseudomonas aeru- Barneah O., E. Ben-Dov, E. Kramarsky-Winter & A. ginosa and Burkholderia cepacia. Microbiol. Rev. Kushmaro. 2007. Characterization of black band 60: 539-574. disease in Red Sea stony corals. Environ. Microbiol. 9: 1995-2006. Handley, P.S., A.H. Rickard, N.J. High & S.A Leach. 2001. Coaggregation- is it a universal biofilm phenomenon? Carlton, R.G. & L. L. Richardson. 1995. Oxygen and Biofilm Community Interactions: Chances or Neces- sulfide dynamics in a horizontally migrating cyano- sity? Bioline Press, Cardiff, UK. bacterial mat: black band disease of corals. FEMS Microbiol. Ecol. 18: 155-162. Kolenbrander, P.E., R.N. Anderson, D.L. Clemens, C.J. Whittaker & C.M. Klier. 1999. Potential role of func- Casamata, D.A., D. Stanić, M. Gantar & L.L. Richardson. tionally similar coaggregation mediators in bacterial 2012. Characterization of Roseofilum reptotaenium succession. Dental Plaque Revisited. Bioline Press, (Cyanobacteria, Oscillatoriales) gen. et sp. nov. iso- Cardiff, UK. lated from Caribbean black band disease. Phycologia: in press. Kuta, K.G. & L. L. Richardson. 1996. Abundance and distribution of black band disease on coral reefs in Cooney R.P., O. Pantos, M.D.A Le Tissier, M.R. Barer, the northern Florida Keys. Coral Reefs 15: 219-223. A.G. O’Donnell & J.C. Bythell. 2002. Makin, S.A. & T.J. Beveridge. 1996. The influence of Characterization of the bacterial consortium associated A-band and B-band lipopolysaccharide on the surface with black band disease in coral using molecular characteristics and adhesion of Pseudomonas aerugi- microbiological techniques. Environ. Microbiol. 4: nosa to surfaces. Microbiology 142: 299-307. 401-413. Miller, A.W., P. Blackwelder, H. Al-Sayegh & L.L. Rich- Costerton, J.W., P.S. Stewart & E.P. Greenberg. 1999. ardson. 2011. Fine-structural analysis of black band Bacterial biofilms: a common cause of persistent disease-infected coral reveals boring cyanobacte- infections. Science 284: 1318-1322. ria and novel bacteria. Dis. of Aquat. Organ. 93: 179-190. Edmunds, P.J. 1991. Extent and effect of black band dis- ease on a Caribbean reef. Coral Reefs 10(3): 161-165. Miller, A.W. & L.L. Richardson. 2011. Fine-structural analysis of BBD infected coral and coral exposed Flemming, H.C., J. Wingender, C. Mayer, V. Korstgens & to the BBD toxins microcystin and sulfide. J. Invert. W. Borchard. 2000. Cohesiveness in biofilm matrix Path.: in press. polymers. Community Structure and Cooperation in Biofilms. SGM Symposium Series 59, Cambridge, Myers J.L., R. Sekar & L.L. Richardson. 2007. Molecular UK. detection and ecological significance of the cyano- bacteria Geitlerinema and Leptolyngbya in black Frias-Lopez J.A., G.T. Bonheyo, Q.S. Jin & B.W. Fouke. band disease of corals. Appl. Environ. Microbiol. 73: 2003. Cyanobacteria associated with coral black band 5173-5182. disease in Caribbean and Indo-Pacific reefs. Appl. Environ. Microbiol. 69: 2409-2413. O’Toole, G.A., H.B. Kaplan & R. Kolter. 2000. Bio- film formation as microbial development. Ann. Rev. Frias-Lopez J.A., J.S. Klaus, G.T. Bonheyo & B.W. Fouke. Microbiol. 54: 49-79. 2004. Bacterial community associated with black band disease in corals. Appl. Environ. Microbiol. 70: Paster, B.J. et al. 2001. Bacterial diversity in human sub- 5955-5962. gingival plaque. J. Bacteriol. 183: 3770-3783.

26 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 Pratt, L.A. & R. Kolter .1998. Genetic analysis of Esch- ecology, and development. P.S.Z.N.I: Mar. Ecol. 4: erichia coli biofilm formation: defining the roles of 329-358. flagella, motility, chemotaxis, and type I pili. Mol. Microbiol. 30: 285-294. Sato Y., B.L. Willis & D.G. Bourne. 2009. Successional changes in bacterial communities during the develop- Richardson, L.L. 1996. Horizontal and vertical migration ment of black band disease on the reef coral, Monti- patterns of Phormidium corallyticum and Beggiatoa spp. associated with black band disease of corals. pora hispida. ISME J. 1-12. Microb. Ecol. 32: 323-335. Sussman M., D.G. Bourne & B.L. Willis. 2006. A single Richardson, L.L., R. Sekar, J.L. Myers, M. Gantar, E.R. cyanobacterial ribotype is associated with both red Remily, L.T. Kaczmarsky, J.D. Voss, G.L. Boyer & and black bands on diseased corals from Palau. Dis. P.V. Zimba. 2007. The presence of the cyanobacterial Aquat. Org. 69: 111-118. toxin microcystin in black band disease of corals. FEMS Microbiol. Ecol. 272:182-187 Sutherland, K.P., J.W. Porter & C. Torres. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxan- Richardson, L.L., A.W. Miller. E. Broderick, L.T. Kac- zmarsky, M. Gantar, D. Stanić & R. Sekar. 2009. thellate corals. Mar. Ecol. Prog. Ser. 266: 273-302. Sulfide, microcystin, and the etiology of black band disease. Dis. Aquat. Org. 87:79-90 Voss, J.D. & L.L. Richardson. 2006. Nutrient enrichment enhances black band disease progression in corals. Rickard, A.H., P. Gilbert, N.J. High, P.E. Kolenbrander Coral Reefs 25: 569-576. & P.S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species Watnick, P.I., K.J. Fullner & R. Kolter. 1999. A role for biofilms. Trends Microbiol. 11: 94-100. the mannose-sensitive hemaglutinin in biofilm for- mation by Vibrio cholerae El Tor. J. Bacteriol. 181: Rützler, K. & D. Santavy. 1983. The black band disease of Atlantic coral reefs. P.S.Z.N.I: Mar. Ecol. 4: 301-319. 3606-3609.

Rützler, K., D. Santavy & A. Antonius. 1983. The black Wolcott, R.D. & G.D. Ehrlich. 2008. Biofilms and chronic band disease of Atlantic coral reefs III: distribution, infections. J. Amer. Med. Assoc. 299: 2682-2684.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 21-27, March 2012 27

Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Venezuela

Carolina Bastidas1,3, David Bone1,3, Aldo Croquer2,3, Denise Debrot3, Elia Garcia1,3, Adriana Humanes3, Ruth Ramos3, Sebastian Rodríguez3 1. Dept. Biología de Organismos, Universidad Simón Bolívar. Caracas 1080 Venezuela 2. Dept. Estudios Ambientales, Universidad Simón Bolívar. Caracas 1080 Venezuela 3. Centro de Estudios Ecotoxicológicos en Ambientes Marinos CETOXMAR- Universidad Simón Bolívar. Caracas 1080 Venezuela Email of all authors: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected], [email protected]; [email protected] Corresponding author: Carolina Bastidas, Tel/Fax 58-212-9063415

Received 15-VII-2011. Corrected 16-XII-2011. Accepted 20-XII-2011.

Abstract: Thermal anomalies have become more severe, frequent and well-documented across the Caribbean for the past 30 years. This increase in temperature has caused coral bleaching resulting in reef decline. At Los Roques National Park, Venezuela, temperature has been monitored at four reef sites. In mid-September 2010, seawater temperature reached 30.85°C at 5 m depth in Los Roques, an archipelago only slightly affected by previous bleaching events. For example, bleaching in Los Roques in 2005 was mild compared to the rest of the Caribbean and to the results in this study. In 2010, seawater temperatures remained above 29.0°C from mid- August until the first week of November, resulting in +16 Degree Heating Weeks by that time. Our annual survey of four reef sites indicated that 72% of 563 scleractinian colonies were partial or totally bleached (white) or pale (discolored) in October 2010. In February 2011, there were still 46% of coral colonies affected; but most of them were pale and only 2% were bleached. By February, coral cover had declined 4 to 30% per transect, with a mean of 14.3%. Thus, mean coral cover dropped significantly from 45 to 31% cover (a 34% reduction). In addition to bleaching, corals showed a high prevalence (up to 16%) of black band disease in October 2010 and of white plague (11%) in February 2011. As a consequence, coral mortality is expected to be larger than reported here. Reef surveys since 2002 and personal observations for more than 20 years indicated that this bleaching event and its consequences in Los Roques have no precedent. Our results suggest that reef sites with no previous record of significant deterioration are more likely to become affected by thermal anomalies. However, this archipelago is relatively unaffected by local anthropogenic disturbance and has a high coral recruitment, which may contribute to its recovery. Rev. Biol. Trop. 60 (Suppl. 1): 29-37. Epub 2012 March 01.

Key words: coral bleaching, mortality, loss of coral cover, Caribbean, coral reefs.

Coral reefs are tropical ecosystems with deterioration (e.g. Bellwood et al. 2004, Rogers high productivity and therefore they provide 2009). In the Caribbean this phenomenon has a myriad of ecological goods and services to been particularly evident, as extensive reduc- human societies, particularly in developing tions of coral cover and the concomitant loss of countries (Moberg & Folke 1999). Coral reefs architectural complexity have occurred (Gard- world-wide have shown signs of deterioration, ner et al. 2003, Weil et al. 2006, Alvarez-Filip mainly reported by the loss of coral cover. et al. 2009). Hurricanes, bleaching, coral diseases, thermal Mass bleaching events (MBE, events that anomalies and overfishing are among the fac- reduce the density of Symbiodinium in its hosts tors that have been associated with coral reef over a large geographic area) have increased

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 29 in frequency and intensity (e.g. McWilliams MATERIAL AND METHODS et al. 2005); and it appears that they act synergistically with other detrimental factors Study site: LRNP is located about 150 km to produce negative consequences for coral north of the Venezuelan coast. This marine pro- 2 reef organisms, populations and communities tected area encompasses 2211.4 km of tropi- (reviewed in Brown 1997). Thus, MBE have cal marine ecosystems including mangroves, been reported across the Caribbean as a fac- seagrass beds, soft-bottom communities, sandy tor that reduces coral cover (e.g. Cortés 2003, and rocky shores and coral reefs. Reef devel- Gardner et al. 2003). However, the effects and opment in Los Roques is extensive showing consequences of a particular bleaching event high diversity and live cover of scleractinian may vary between localities depending on corals compared with other reef areas in Ven- oceanographic processes which is partly deter- ezuela (Ramírez-Villarroel 2001) and other mined by reef morphology and topography; areas of the Caribbean (Rodríguez-Ramírez population size structure and species composi- et al. 2008). Coral reefs at LRNP also differ tion of coral communities (Brandt 2009). In within the region because of the presence of 2005, prolonged thermal anomalies and its recovering populations of the threatened spe- associated MBE occurred on a regional scale cies Acropora palmata (Zubillaga et al. 2005) (e.g. Donner et al. 2007, Wilkinson & Souter and A. cervicornis. 2008, Brandt & McManus 2009), but the largest coral cover losses related to this MBE Seawater Temperatures: seawater tem- were detected in the eastern Caribbean, where peratures were monitored with four HOBO also epizootic events came after a prolonged data loggers (Pro-V2), at the four reef sites of bleaching period (Miller et al. 2006, Muller et the archipelago every 12 minutes. The loggers al. 2008). In contrast, this bleaching event had were fixed to the bottom near the coral, at an mild effects in the southern Caribbean (Cro- average depth of 5 m and the data shown here quer & Weil 2009); particularly, in Venezuela were from the 3rd of March 2010 to the 3rd (Rodríguez et al. 2010). of February 2011. The Degree Heating Weeks In 2010, another mass bleaching event was index (DHW) was calculated according to Liu recorded worldwide (Normile 2010), although et al. (2006). The estimation of monthly mean apparently not as severe as in 2005 for the temperatures was done with a time series from Caribbean. However, coral reefs at Los Roques May 2003 till July 2011 obtained from the National Park (LRNP) were severely affected MODIS-SCAR sensor (data obtained from in 2010. Los Roques is a marine protected area http://cariaco.ws/). characterized by healthy coral reef ecosystems compared to other sites in the Caribbean (Vil- Surveys of coral bleaching: In order to lamizar et al. 2003, Croquer et al. 2010; but assess the magnitude of the 2010 MBE and its see Croquer et al. 2005). The relatively good effects on coral reefs in LRNP, the proportion conditions of coral reefs ecosystems at LRNP of bleached or paled colonies as well as the live (e.g. Schweizer et al. 2005) might be explained coral cover was determined along ten, 10-m by low anthropogenic impacts, absence of long, permanent transects located at each reef runoff; and perhaps by the combination of low site, covering a depth interval of 5 to 15 m. hurricane activity, low frequency of bleaching This was carried out in October 2010, about events, and thermal anomalies which seldom one month after the onset of bleaching, and exceed few weeks over this geographic area. then again five months after the initial survey, In this paper we provide the first evidence in February 2011. During the initial survey, of a mass bleaching event producing sig- four reef sites (i.e. reefs located in the slope nificant impacts on coral reefs at Los Roques of different cays) were sampled: two located National Park. at the south-western edge of LRNP (Dos

30 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 Mosquises and Cayo de Agua) and two located colonies affected; but the recovery of zooxan- in the north-east (Madrizquí and Rabusquí). thellae density was in place, as most of them The maximum distance among reef sites was were pale, and only 2% were bleached (Fig. 2). 36 km, and their location and other characteris- The high prevalence of Black Band Dis- tics have been described (Zubillaga et al. 2008, ease (BBD) had no precedent since the begin- Croquer et al. 2010). Coral cover was estimated ning of our surveys in 2002. In fact, BBD has from chain transects (CARICOMP 2001), and been only detected once before, in 2007, when the condition of coral colonies intercepted were it reached 1% in Dos Mosquises (DMS). In also recorded (coloration, diseased, surface of contrast, the prevalence of BBD was 6% in partial mortality). In February of 2011, two DMS and 16% in Cayo de Agua (AGU) in sites were resurveyed (Cayo de Agua and Dos October 2010. By February 2011, we did not Mosquises Sur) to ascertain the effect of the observe any sign of BBD in these localities. bleaching event, six months after its onset. In 2010, the prevalence of White Plague Therefore, comparisons between October 2010 (WP, with no differentiation made between and February 2011 were made only for these type I and II) was also high compared to previ- two sites, whereas results that pertain only to ous years. Contrasting with the drop in preva- October 2010 were obtained from the observa- lence of BBD, the prevalence of WP was higher tions at the four sites. in February 2011 (10 -11%) than in October 2010 (4 - 8%). Statistical analysis: Null hypothesis of Analysis of the cover change: By October no temporal changes in live coral cover was 2010, mean coral cover was 42.5% ± 3.97 (± compared with a repeated measures analysis of standard error) in AGU and 47.4% ± 3.41 in variances after checking ANOVA assumptions DMS. By February 2011, it was 32.2% ± 4.60 (i.e., normality and homogeneity of variances). and 29.1 ± 3.44, respectively. Thus, the coral Also a regression analysis was done to test cover dropped similarly between sites (repeated whether the loss of live coral cover in each measures ANOVA Time*Reef p> 0.05; Fig. 3) transect by February 2011 was linearly corre- and significantly from a mean of 44.9 to 30.6% lated with the proportion of colonies bleached (Time p< 0.05), with a concomitant loss of 17% in October 2010. in the number of colonies. Although there could be other causes for the rapid loss of coral cover (including the RESULTS onset of diseases), a great proportion is certain- Seawater Temperature and Degree Heating ly attributable to the bleaching event of 2010. Weeks: During 2010, the maximum temperature This assumption is based on the relatively short of 30.85 °C at 5 m depth was reached between time period elapsed between the high seawater the 17 and 19 of September at all four reef temperature anomaly and both surveys. Also, sites. At that depth, the seawater temperatures the proportion of bleached or pale colonies remained above 29.0 °C from mid-August until explained about 22% of the variability obtained 2 the first week of November 2010 (Fig. 1A). in the net loss of coral cover in each transect (r By that time, Degree Heating Weeks (DWH) = 0.2165 for the regression shown in Fig. 4). reached a maximum value of 16 °C-weeks in the superficial waters of the archipelago DISCUSSION (Fig. 1B, from NOAA) and 13 °C-weeks in waters at 5 m (data from in situ loggers). Considering the combined global land and Percentage of bleached and diseased coral ocean surface temperature, the year 2010 tied colonies: In October 2010, 72% of the 563 with 2005 as the warmest on record (NOAA scleractinian colonies were bleached or pale. 2010). Also, both are known as years were In February 2011, there were still 46% of coral mass bleaching events (MBE) have occurred

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 31 30.5 A

29 Temperature (ºC) Temperature

03 March 2010 15 August 18 November 03 February 2011

B NOAA/NESDIS Degree Heating Weeks for las 12 weeks – 11-1-2010 -100 -80 -60 -40 20 20

-100 -80 -60 -40

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

Fig. 1. A) Water temperature in °C at 5 m depth obtained in situ by a HOBO logger. Four reef sites were measured but only the data for Rabusquí is shown as it was very similar among sites. B) Degrees Heating Weeks (DHW) for the Caribbean region by November 1, 2010 (obtained from the NOAA, http://www.osdpd.noaa.gov/ml/ocean/cb/dhw_2010.html).

across the Caribbean. However, the intensity the consequences recorded up to February of the bleaching event and its consequences in 2011, had no precedent since we started our Los Roques, Venezuela, were markedly differ- surveys in 2002 and have no match with our ent between these years. The bleaching event observations for more than 20 years in Venezu- observed in October 2010 in Los Roques, and elan reefs. Thus, these coral reefs fall within

32 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 75 et al. 1992, Eakin et al. 2010). In Los Roques, Pale in particular, less than 4% of coral colonies Bleached were bleached in August and September 2005 50 (Rodríguez et al. 2010), and <10% across the archipelago at the peak of the event in November 2005 (Villamizar et al. 2008). In 25 contrast, the 2005 MBE was severe across the Caribbean, particularly in the eastern reefs, where percentage of bleached corals reached Percentage of coral colonies of coral Percentage 0 up to 80% (Ballantine et al. 2008, Oxenford et Oct. 2010 Feb. 2011 al. 2008, Brandt & McManus 2009, Croquer & Weil 2009, Miller et al. 2009, Eakin et al. Fig. 2. Percentage of coral colonies that were bleached or pale in the sites surveyed in October 2010 (N= 563; four 2010). A series of climatic and oceanic factors reef sites) and in February 2011 (N= 208; two reef sites) in contribute to the variability in the thermal stress Los Roques, Venezuela. across the region (e.g. hurricanes, irradiance, water flow), which in turn results in spatial and temporal variations of the bleaching intensity the expectations of a higher incidence and/or (e.g. Jokiel & Brown 2004). frequency of massive event of bleaching as The distribution of heat in the superficial temperatures rise above coral bleaching thresh- water masses along the Venezuelan coast was olds (Hoegh-Guldberg 1999). completely different between 2005 and 2010 Previous bleaching events observed in (Fig. 1A in Eakin et al. 2010 versus Fig. Venezuelan coral reefs have been mild com- 1B in this study) and this can be considered pared with those that occurred during the same a factor contributing to the differences in periods in other Caribbean localities (e.g. Lang bleaching intensity observed between 2005 and

50

45

40

35

30

25 2010 2011 2010 2011 Cayo de Agua Dos Mosquises Sur

Fig. 3. Hard coral cover (%) measured in October 2010 and in February 2011 at two reef sites (Cayo de Agua and Dos Mosquises); Los Roques, Venezuela.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 33 35

30

25

20

15

10

5

Net loss of coral cover (%) cover Net loss of coral 0

-5

-10 r2 = 0.2165; r = 0.4653, p = 0.0387; y = -5.8355 + 28.2507*x -15 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Proportion of bleached or pale corals

Fig. 4. Relationship between the net coral loss (%) that occurred between October 2010 and February 2011, and the proportion of colonies that were bleached or pale by October 2010 at two reef sites in Los Roques, Venezuela.

2010. It is well known that bleaching severity differences found between the 2005 and 2010 is determined by a combination of intensity MBE in Venezuela. In 2005, bleaching inten- and duration of thermal stress and irradiance sity was higher in coastal rather than oceanic conditions (Glynn & D’Croz 1990, Lesser & reefs (16% vs. <4 of bleached corals, Rodrí- Farrell 2004). In situ measurements indicated guez et al. 2010). The opposite trend was that maximum temperatures in the archipelago found in 2010, when intensity seemed higher (excluding the internal lagoon) were about for the oceanic reefs of Los Roques compared 1°C higher in 2010 than in 2005 for the same to coastal reefs of Morrocoy (personal observa- period (29.92 °C in 2005 vs. 30.85 °C in 2010). tions). These results contrasted with other stud- Concomitantly, Degree Heating Weeks (DHW) ies that have consistently found more severe calculated from in situ loggers did not exceed MBE in inshore waters compared to outer reefs the value of 5 °C-weeks in 2005 (Villamizar et (e.g. Berkelmans et al. 2004). al. 2008) for the reefs surveyed in this study, Coral cover was severely reduced (by whereas it reached 13 °C-weeks in 2010. It has 36%) at our study sites in Los Roques after been generalized that values of over 4°C-weeks the 2010 bleaching event, which was similar to cause significant bleaching, and values over the 40% mortality observed in 2005 across the 8°C-weeks cause widespread bleaching and Caribbean (Eakin et al. 2010). However, we some mortality (Liu et al. 2006), which was suspect that the long- term consequences could also the case in this study. be worse in Los Roques, because during our Another example of the variability last survey (February 2011): a) the bleaching in bleaching intensity is illustrated by the was still ongoing as 46% of colonies remained

34 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 pale, despite a drop in seawater temperature; RESUMEN and b) there was a high prevalence of white Durante las últimas décadas las anoma- plague (~10%) by that time. Previous studies lías térmicas han sido más frecuentes y severas indicate that after a MBE, the mortality of cor- en el Caribe, quedando pocos arrecifes exentos de eventos als can span for about two years (e.g. Eakin masivos de (EMB). En el Parque Nacional et al. 2010), as well as its detrimental conse- Los Roques, Venezuela, un archipiélago poco afectado previamente por EMB, la temperatura del agua a 5m de quences on coral reproduction (e.g. Szmant profundidad alcanzó 30,85°C en septiembre 2010, y fue & Gassman 1990). Also, the onset of diseases >29,0°C entre mediados de agosto y la primera semana associated to the MBE, particularly black band de noviembre en cuatro arrecifes. El 72% de 563 colonias disease, white plague and yellow band disease, de escleractinios estaban blanqueadas o pálidas para octu- bre de 2010, mientras que para febrero 2011, el 46% de can contribute further to the loss of coral cover las colonias aún estaban afectadas. Para febrero 2011, la (e.g. Brandt & McManus 2009, Miller et al. cobertura béntica coralina promedio disminuyó de 45 a 2009, Weil et al. 2009). 31%. Además, los arrecifes mostraron una alta prevalencia (de hasta 16%) de enfermedad de banda negra en Octubre The loss of coral cover induced by the 2010, y de plaga blanca (11%) en Febrero 2011. Como con- 2010 MBE in Los Roques has no precedent at secuencia, es probable que la mortalidad coralina resulte least in 20 years. Although we expect that MBE- mayor a la reportada acá. Sin embargo, Los Roques es poco induced coral mortality to continue for several afectado por perturbaciones antropogénicas y cuenta con un alto reclutamiento de corales, lo cual podría contribuir months after our last survey, a rapid recovery a su recuperación. in Los Roques could be possible because a relatively high coral cover (~30%) is still pres- Palabras clave: blanqueamiento coralino, mortalidad, ent in many reefs of the archipelago, there is pérdida de cobertura de coral, Caribe, arrecife coralino. relative low anthropogenic impact (e.g. a per- manent population of ~ 2,000 inhabitants), and REFERENCES high coral recruitment rates have been found Alvarez-Filip, L., N.K. Dulvy, J.A. Gill1, I.M. Côté & A.R. (Humanes 2009). Venezuelan coastal reefs, that Watkinson. 2009. Flattening of Caribbean coral reefs: lack these conditions, have shown very slow region-wide declines in architectural complexity. recovery after massive mortality events (Bas- Proc. Roy. Soc. B 276: 3019-3025. tidas et al. 2006). Unfortunately, the positive Bastidas, C., A. Croquer & D. Bone. 2006. Shifts of domi- expectations for the recovery of reefs in Los nance species after a mass mortality on a Caribbean Roques depend on other large scale factors that Reef. Proc. 10th Int. Coral Reef Symp., Okinawa: are difficult to foresee, such as the distribution of 989-993. thermal anomalies across the Caribbean. Ballantine, D.L., R.S. Appeldoorn, P. Yoshioka, E. Weil, R. Armstrong, J.R. Garcia, E. Otero, F. Pagan, C. Sherman, E. Hernandez-Delgado, A. Bruckner & C. ACKNOWLEDGMENTS Lilyestrom. 2008. Chapter 9. Biology and ecology of Puerto Rican coral reefs, pp 375-406. In: B. Riegl & We would like to thank Mitsui Ltd for R.E. Dodge (eds.). Coral Reefs of the USA. Springer, funding a project that includes the environ- Dortrecht. mental monitoring of Los Roques in 2009 Bellwood, D.R., T.P. Hughes, C. Folke & M. Nystrom. and 2010; the Instituto Nacional de Parques 2004. Confronting the coral reef crisis. Nature 429: (INPARQUES) for issuing the permits to work 827-833. in the park; and the useful comments of two Berkelmans, R., G. De’ath, S. Kininmonth & W.J. Skir- anonymous reviewers that greatly helped to ving. 2004. A comparison of the 1998 and 2002 coral improve the manuscript. bleaching events on the Great Barrier Reef: spatial

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 35 correlation, patterns and predictions. Coral Reefs Hoegh-Guldberg, O. 1999. Climate change, coral blea- 23: 74-83. ching and the future of the world’s coral reefs. Mar. Freshwater Res. 50: 839-866. Brandt, M.E. 2009. The effect of species and colony size on the bleaching response of reef-building corals in the Humanes, A. 2009. Asentamiento y sobrevivencia de cora- Florida Keys during the 2005 mass bleaching event. les pétreos en el Parque Nacional Archipiélago Los Coral Reefs 28: 911-924. Roques. Tesis de Maestría en la Universidad Simón Bolívar, Caracas. Brandt, M.E. & J.W. McManus. 2009. Disease incidence is related to bleaching extent in reef-building corals. Jokiel, P.L. & E.K. Brown. 2004. Global warming, regional Ecology 90: 2859-2867. trends and inshore environmental conditions influen- ce coral bleaching in Hawaii. Glob. Change Biol. 10: Brown, B.E. 1997. Coral bleaching: causes and consequen- 1627-1641. ces. Coral Reefs 16 (Suppl): S129–S138. Lang, J., H.R. Lasker, E.H. Gladfelter, P. Hallock, W.C. CARICOMP. 2001. Methods Manual Level 1 and 2: Jaap, F.J. Losada & R.G. Muller. 1992. Spatial and Manual of Methods for Mapping and Monitoring of temporal variability during periods of “recovery” Physical and Biological Parameters in the Coastal after mass bleaching on Western Atlantic coral reefs. Zone of the Caribbean. Kingston. Amer. Zool. 32: 696-706.

Cortés, J. 2003. Latin American Coral Reefs. Elsevier, Lesser, M.P. & J.H. Farrell. 2004. Exposure to solar radia- Amsterdam, The Netherlands. tion increases damage to both host tissues and algal symbionts of corals Turing thermal stress. Coral Croquer, A., E. Weil & A.L. Zubillaga. 2005. Effects of Reefs 23: 367-377. white plague disease-II outbreak on the coral commu- nity structure of Madrizquí Key, Los Roques National Liu, G., A.E. Strong, W.J. Skirving & L.F. Arzayus. 2006. Park, Venezuela. Carib. J. Sci. 41: 815-823 Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching moni- Croquer, A., D. Debrot, E. Klein, M. Kurten, S. Rodríguez toring activities. Proc. 10th Int. Coral Reef Symp., & C. Bastidas. 2010. What two years of monitoring Okinawa: 1783-1793. tell us about Venezuelan coral reefs? The southern Tropical America node of the Global coral reef moni- McWilliams, J.P., I.M. Coté, J.A. Gill, W.J. Sutherland & toring network (STA-GCRMN). Rev Biol. Trop. 58 A.R. Watkinson. 2005. Accelerating impacts of tem- (Suppl. 1): 51-65 perature-induced coral bleaching in the Caribbean. Ecology 86: 2055-2060. Croquer, A. & E. Weil. 2009. Changes in disease prevalen- ce after the 2005 bleaching event. Dis. Aquat. Org. Miller, J., R. Waara, E. Muller & C. Rogers. 2006. Coral 87: 33-43. bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs Donner S.D., T.R. Knutson & M. Oppenheimer. 2007. 25: 418-418. Model-based assessment of the role of human-indu- ced climate change in the 2005 Caribbean coral Miller, J., E. Muller, C. Rogers, R. Waara, A. Atkinson, bleaching event. Proc Natl. Acad. Sci. USA 104: K.R.T. Whelan, M. Patterson & B. Witcher. 2009. 5483-5488 Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Eakin, M., J.A. Morgan, S.F. Heron, T.B. Smith, G. Liu, Virgin Islands. Coral Reefs 28: 925-937. L. Alvarez-Filip, B. Baca, E. Bartels, C. Bastidas, et al. 2010. Caribbean corals in crisis: record thermal Muller, E.M., C.S. Rogers, A.S. Spitzack & R. van Woesik. stress, bleaching, and mortality in 2005. PLoS ONE 2008. Bleaching increases likelihood of disease on 5(11): e13696 Acropora palmata (Lamarck) in Hawksnest Bay, St. John, U.S. Virgin Islands. Coral Reefs 27: 191-195. Gardner, T., I.M. Côté, J.A. Gill, A. Grant & A.R. Wat- kinson. 2003. Long-term region-wide declines in Moberg, F. & C. Folke. 1999. Ecological goods and Caribbean corals. Science 301: 958-960. services of coral reef ecosystems. Ecol. Econ. 29: 215-233. Glynn P.W. & L. D’Croz. 1990. Experimental evidence for high temperature stress as the cause of El Niño NOAA. 2010. National Climatic Data Center, State of mortality. Coral Reefs 8: 181-191 the Climate: National Overview for Annual 2010,

36 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 published online December 2010, retrieved on Szmant, A.M. & N.J. Gassman. 1990. The effects of pro- July 14, 2011 from http://www.ncdc.noaa.gov/ longed “bleaching” on the tissue biomass and repro- sotc/2010/13. duction of the reef coral Montastrea annularis. Coral Reefs 8: 217- 224. Normile, D. 2010. Hard summer for corals kindles fears for survival of reefs. Science 329: 1001. Villamizar, E., J.M. Posada & S. Gómez. 2003. Rapid assessment of coral reefs in the Archipiélago de Los Oxenford, H.A., R. Roach, A. Brathwaite, L. Nurse, R. Roques National Park, Venezuela (Part I: stony corals Goodridge, F. Hinds, K. Baldwin & C. Finney. 2008. and algae). In: J.C. Lang (ed.). Status of Coral Reefs Quantitative observations of a major coral bleaching in the Western Atlantic: Results of Initial Surveys, event in Barbados, Southeastern Caribbean. Climat. Atlantic and Gulf Rapid Reef Assessment. Atoll Res. Bull. 496: 512-529. Chan. 87: 435-449 Villamizar, E., H. Camisotti, B. Rodríguez, J. Pérez & M. Ramírez-Villarroel, P. 2001. Corales de Venezuela. Gráfi- Romero. 2008. Impacts of the 2005 Caribbean blea- cas Internacional, Porlamar. 254 p. ching event at Archipiélago de Los Roques National Park, Venezuela. Rev. Biol. Trop. 56 (Suppl. 1): Rogers, C. 2009. Coral bleaching and disease should not 255- 270. be underestimated as causes of Caribbean coral reef decline. Proc. Royal Soc. B 276: 197-198. Weil, E., G. Smith & D.L. Gil-Agudelo. 2006. Status and progress in coral reef disease research. Dis. Aquat. Rodríguez, S., A. Croquer, D. Bone & C. Bastidas. 2010. Org. 69: 1-7. Severity of the 1998 and 2005 bleaching events in Venezuela, southern Caribbean. Rev. Biol. Trop. 58 Weil, E., A. Croquer, I. Urreiztieta & E. Irizarry. 2009. (Suppl. 3): 189-196. Temporal variability and impact of coral diseases and bleaching in La Parguera Puerto Rico, from 2003- Rodríguez-Ramírez, A., C. Bastidas, S. Rodríguez, Z. 2007. Carib. J. Sci. 45: 1-26. Leão, R. Kikuchi, M. Oliveira, D. Gil, J. Garzón- Ferreira, M.C. Reyes-Nivia, R. Navas-Camacho et Wilkinson, C.R. & D. Souter (eds.). 2008. Status of al. 2008. The effects of coral bleaching in Southern Caribbean Coral Reefs After Bleaching and Hurrica- Tropical America: Brazil, Colombia, and Venezuela: nes in 2005. Global Coral Reef Monitoring Network, p. 105-114. In C. Wilkinson & D. Souter (Eds). Sta- and Reef and Rainforest Research Centre, Townsvi- lle, Australia tus of Caribbean Coral Reefs After Bleaching and Hurricanes in 2005. Global Coral Reef Monitoring Zubillaga, A.L., C. Bastidas & A. Croquer. 2005. High den- Network, and Reef and Rainforest Research Centre, sities of the coral Acropora palmata in Cayo de Agua, Townsville, Australia. Archipelago Los Roques National Park, Venezuela. Coral Reefs 24: 86. Schweizer, D., R.A. Armstrong & J. Posada. 2005. Remote sensing characterization of benthic habitats and sub- Zubillaga, A.L., L.M. Marquez, A. Croquer & C. Bastidas. merged vegetation biomass in Los Roques Archipe- 2008. Ecological and molecular approaches indicate lago National Park, Venezuela. Int. J. Rem. Sen. 26: recovery of the endangered coral species Acropora 2657-2667. palmata. Coral Reefs 27:63-72.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 29-37, March 2012 37

Static measurements of the resilience of Caribbean coral populations

andrew W. Bruckner Khaled bin Sultan Living Oceans Foundation, 8181 Professional Place, Landover, MD 20785 USA; [email protected]

Received 18-VII-2011. Corrected 12-XII-2011. Accepted 20-XII-2011.

Abstract: The progressive downward shift in dominance of key reef building corals, coupled with dramatic increases in macroalgae and other nuisance species, fields of unstable coral rubble ,loss of structural relief, and declines of major functional groups of fishes is a common occurrence throughout the Caribbean today. The incorporation of resilience principles into management is a proposed strategy to reverse this trend and ensure proper functioning of coral reefs under predicted scenarios of climate change, yet ecosystem processes and functions that underlie reef resilience are not fully understood. Rapid assessments using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) and the IUCN Resilience Assessment protocol can provide baseline information on reef resilience. A key aspect of these surveys focuses on coral population dynamics, including measures of coral cover, size, partial and whole-colony mortality, condition, and recruitment. One challenge is that these represent static measures involving a single assessment. Without following individual corals over time, it is difficult to determine rates of survival and growth of recruits and adult colonies, and differentiation of juveniles from small remnants of older colonies may not be possible, especially when macroalgal cover is high. To address this limitation, corals assessed in Bonaire in July 2010 were subdivided into two categories: 1) colonies on the reef substrate; and 2) colonies colonizing dead corals and exposed skeletal surfaces of living corals. Coral populations in Bonaire exhibited many features indicative of high resilience, including high coral cover (often 30-50%), high levels of recruitment, and a large number of corals that settled on dead corals and survived to larger size-classes. Overall, the skeletal surfaces of 12 species of corals were colonized by 16 species of corals, with up to 12 settlers on each colony, most (67%) on M. annularis (complex) skeletons. Nevertheless, completely dead M. annularis colonies were common, survivors were frequently reduced in size and subdivided into smaller tissue remnants, and these species exhibited higher amounts of partial mortality than all other spe- cies. A notable absence of sexual recruits and juveniles of M. annularis illustrates a progressive shift away from a Montastraea dominated system. This shift, characterized by an increasing dominance of smaller, short-lived species such as Agaricia and Porites and a reduction in size of longer-lived massive corals, is occurring through- out the Caribbean. Monitoring of the survival of recruits is necessary to determine whether Caribbean reefs will retain the same function, structure, identity and feedbacks (key signs of resilience) if the losses of M. annularis (complex) continue at present levels. The rapid assessment protocol utilized here allows characterization of colony size structure, partial mortality, recruitment, and whether small corals represent surviving recruits that increased in size or larger (older) colonies that continue to shrink in size. This approach can help determine the history of a site and its resilience. Rev. Biol. Trop. 60 (Suppl. 1): 39-57. Epub 2012 March 01.

Key words: resilience, coral size structure, coral recruitment, survival and growth, coral monitoring and assessment.

Until the late 1970s, benthic substrates on stands in the reef crest and shallow fore reef Caribbean reefs were occupied primarily by (0-5 m depth); stands of staghorn coral (A. reef-building corals, with 50-80% benthic cover cervicornis) at intermediate depths (5-25 m by living corals. Coral reefs exhibited a genera- depth) on wave exposed reefs and in shallow, lized zonation pattern with elkhorn coral (Acro- protected environments; massive corals (domi- pora palmata) forming large, monospecific nated by Montastraea annularis complex)

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 39 throughout the fore reef (5-30 m depth) and in the early 1990s, very few studies have identi- back reef and lagoonal areas; and plating aga- fied a single direct cause of these impacts (a ricids near the base of the reef (20-40 m depth) “smoking gun”), or site-specific remedies or (Goreau 1959). Coral cover has plummeted treatments for particular problems. Conversely, on Caribbean reefs primarily due to the near there has been a proliferation of publications total demise of branching acroporids during and reports presenting broad scale recom- the 1990s (Aronson & Precht 2001, Aronson et mendations on the need to address destruc- al. 2002, Bruckner 2003, Gardner et al. 2003), tive human activities such as pollution and which is now being followed by massive losses overfishing, and the benefits associated with of Montastraea annularis (complex) (Bruckner the establishment of marine protected areas & Bruckner 2003, 2006a,b, Edmunds & Elahi (Folke et al. 1996, Roberts 1997, Roberts et al. 2007, Bruckner & Hill 2009). 2001, Hughes et al. 2003, 2005, Almany et al Changes to Caribbean reefs, attributed 2007, 2009, Jones et al. 2009,.. There is good largely to coral diseases, hurricanes, mass evidence that reduced fishing pressure, and in mortality of the herbivorous long-spined sea particular the protection of herbivorous fish urchin (Diadema antillarum), localized human populations, can prevent trophic cascades and impacts, recent bleaching events and climate coral-algal phase shifts (Mumby 2006, Mumby change (Lessio 1988, Carpenter 1990, Suther- et al. 2006). Furthermore, restoration of cer- land 2004, Weil 2004,Grimsdith & Salm 2006) tain keystone invertebrates, such as Diadema have manifested as dramatic phase shifts cha- antillarum, and increases in density of large racterized by a dominance of macroalgae and herbivorous fishes can trigger a reversal from a other nuisance species, fields of unstable coral macroalgal dominated state and promote coral rubble, loss of three-dimensional structure, recruitment (Edmunds & Carpenter 2001, Car- and increases in abundance of shorter-lived penter & Edmunds 2006, Hughes et al. 2009, brooding corals such as Agaricia and Porites Norstrom et al. 2009). As climate change poses (Hughes 1994, Edmunds & Carpenter 2001). a growing threat to the persistence of these Many of these stressors have cumulative nega- ecosystems, it is imperative that these efforts tive impacts on coral reef ecosystem health are scaled up, as degradation is outpacing the and are integrally linked. For example, the potential for recovery in absence of manage- virulence and severity of diseases is elevated ment interventions. during and immediately following bleaching Over the last decade, research efforts have events and other periods of elevated environ- placed a greater emphasis on examining coral mental stress (Bruno et al. 2007, Ballantine reef health and resilience, with a goal to identi- et al. 2008, Muller et al. 2008, Rogers et al. fy strategies to enhance the resilience of these 2008, Bruckner & Hill 2009). Other human ecosystems (Hughes et al. 2003, 2005). Ecolo- impacts such as overfishing of groupers, snap- gical Resilience is a term which describes the pers, parrotfish, lobster and other species can capacity of a system to absorb, resist or recover have cascading impacts on ecosystem health from disturbance, or to adapt to change, while by removing keystone species that are critical continuing to maintain essential functions, in controlling harmful algae, corallivores and structure, identity and feedbacks (Hollings other pests (Jackson et al. 2001, Mumby 2006, 1973, Nystrom & Folke 2001, Nystrom et al. Green & Bellwood 2009). These “pest” species 2008, Obura & Grimsditch 2009). There is compromise remaining corals through direct considerable evidence that sites with chronic competition and overgrowth, and may prevent human impacts are the least likely to resist recruitment of coral larvae and regrowth of mortality and subsequently recover from acute damaged corals. large-scale events, but by addressing these Although many of the threats affecting human impacts, they may be better able to cope coral reefs have been examined in detail since with acute events such as climate change and

40 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 recover from both natural and anthropogenic Assessment protocols (Obura & Grimsdith impacts (Jennings & Kaiser 1998, Worm et 2009, Lang et al. 2010) are two different rapid al. 2006, Knowlton & Jackson 2008). MPAs, ecological assessment approaches that can pro- when properly designed and enforced may vide an indication of the ecological resilience help promote resilience to disturbances by of a coral reef. Both of these share common increasing or maintaining key ecosystem para- attributes, and they highlight the importance meters such as fish biomass and coral cover, of the inclusion of ecologically relevant fis- and help maintain critical ecosystem processes hes, algal functional group biomass/cover, and and functions (Cote et al. 2001, Halpern 2003). coral population structure in rapid assessments. However, in some cases MPAs may not produ- The IUCN protocol includes other measures ce tangible conservation benefits, and they are as well, such as a qualitative assessment of often not accepted by resource users (McCla- various ecological and biological factors as nahan et al. 2006), emphasizing the need for well as physical factors that promote resilien- alternate management strategies. While great ce through shading, screening, cooling and strides have been made in understanding inte- enhanced stress tolerance (Obura & Grim- rrelationships among corals, fishes, and algae sditch 2009). A detailed resilience assessment and the role of certain functional groups in also includes characterization of reef proces- enhancing the health of coral reef ecosystems, ses, such as complex food-web interactions large gaps remain in our understanding of the (e.g. herbivory, trophic cascades) reproductive dynamic and complex processes that promote cycles, population connectivity, and coral and or undermine resilience (Hughes et al. 2005). fish recruitment, as well as examination of bio- A detailed assessment of resilience relates logical characteristics (e.g. genetics of corals to the entire scope of positive and negative and zooxanthellae, symbiont performance, and factors affecting the ecosystem. This includes coral species susceptibility to bleaching, disea- ecological, environmental and physical factors ses and other stressors). as well as social factors such as patterns of Because comprehensive measurements of resource uses and extraction, type and extent resilience, incorporating the parameters des- of pollution, presence of invasive species, cribed above and others, are not possible using governance structures, economics, and effec- a single rapid assessment, this study focused tiveness of existing conservation and manage- solely on one aspect of resilience, coral popu- ment efforts (Hughes et al. 2005). Quantitative lation dynamics. The approach represents a ecological indicators of resilience, that can be hybrid between the AGGRA and IUCN proto- measured include: 1) functional group abun- cols, with a few modifications. Detailed mea- dance, species diversity and community redun- sures of colony size (length, width and height) dancy, with emphasis on corals, algae, large were taken for each coral, along with an esti- motile invertebrates and fish communities; 2) mate of the extent of partial colony mortality. the ecological interactions that drive dynamics This prevents a potential underestimation of within and among these groups; 3) habitat and the original colony size that would occur if only environmental influences that directly affect the live portion is considered when classifying reef associated organisms and interactions bet- coral size. The number and diversity of recruits ween them; and 4) external drivers of change, and juveniles (colonies < 4 cm diameter) are including anthropogenic and climate factors, also recorded. Recruitment is often considered and the level of connectivity with other reefs, an indicator of resilience (i.e. signs of reco- (Cowen et al. 2006, Lindsey & Bruno 2008, very following chronic or acute disturbances) Nystrom et al. 2008, Green & Bellwood 2009, (Mumby & Harborne 2010). However, without Obura & Grimsditch 2009). following recruits over time it is difficult to The Atlantic and Gulf Rapid Reef determine survival rates of these recruits, or Assessment (AGRRA) and the IUCN Resilience whether they are contributing to population

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 41 recovery. Survival of recruits, and growth to 68º25’0” W 68º20’0” W 68º15’0” W larger size-classes was assessed by distinguis- hing between colonies on the reef substrate and those found on exposed skeletal surfaces of other corals; the latter represents both recruits and surviving juveniles. This method was tes- ted in July 2010 in Bonaire, and the results of N 12º15’0” these assessments are presented here.

MATERIALS AND METHODS

Study site: In July 2011, the Living Ocean N 12º10’0” Foundation conducted rapid assessments on 24 sites off the leeward side of Bonaire and the adjacent Klein Bonaire, targeting Montastraea dominated reefs from 5-15 m depth. All of 12º5’0” N 12º5’0” these sites are fringing reefs that begin close shore and drop to deeper water within a few hundred meters. Many of the areas above 5 m depth were badly damaged by recent hurricanes and are largely devoid of corals, but much of Fig. 1. Locations of reef assessments in Bonaire. Sites are the Montastraea structure at mid depths is still listed from south to north. Numbers correspond to the site intact. The sites were grouped into 3 distinct names listed in Table 1. areas: a) sites north of Kralendijk located off a rocky coastline; b) sites off the small offshore Klein Bonaire; and c) sites south of Kralendijk located off a sand and low relief limestone (by species); 3) coral size class distributions shoreline, many of which have a double reef (by species) and size of tissue remnants; 4) system (Fig. 1, Table 1). amount of partial mortality and number of tissue remnants; 5) recruitment; 6) location of Assessment protocol: The resilience settlement of recruits; and 7) coral condition. assessments conducted in Bonaire include mea- Belt transects, each 10 m long and 1 m wide sures of corals, fish, algae and motile inver- (minimum of three per reef), were extended tebrates through application of attributes of parallel to depth gradients on each reef. Within the Atlantic and Gulf Rapid Reef Assessment this belt, each coral 4 cm or larger in diameter (AGRRA) protocol, the IUCN bleaching res- was identified to species, measured and asses- ilience protocol, and several additions. Data sed for condition. A one meter bar, marked were collected using a combination of belt in 1 cm increments was used to measure the transects, point intercept methods and photo- maximum diameter, width (perpendicular to graphic documentation. While numerous biolo- the diameter), height, and amount of mortality. gical, ecological, physical and social measures Mortality was divided into three categories: must be analyzed concurrently to gain a full recent, transitional and old. picture of coral reef resilience, this manuscript focuses specifically on one aspect of resilience Benthic cover: Cover of substrate and (coral population resilience) evaluated through benthic organisms (algae and invertebrates) a static measure of coral population dynamics. was estimated using a point intercept method. Seven parameters were recorded for corals: 1) At each site, a minimum of six 10 meter long benthic cover; 2) coral diversity and abundance transects were deployed. The organism and

42 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 Table 1 Location of sites examined in Bonaire

Site # Reef Name Longitude W Latitude N 1 Red Slave -68.251800 12.025550 2 Margate Bay -68.272867 12.051350 3 The Invisibles -68.281383 12.077617 4 Jeannie’s Glory -68.283833 12.085733 5 Alice in Wonderland -68.286217 12.099233 6 Angel City -68.288267 12.102750 7 Lighthouse Point -68.295417 12.114350 8 Windsock -68.282583 12.133317 9 Something Special -68.285250 12.162250 10 Keep Sake -68.299760 12.146800 11 Monte’s Divi -68.308710 12.145660 12 South Bay -68.320133 12.149650 13 Knife -68.313250 12.168610 14 Small Wall -68.293483 12.179567 15 Black Durgon Reef -68.294338 12.180745 16 Andrea I -68.297483 12.189217 17 Andrea II -68.298600 12.191600 18 Oil Slick Leap -68.308633 12.199950 19 Jeff Davis Memorial -68.313417 12.204133 20 Weber’s Joy/Witches Hut -68.317617 12.206900 21 1,000 Steps -68.322317 12.210183 22 Tolo/Ol’ Blue -68.337900 12.214883 23 Karpata -68.352383 12.218967 24 Tailor Made -68.403630 12.223380 25 Nukove -68.413333 12.240933

substrate type was recorded every ten cm for a sponge (Cliona langae/aprica complex, Clio- total of 100 points per transect. Substrates were na delitrix, Anthosigmella), and hydrozoan identified as pavement, rubble, sand/silt, dead coral (Millepora). coral and live coral. All corals were identified to species. Other invertebrates were subdivided Recruitment: Sampling for corals smaller into phylum or class and growth form or iden- than 4 cm was done using a minimum of five tified to genus/species when possible. Algae 0.25m2 quadrats per transect. Each quadrat were divided into five functional groups (fles- located at fixed, predetermined intervals (e.g. 2, hy macroalgae, erect coralline algae, crustose 4, 6, 8, 10 m), alternating between right and left coralline algae, turf algae, cyanobacteria) with side of the transect. Recruits were identified in certain nuisance species recorded to genus (e.g. both point intercept surveys and belt transects. Microdictyon, Lobophora, Dictyota, Stypopo- These corals were divided into recruits (0-2 cm dium, Peyssonnelia). Key invertebrates that diameter) and juveniles (2.1-3.9 cm). also may become nuisance species recorded to genus or higher taxonomic level inclu- Corals colonizing skeletons of other ded: tunicate (Trididemnum), encrusting gor- corals: All corals settling on skeletal surfaces gonian (Erythropodium, Briareum), colonial of other colonies (completely dead corals and anemone (Palythoa), encrusting or bioeroding corals with partial mortality) within each belt

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 43 transect were identified and recorded separately exceptions were two sites on northern reefs, from those corals occurring on reef substrates. Webers Joy/Witches Hut and Jeff Davis Memo- For each of these colonies, measurements were rial ( cover= 30-35%), and in certain locations taken of the size (length, width and height for with outbreaks of white plague. Montastraea colonies 4 cm or larger; maximum diameter annularis (complex) were the dominant corals, for corals that were 0-3.9 cm), and an estimate in terms of living cover, occupying approxi- of percent mortality made for those exhibiting mately 20-25% of the benthos, and making partial mortality. up over 50% of the total live coral cover. The next most common species, in terms of living Condition of corals: Visual estimates of cover, where Agaricia, Madracis and Porites tissue loss, using a 1 m bar marked in 1 cm spp (Fig. 2b). Cover of major functional groups increments, was recorded for each colony over of reef building corals showed slight varia- 4 cm in diameter. If the coral exhibits recent tions between sites and depths. For instance, tissue loss, the amount of remaining tissue, the cover of M. annularis complex was lowest on percent that recently died and the percent that northern reefs (pooled for all depths; 22% vs died long ago were estimated for the entire 24%) while cover of Agaricia spp. was lowest colony surface. Tissue loss was categorized as on southern reefs (6.6% vs 9%). Klein Bonaire recent mortality (occurring within the last 1-5 also had a higher cover by Madracis mirabilis days), transitional mortality (filamentous green (>6%); this coral formed large thickets on seve- algae and diatom colonization, 6-30 days) and ral reefs that occasionaly extended the length old mortality (>30 days). For each coral with of 10 m transects or more. There were also partial or whole colony mortality, the cause differences in coral cover between depths. For of mortality was identified if possible. The instance, Agaricia spp. and Eusmilia fastigiata diagnosis included an assessment of the type had the highest cover on all reefs at 15 m. In of disease, the extent of bleaching, predation, contrast,cover of Porites was higher at 10 m competition, or overgrowth, or other cause of and 15 m depth than at 5 m. Madracis spp. was mortality. Each coral was first carefully exami- most variable, having the highest cover at 5 m ned to identify cryptic predators such as snails depth on northern and southern reefs, and 10 (Coralliophila abbreviata) and fireworms (Her- m depth on Klein Bonaire. Acropora palmata modice carunculata). Lesions were then diag- and A. cervicornis were virtually absent from nosed into four categories: recent tissue loss, all point intercept surveys, and only identi- skeletal damage, color change, and unusual fied infrequently in belt transects. Cover of growth patterns (an individual colony could macroalgae was relatively low on all reefs, but have multiple characteristics such as color was significantly higher on northern reefs (Fig. change and recent tissue loss) and when pos- 2a). There was no correlation between coral sible a field name was assigned. Diseases were cover and macroalgal cover (r2=0.01, p=0.56). identified according to Bruckner 2010b and Cover of turf algae ranged from 7-38%, and Raymundo et al. 2008, and included yellow was significantly correlated to coral cover (r2 = band disease (YBD), white plague (WP), black 0.44, p=0.0003). band disease (BBD), red band disease (RBD), Caribbean ciliate infection (CCI), dark spots Coral composition: A total of 5957 corals, disease (DSD) and white band disease (WBD). 4 cm or larger in diameter, were identified within belt transects (10 m X 1 m) on 25 reefs RESULTS in Bonaire (Fig. 3). M. annularis (complex) was the dominant functional group of corals Coral cover: On most of the reefs exami- at all sites overall, in terms of numbers of ned in this study, between 5-15 m depth, coral colonies, making up approximately 27% of all cover was high ( 40-60%;Fig. 2a). The only corals. M. annularis complex was numerically

44 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 A 70 60 Coral 50 Turf 40 Macro 30 % Cover CCA 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Site

B Other 10% EFAS 3%

MAD 7% SSID 1% MA complex 46% CNAT 5%

POR 7%

AAGA 16% MCAV 5%

Fig. 2. Benthic cover for 25 reefs examined in Bonaire. A. Mean cover of corals, turf algae, macroalgae, and crustose coralline algae for each reef, from south to north pooled for 5, 10 and15 m depth. B. Cover of each functional group of corals, expressed as a percent of the total living coral cover.

dominant between 5-10 m depth, while Agari- southern reefs and the second most abundant cia was slightly more abundant at 15 m depth. taxon in other locations. The genus Porites Reefs in the north and off Klein Bonaire had a was the third most abundant taxon. While the higher proportion of M. annularis (complex) proportion (number of colonies) of brooding colonies (30 and 29% respectively), when species (especially Agaricia, Porites) was very compared to reefs in the south (21%). When high, the contribution to living coral cover was examined by species, M. annularis was signi- less than M. annularis (complex) because these ficantly more abundant than M. faveolata and colonies were smaller in size. M. franksi on northern reefs and Klein Bonaire, but not southern reefs, while abundance of M. Coral size structure: Corals ranged in faveolata and M. franksi was very similar in all size from 4 cm (smallest coral assessed in belt locations. The second most abundant functional transects; 0-3 cm corals assessed separately group was the genus Agaricia (18-26% of all using quadrats and on exposed skeletal surfa- corals). This genus was the dominant taxon on ces) to over 450 cm diameter, with a maximum

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 45 species pooled; original diameter of the colony; A Other 15% Fig. 4b), although large (> 1 m diameter) colo- nies of Siderastrea siderea, Stephanocoenia MA complex 27% EFAS 5% intersepta, Colpophyllia natans and extensive (2-5 m wide) thickets of Porites porites and MAD 6% Madracis mirabilis were seen. There was a notable absence of smaller SSID 2% CNAT 4% MCAV 5% colonies (<10 cm) of M. annularis (complex). PPOR 1% It is important to note that these represent mea- sures of the diameter of the entire corallum (the PAST 14% original skeletal surface area) and not the size AAGA 22% of tissue remnants on larger skeletal surfaces. Many colonies in the genus Montastraea that B 35 South had contiguous skeletons,1-3 m in diameter 30 North or larger, were reduced in live tissue area, and 25 Klein 20 individual corals often consisted of multiple tis- 15 sue remnants (mean = 6.6 remnants per colony) 10 that were reduced to a few cm in diameter. 5 Relative abundance (%) abundance Relative 0 Colony mortality: The amount of partial DIP POR SINT SSID MILL EFAS MAD CNAT MFAV MFRA Ma all AAGA MCAV

MANN mortality observed on corals located within belt OTHER transects varied from 0-99%, with significant differences between species, colony sizes and Fig. 3. Coral composition observed in belt transects from 5-15 m depth. A. Composition of corals by functional group locations (Fig. 5). For M. annularis complex pooled for all sites and depths examined in Bonaire. B. The (n=1602), a total of 73 (4.5%) had completely proportion of colonies of each species for northern reefs, died, with surviving colonies (n=1529) missing southern reefs and Klein Bonaire, pooled for all depths. a mean of 28% of their tissue. Tissue loss for these species consisted of 25% old mortality and 3% transitional and recent mortality. When examined by size, colonies of M. annularis (complex) with less than 30% partial tissue loss height of 460 cm. The size structure of M. were significantly smaller in size (mean dia- annularis (complex) shows a bell shaped dis- meter = 48 cm; mean tissue loss=11%; n=889) tribution with few small colonies (<20 cm) and than colonies with 30-99% partial tissue loss few very large colonies (>200 cm) and a large (mean diameter =61 cm; mean tissue loss= number of medium-sized corals (30-80 cm dia- 50%; n=639). However, a correlation analysis meter); the population structure also exhibited using the entire range of sizes (no pooling into a second peak for colonies that were 150-199 size classes) showed that tissue loss was not cm diameter (Fig. 4a). Colonies of other spe- significantly correlated with colony size. This cies (all species except M. annularis complex) may be due to the fact that colonies exhibited a were dominated by very small colonies (<20 high range of tissue loss in all size classes: each cm) and populations in all locations (all sites size class contained colonies with no mortality, pooled, as well as northern, southern and Klein moderate levels of mortality and extensive Bonaire reefs) exhibited a monotonic decline mortality. Individual colonies of M. annularis in size with very few colonies over 60 cm in (complex) were also frequently divided into a diameter. Colonies of M. annularis (complex) number of smaller patches of live tissue; on were significantly larger than all other species average, each coral was subdivided into 6.6 (mean diameter = 58 cm, versus 24 cm for other separate tissue remnants.

46 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 45 A All 40 South 35 North 30 Klein 25 20 15 10

Percent of the population Percent 5 0 4 10 20 30 40 50 60 70 80 90 100 150 200 250 300 Maximum diameter (cm) B 25 All South 20 North Klein 15

10

5 Percent of the population Percent 0 <10 10 20 30 40 50 60 70 80 90 100 150 200 250 300 Maximum diameter (cm) Fig. 4. Population demographics of reef-building corals on 25 reefs examined in Bonaire. A. Size structure of all species except for M. annularis complex. B. Size structure of M. annularis complex. Blue bars= all reefs; red bars= southern reefs; green bars= northern reefs; purple bars= Klein Bonaire.

Tissue loss for other corals (all species species. Corals lumped into “other species” except M. annularis complex) was significantly were small to medium-sized (mean=24 cm), lower (mean partial tissue loss=8%) and fewer and population structure exhibited a monotonic dead colonies were identified (n=20, 0.4%). decline in size; most colonies were < 20 cm in Interestingly, partial mortality for colonies diameter and very few colonies were over 60 that had colonized reef substrates was higher cm. Although a small proportion of colonies than partial mortality for colonies that had showed active signs of disease and competition colonized exposed skeletal surfaces of living from other biotic stressors, these corals had low corals (9.4% vs 7.6%). These corals were also levels of partial mortality (8%), few comple- less frequently subdivided into smaller tissue tely dead colonies were observed (0.4%), and remnants (mean=1.41 remnants/colony), pos- they were the predominant species colonizing sibly because they were younger and smaller dead skeletal surfaces of other corals as well in size overall. as reef substrates. Based on size structure, abundance, levels of recruitment, and coral condition, coral com- Recruits on reef substrate: A total of munities could be divided into two primary 1688 quadrats, each 0.25 m2, were examined groups, the M. annularis complex (M. annula- on 25 reefs in Bonaire. Over 40% of the qua- ris, M. faveolata and M. franksi) and all other drats contained at least one coral (0-3 cm in

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 47 A 120

100

80

60

40

20 Percent partial mortalityPercent

0

0 20 40 60 80 100 120 140 160 180 Diameter (cm)

B 120

100

80

60

40

Percent partial mortalityPercent 20

0

0 20 40 60 80 100 120 140 160 180 Diameter (cm)

Fig. 5. Relationship between partial mortality and colony size for A. M. annularis (complex), and B. All other species (pooled) shown as a box plot. The boundary of the box illustrates the 25th and 75th percentile, the line within the box marks the median, error bars indicate the 10th and 90th percentile, and outlying points are shown as black dots. Colonies are pooled into 13 size classes, 4-9 cm, 10-19 cm, 20-29 cm, 30-39 cm, 40-49 cm, 50-59 cm, 60-69 cm, 70-79 cm, 80-89 cm, 90-99 cm,100-124 cm, 125-150 cm and > 150 cm.

diameter, classified here as a recruit). A higher franksi, although numerous tissue remnants proportion of quadrats on southern reefs contai- <4 cm in diameter were noted. The dominant ned recruits (45% vs. 40% and 37% of quadrats corals observed as recruits included A. agarici- on northern reefs and Klein Bonaire, respecti- tes (mean = 3.9 recruits/m2), P. astreoides(mean vely). Individual quadrats contained a maxi- = 2.2 recruits/m2), and Madracis spp (mean = mum of 5 recruits (northern and southern reefs) 0.95 recruits/m2) while all other species were and 8 recruits (Klein Bonaire) each. Eighteen at densities of <0.2/m2 (Fig. 6a). Species that different species of scleractinian corals and were common as adults within transects, but two hydrozoan corals were observed in qua- not observed in quadrats included Mussa angu- drats. There was a notable absence of sexual losa, Mycetophyllia lamarckiana, M. aliciae, recruits of M. annularis, M. faveolata and M. Dendrogyra cylindricus, Isophyllia sinuosa, I.

48 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 A 6 All 5 South 4 North 3 Klein 2 1

No. recruits per square meter per square recruits No. 0 DIP SINT SSID MILL EFAS PAST CNAT PPOR MMIR AAGA MCAV MDEC MMEA OTHER

B

60 All 50 South 40 North 30 Klein 20 10

Colonizers (% of total) Colonizers 0 DIP SINT SSID MILL EFAS PAST CNAT PPOR MMIR AAGA MCAV MDEC MMEA OTHER

Fig. 6. A comparison between recruits settling on reef substrate (A) and recruits settling on dead coral skeletons (B).

rigida, S. intersepta, Scolymia spp., Acropora 50 South palmata, and A. cervicornis. 45 North 40 35 Klein Colonization of coral skeletal surfaces: 30 The exposed skeletal surfaces of 249 corals 25 were colonized by new stony corals. Corals that 20 15 supported these settlers were missing a mean of 10 60% of their tissue. Difference in partial mor- of population Percent 5 tality occurred between regions, with colonies 0 SINT from southern reefs that were colonized by SSID MCO DSTR CNAT PPOR DLAB MFAV MFRA AAGA MCAV other corals showing much higher amount of MANN partial mortality overall. M. annularis (com- Fig. 7. Species of coral supporting coral settlers on plex) colonies that supported settlers of other northern, southern and Klein Bonaire reefs. species were similar in size in all three loca- tions, and they were significantly larger than all other species that were colonized by new annularis (complex) skeletons on Klein Bonai- corals (Table 2). re (19%) were colonized by corals as compared A total of 12 species of corals suppor- to northern (13%) and southern (5.3%) reefs. ted colonizers (Fig. 7), although most were Exposed skeletal surfaces of other species were observed on M. annularis (36%) and M. faveo- less frequently colonized by new corals, with lata (35%). A much higher proportion of M. exception of M. cavernosa and S. siderea on

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 49 TABLE 2 Mean size and condition of corals that supported colonization by other species of corals. Corals are pooled into Montastraea annularis complex (Ma), other species (other) and all corals (all), subdivided into northern (N), southern (S) and Klein (K)Bonaire reefs.

N% # remnants Max Diam (cm) Width (cm) Max Height (cm) % old mortality % recent % total mortality All 248 4.7 4.8 66 60 58 58 0.8 59 Ma (S) 23 5.3 3.3 70 61 53 71 1.7 73 Ma (N) 105 12.9 5.9 74 67 66 60 0.9 61 Ma (K) 67 19.3 5.5 65 59 60 51 0.7 52 Other (S) 32 2.2 2.4 49 44 38 63 0.0 63 Other (N) 12 0.8 2.2 49 45 40 49 1.1 50 Other (K) 10 1.6 2.1 51 48 46 52 0.0 52

southern reefs (Fig. 4). No differences in the DISCUSSION number of settlers per unit area were noted between reef substratum and exposed M. annu- Assessment protocols for stony corals fre- laris skeletal patches. quently rely on single or repeat assessments Overall, 825 corals of 16 species were of coral cover as the primary metric to cha- identified as colonizers on these corals, with up racterize reef condition and gauge changes. to 12 observed on a single colony. These settlers This approach assumes that reefs with high were up to 30 cm in diameter, with most (49%) coral cover are in better shape and exhibit from 4-7 cm in diameter and <10% that were 3 higher resilience (Gardner et al. 2003, Bruno cm or smaller. Agaricia agaricites (43%) and P. & Selig 2007), yet coral cover may actually be astreoides (27%) were the most common colo- one of the last metrics to indicate ecosystem nizers, although broadcast spawners were also failure (Bellwood et al. 2004, McClanahan observed (Fig. 6b). Interestingly, some species et al. 2011). A second coral metric that has observed as recruits were not observed to settle received greater attention in recent years is an on dead skeletons (S. siderea). The proportion assessment of recruitment, whereas high levels of colonizers also differed significantly from of recruitment may suggest a reef is rebounding the proportion of recruits observed on the reef after a disturbance (Mumby & Harborne 2010). substrate among some species (e.g. fewer M. In addition, studies characterizing impacts, decactis and higher percentage of colonizers such as coral diseases, usually rely on a count of E. fastigiata, C. natans, Diploria spp., M. the number of colonies in a given area to provi- cavernosa, P. Porites, M. meandrites, and S. de some indication of prevalence or incidence interepta), but not all species (Agaricia and P. of the particular condition (Raymundo et al. astreoides). There was also a notable absence 2008). These parameters alone may fail to of M. annularis (complex) recruits and colo- provide a reliable measure of reef resilience nizers on dead skeletons. While M. annularis because they fail to take into account factors (complex) was not observed recruiting onto any affecting the fitness and dynamics of coral exposed skeletal surfaces, juvenile corals (4 cm populations. Namely, corals are modular (clo- or larger) that had settled on dead coral surfaces nal) organisms can undergo growth, shrinkage, represented 17.5% of all corals of other species fission into several ramets, and fusion; subunits (all species except M. annularis) identified can function independently and they exhibit within belt transects. indeterminate growth (Babcock 1991).

50 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 Two of the most important parameter to differences between populations exposed to consider when assessing resilience of coral differing degree of environmental stressors. populations is size and amount of partial mor- Scleractinian coral populations normally tality, as mortality and fecundity rates in corals exhibit a positively-skewed (left) size frequen- are strongly size-dependent (Harrison & Walla- cy distribution with populations dominated by ce 1990). Smaller corals are generally more smaller colonies. On a Caribbean Montastraea vulnerable to stressors, while the likelihood of reef, a population that has not been exposed to total colony mortality decreases with increa- a major disturbance for several decades may sing colony size (Babcock & Mundy 1996, Hall progressively exhibit a shift towards the oppo- & Hughes 1996). Corals also show a positive site extreme, with a dominance of extremely relationship between colony size and fecun- large colonies (negatively-skewed right). In dity, with smaller colonies allocating more Bonaire, a northern reef (Taylor Made) with a energy to non-reproductive life history traits higher coral cover than all other sites exami- such as growth and maintenance and focu- ned in this study was dominated by extremely sing on reproduction after achieving a critical large colonies of Montastraea faveolata and M. threshold size (Szmant-Froelich 1985). Repro- annularis, many over 200 cm in diameter and ductively mature colonies may also regress in 5 m in height. This site had few small corals size below that minimum threshold, becoming and colonies exhibited little partial mortality, non reproductive (Szmant 1991). In addition, suggesting an absence of a major acute distur- bance for several decades, and minimal chronic competitive abilities and regenerative potential impacts from disease or other stressors. This also increases with size (Meesters et al. 1994). reef appears to be in a stable equilibrium at Since colony size can influence patterns this time. Nevertheless, this site may be pushed of mortality and fecundity, population size over the tipping point towards a trajectory of frequency distributions provide insight into coral decline by an acute disturbance (e.g. an the effects of disturbance and population pro- outbreak of white plague), as it exhibited low cesses. Coral populations are normally highly coral diversity, low levels of recruitment ,and positively skewed, with a dominance by the few juvenile corals. However, the site may also smallest size classes and an exponential decrea- undergo rapid recovery if other resilience fac- se with increasing colony size (Bak & Meesters tors are present, such as high rates of herbivory, 1998, 1999). Larger colonies typically become as recruitment may increase once substratum rarer in a population, but they have a decreased becomes available. probably of total colony mortality than sma- The demographic structure of a coral ller colonies (Hughes & Jackson 1985, Soong population also illustrates the presence of past & Lang 1992). Furthermore, larger colonies disturbances, where a population dominated by show a lower frequency of partial and whole small size classes may indicate high mortality colony mortality, with mortality decreasing in in intermediate and larger corals (Nystrom et relation to colony size (Meesters et al. 1994). al. 2008). Several reefs at the southern end of One consequence of this is that smaller colo- Bonaire had high coral cover, but they were nies suffer total mortality more frequently than dominated by a high diversity of small corals, larger colonies, while larger colonies sustain most of which were 4-20 cm diameter. These higher levels of partial mortality over multi- reefs included a high proportion brooding ple disturbances, but have a larger chance of species such as Agaricia and Porites, although survival (Soong 1993). Thus, size frequency various brain corals, flower coral, cactus corals distributions of coral populations provide a and many other species were present. Most sensitive means of discriminating changes in Montastraea colonies were small (<90 cm coral communities in response to acute and diameter), many dead standing colonies of chronic disturbances, and may help identify these species were observed, and colonies were

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 51 frequently subdivided into small tissue rem- tissue remnants, and the original colony boun- nants. Although high numbers of recruits and daries can become obscured by other orga- juvenile corals were present, no Montastraea nisms, especially on reefs with a high cover of colonies below 10 cm diameter were observed. macroalgae or other epibionts. A dominanceof The declining condition of M. annularis is indi- small colonies may represent several successful cative of a past disturbance, as well as chronic recruitment events, or the small colonies may tissue loss from disease. While coral cover is be surviving remnants of formerly larger corals. rebounding, the progressive replacement of A feasible way to differentiate juvenile corals M. annularis may be indicative of lowered from older surviving remnants, without having resilience as the community is becoming domi- to tag individual colonies and return to the site nated by smaller, shorter-lived species that are to look at survival over time, is to separate out highly susceptible to future perturbations. coral measurements into two categories: those By subdividing mortality into three cate- corals found on the reef substrate, and those gories, recent, transitional and old mortality, that have colonized exposed skeletal surfaces the cause of tissue loss and the timing of a dis- of corals with partial or total mortality. All turbance event may be discernable(Lang 2003). corals that settled onto exposed skeletal surfa- The presence of high levels of recent mortality ces or dead coral skeletons can be considered suggests that a disturbance has occurred and the recruits and not remnants, which is not the case event is ongoing. Sites containing corals with for colonies occurring on the reef substratum. extensive transitional mortality and little recent In contrast, small patches of tissue of the same mortality were affected by a disturbance in the species, that are similar in morphology and recent past, but the event has passed and the coloration to surrounding tissue are likely to be system may be at the early stages of recovery. tissue remnants. At the opposite extreme, if most colonies have In Bonaire, corals frequently settled on extensive patches of old mortality, and little or most species of massive and plating corals, no recent mortality, it is apparent thatthe site although the highest settlement and survival was impacted at some time in the past, but the rates appear to be on Montastraea skeletons. source of mortality is gone making it difficult Settlers included 16 important reef-building to determine when the mortality occurred, or species, with a notable absence of Montastraea whether it was an acute event or a chronic annularis (complex). The majority of these disturbance. In Bonaire, extent of partial and corals were completely alive, unlike many whole colony mortality was notably different of the similar sized corals that occurred on among reefs, with southern reefs showing low the reef substrate. There were however, no levelsof old mortality and the highest amount differences noted in the number of recruits of recent and transitional mortality. Recent recorded on coral skeletons of M. annularis, mortality was attributed to an outbreak of white versus the reef platform. While the two subs- plague; this disease was also present in other trates are equally attractive to settling larvae, locations, but at a lower prevalence. dead skeletal surfaces of Montastraea may The challenge faced when assessing be optimal, due to high rates of survival and colony size and extent of mortality through a growth into larger size classes (and absence of single rapid assessment is that it is impossible partial mortality as observed among the same to determine the growth of a coral population species on reef substratum). Because the sett- over time. Because corals are clonal , lement surface (coral skeleton) is raised off the they can progressively increase in size with bottom, settlers are less affected by sediment age, theoretically with indeterminate growth, transport and siltation, macroalgal competi- but they can also shrink in size, without dying tion, and possibly disease. Nevertheless, one (Babcock 1991). Through partial mortality species (Siderastrea siderea) recruited onto the colonies are frequently subdivided into isolated reef, but it did not colonize coral skeleton. The

52 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 proportion of colonizers on skeletons that sur- and they have not shown substantial levels of vived to larger size classes also differed among recruitment needed to replace colonies that species, indicating that high recruitment does died. As observed in other locations throughout not necessarily equate to high resilience. the Caribbean, these reefs are undergoing a The discrimination of corals settling onto transition from a Montastraea-dominated sys- skeletal surfaces of other corals provides a use- tem to a community consisting predominantly ful metric when using a single rapid assessment of other species. Fortunately for Bonaire, these to determine levels of recruitment, as well reefs still have unusually high coral cover, as the potential for longer-term survival and high levels of recruitment and good survival growth. This is not be possible when examining of juvenile corals, and several sites contain a coral population dynamics based solely on high abundance of large, unblemished colonies colonies on the reef substrate, as large corals of Montastraea annularis (complex), all which that undergo shrinkage and fission may be are important indicators of resilience. misinterpreted as juveniles (smaller size clas- While single assessments will never pro- ses). One complication with this measure is an vide the kind of data that would result from absence of information on the age of the coral repeated visits to a site over time, single rapid skeleton necessary to attract settling larvae. assessments can provide valuable data on the Corals did settle on exposed skeletal patches resilience of coral populations. For corals, of colonies of M. annularis (complex) exhibi- these assessments must expand upon traditio- ting slow, chronic mortality from yellow band nal measures of coral cover and abundance, by disease (e.g. areas that were denuded 30-90 incorporating data on recruitment, size structu- days earlier; Bruckner, unpubl data), sugges- re, partial and whole colony mortality, and the ting coral skeleton of this species becomes extent of survival and growth of recruits. suitable for settlement relatively early. Howe- ver, for other species only long dead skeletal patches, with an absence of macroalgae and ACKNOWLEDGEMENTS other prominent epibionts, appeared to support coral settlers. Although it is not possible to The intensive surveys completed In Bonai- determine the age of the dead skeleton, it was re between July 19-26, 2010 represent the certainly many months to years, as evidenced dedicated efforts of a talented group of scien- by the presence of turf algae, crustose coralline tists and field assistants. I am grateful for the algae, and encrusting invertebrates. assistance and expertise provided by the team The results presented here provide an to complete rapid ecological assessments, and indication of the resilience of of coral popula- extensive time devoted to data entry, with tions in Bonaire. The presence of high levels special thanks to Eric Borneman, Robin Bruc- of recent recruitment and growth of recruits kner, Kalisi Faanunu, Philip Renaud, Glyn- into larger size classes demonstrates that newly nis Roberts, Debbie Santavy and Amanda settling corals are surviving and contributing Williams. Al Catafulmo and the Black Durgon to an increase in the proportion of these taxa. Inn graciously accommodated the research The absence of larger size classes of some team during this mission. I also thank the coral taxa that colonized exposed skeletal sur- Government of Bonaire and the Bonaire Mari- faces suggest that certain species are recruiting ne Park for assistance with permits and other onto these reefs at levels that exceed survival. technical aspects associated with the work. In addition, the dominant frame-builder (M. All funding for this work was provided by the annularis complex) on these reefs appears Khaled bin Sultan Living Oceans Foundation. to be highly vulnerable to recent disturban- Surveys were performed under a research per- ces, as populations of these species are being mit #30001380 granted by the Island Council progressively reduced in abundance and size, of the Island Territory of Bonaire.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 53 RESUMEN a los niveles actuales. La evaluación rápida presentada aquí posibilita caracterizar la estructura de tamaño de las En la actualidad se está viendo en el Caribe un colonias, los niveles de reclutamiento y determinar si los cambio en la composición de los corales constructores de corales pequeños representan sobrevivientes de colonias arrecifes, aumento en la cobertura de macroalgas y otras que incrementan su tamaño o colonias grandes (más viejas) especies, un aumento en áreas cubiertas por escombros de que siguen disminuyendo de tamaño. Este enfoque puede corales, y una pérdida de relieve. La incorporación de prin- ayudar a determinar la historia de un sitio y su capacidad cipios de resiliencia en el manejo es una estrategia propues- de recuperación. ta para revertir esta tendencia y asegurar la sobrevivencia y el adecuado funcionamiento de los arrecifes de coral bajo Palabras clave: resiliencia, estructura en la talla del coral, escenarios previstos de cambio climático. Sin embargo, reclutamiento de coral, sobrevivencia y crecimiento, moni- todavía quedan grandes vacíos en la comprensión de los toreo de corales, evaluación de corales factores que promueven la resiliencia. Evaluaciones rápidas realizadas con la metodología AGRRA (Atlantic and Gulf Rapid Reef Assessment) y con el protocolo de Evaluación REFERENCES de Resiliencia para arrecifes coralinos de la IUCN brindan información de línea base sobre la resiliencia de los arreci- Almany, G.R., M.L. Berumen, S.R. Thorrold, S. Planes & fes del Caribe. Un aspecto clave de estos estudios se centra G.P. Jones. 2007. Local replenishment of coral reef en la dinámica de las poblaciones de los corales, incluyen- fish populations in a marine reserve. Science 316: do medidas de cobertura de coral, estructura de tallas, la 742-744. extensión de la mortalidad parcial y total de toda la comu- nidad, condición de los corales y reclutamiento. Un reto es Almany, G.R., S.R. Connolly, D.D. Heath, J.D. Hogan, que esto representa una medida estática que involucra una G.P. Jones, L.J. McCook, M. Mills, R.L. Pressey, & única evaluación. Sin seguir las colonias individuales y el D.H. Williamson. 2009. Connectivity, biodiversity reclutamiento en el tiempo, es difícil determinar las tasas conservation, and the design of marine reserve net- de sobrevivencia y crecimiento de los reclutas, y podría no works for coral reefs. Coral Reefs 28: 339-351. ser posible la diferenciación de los juveniles de los restos pequeños de colonias más viejas, especialmente cuando Aronson, R.B. & W.F. Precht. 2001. White-band disease la cobertura algal es alta. Para abordar esta limitación, los and the changing face of Caribbean coral reefs. corales monitoreados en Bonaire en julio del 2010 fueron Hydrobiologia 460: 25-38. subdivididos en dos categorías: 1) colonias sobre la estruc- tura arrecifal; y 2) colonias creciendo sobre coral muerto o Aronson, R.B., I.G.MacIntyre, W.F. Precht, T.J.T. Murdoch sobre las superficies expuestas del esqueleto de los corales & C.M. Wapnick. 2002. The expanding scale of spe- vivos. Los arrecifes en Bonaire exhiben muchas caracte- cies turnover events on coral reefs in Belize. Ecol. rísticas indicativas de alta resiliencia, incluyendo una alta Monogr. 72: 233-249. cobertura de coral (frecuentemente 30-50%), altos niveles de reclutamiento, y un gran número de corales que se asen- Babcock, R.C. 1991. Comparative demography of three taron sobre los corales muertos y crecieron. En general, las species of scleractinian corals using age- and size- superficies del esqueleto de 12 especies de corales fueron dependent classifications. Ecol. Monogr. 61:225–244. colonizadas por 16 especies de corales, con un máximo de 12 colonizadores en cada colonia, la mayoría (67%) sobre Babcock, R. & C. Mundy.1996. Coral recruitment: con- esqueletos de Montastraea annularis (complejo). Colonias sequences of settlement choice for early growth and completamente muertas de M. annularis fueron comunes y survivorship in two scleractinians. J. Exp. Mar. Biol. los sobrevivientes con frecuencia son más pequeños o sub- Ecol. 206: 179-201. divididos en pequeños restos de tejido. Montastraea annu- laris es la especie que exhibe una mayor mortalidad parcial Bak, R.P.M. & E.H. Meesters. 1998. Coral population en relación con los demás corales. Una notable ausencia de structure: the hidden information of colony size- reclutamiento sexual y juveniles de M. annularis ilustra el frequency distributions. Mar. Ecol. Prog. Ser. 162: cambio progresivo de cambio de un sistema dominado por 301-306. Montastraea. Este cambio, que se está produciendo en todo el Caribe, se caracteriza por un dominio cada vez mayor Bak, R.P.M. & E.H. Meesters. 1999. Population structure de especies más pequeñas y de vida corta como Agaricia as a response of coral communities to global change. y Porites, y una reducción en el tamaño de los corales Am. Zool. 39: 56-65. masivos longevos. El seguimiento de la sobrevivencia de los reclutas es necesario para determinar si los arrecifes Ballantine, D.L., R.S. Appeldoorn, P. Yoshioka, E. Weil, del Caribe mantendrán la misma función, estructura, iden- R. Armstrong, J.R. Garcia, E. Otero, F. Pagan, C. tidad y retroalimentación (signos clave de la resiliencia), Sherman, E.A. Hernandez-Delgado, A. Bruckner & y si las pérdidas de M. annularis (complejo) continuarán C. Lilyestrom. 2008. Biology and ecology of Puerto

54 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 Rican Coral Reefs. p. 375-406. In B.M. Reigl & R.E. increases the abundance of juvenile corals on a Dodge (eds.) Coral Reefs of the World 1: Coral Reefs Caribbean reef. Proc. Nat. Acad. Sci. USA 98: of the USA. Springer, Berlin, Germany. 5067-5071.

Bellwood, D.R., T.P. Hughes, C. Folke & M. Nyström. Edmunds, P.J. & R. Elahi. 2007. The demographics of a 2004. Confronting the coral reef crisis. Nature 429: 15-year decline in cover of the Caribbean reef coral 827-833. Montastraea annularis. Ecol. Monogr. 77: 3–18.

Bruckner, A.W. 2003. Proceedings of the Caribbean Acro- Folke, C., C.S. Holling, & C. Perrings 1996. Biological pora workshop: potential application of the Endan- diversity, ecosystems, and the human scale. Ecol. gered Species Act as a conservation strategy. NOAA Appl. 4: 1018–1024. Technical Memorandum NMFS-OPR-24, Silver Spring, Maryland. Gardner, T.A., I.M. Cote, F.A. Gill, A. Grant & A.R. Watkinson. 2003. Long-term region-wide declines in Bruckner, A.W. & R.J. Bruckner. 2003. Condition of coral Caribbean corals. Science 301: 958-960. reefs off less developed coastlines of Curaçao (stony corals and algae). Atoll Res. Bull. 496: 370-393. Green, A.L. & D.R. Bellwood. 2009. Monitoring functio- nal groups of herbivorous reef fishes as indicators of Bruckner, A.W. & R.J. Bruckner. 2006a. Consequences of yellow band disease (YBD) on Montastraea annu- coral reef resilience – A practical guide for coral reef laris (species complex) populations on remote reefs managers in the Asia Pacific region. IUCN working off Mona Island, Puerto Rico. Dis. Aquatic Org. 69: group on Climate Change and Coral Reefs. IUCN, 67-73. Gland, Switzerland. 70 pages.

Bruckner, A.W. & R.J. Bruckner. 2006b.The recent decline Grimsditch, G.D. & R.V. Salm. 2006. Coral reef resilience of Montastraea annularis (complex) coral popula- and resistance to bleaching. IUCN, Gland, Switzer- tions in western Curacao: a cause for concern? Rev. land. 52 p. Biol. Trop. 54 (Suppl. 1): 45-58. Hall, V.R. & T.P. Hughes 1996. Reproductive strategies Bruckner, A.W. & R. Hill. 2009. Ten years of change to of modular organisms: comparative studies of reef coral communities off Mona and Desecheo Islands, building corals. Ecology 77: 950-963. Puerto Rico from disease and bleaching. Dis. Aquatic Org. 87: 19-31. Harrison, P.L.& C.C. Wallace. 1990. Reproduction, disper- sal and recruitment of scleractinian corals, p. 133-207 Bruno, J.F. & E.R. Selig. 2007. Regional Decline of In Z. Dubinsky (ed.) Ecosystems of the world: coral Coral Cover in the Indo-Pacific: Timing, Extent, and reefs. Elsevier, Amsterdam, Holland. Subregional Comparisons. PLoS ONE 2(8): e711. doi:10.1371/journal.pone.0000711 Holling, C.S. 1973. Resilience and stability of ecological systems. Ann. Rev. Ecol. System. 4:1-23. Bruno, J.F., E.R. Selig, K.S. Casey, C.A. Page, B.L.Willis, C.D. Harvell, H. Sweatman & A.M. Melendy. 2007. Hughes, T.P. 1994. Catastrophes, phase shifts, and large- Thermal stress and coral cover as drivers of coral scale degradation of a Caribbean coral reef. Science disease outbreaks. PLoS Biol. 5(6): e124. 265: 1547–1551.

Carpenter, R.C. 1990. Mass mortality of Diadema antilla- Hughes. T.P. & J.B.C. Jackson. 1985. Population dynamics rum. I. Long- term effects on sea urchin population- and life histories of foliaceous coral. Ecol. Monogr. dynamics and coral reef algal communities. Mar. 55: 141-166. Biol. 104: 67-77. Hughes, T.P., A.H. Baird, D.R. Bellwood, M. Card, S.R. Carpenter, R.C. & P.J. Edmunds. 2006. Local and regional Connolly, C. Folke, R. Grosberg, O. Hoegh-Guld- scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol. Lett. 9: 271-80. berg, J.B.C. Jackson & J. Kleypas. 2003. Climate change, human impacts, and the resilience of coral Cowen, R.K., C.B. Paris & A. Srinivasan. 2006 Scaling reefs. Science 301: 929-933. of connectivity in marine populations Science 311: 522-527. Hughes, T.P., D.R. Bellwood, C. Folke, R.S. Steneck & J. Wilson. 2005. New paradigms for supporting the Edmunds, P.J. & R.C. Carpenter. 2001. Recovery of resilience of marine ecosystems. Trends Ecol. Evol. Diadema antillarum reduces macroalgal cover and 20: 380-386.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 55 Hughes, T.P., M.J. Rodrigues, D.R. Bellwood, D. Cecca- Mumby, P.J. 2006. The impact of exploiting grazers (Sca- relli, O. Hoegh-Guldberg, L. McCook, N. Moltscha- ridae) on the dynamics of Caribbean coral reefs. Ecol niwskyj, M.S. Pratchett, R.S. Steneck & B. Willis. Appl. 16: 747-69. 2007. Phase shifts, herbivory, and the resilience of coral ceefs to climate change. Current Biol. 17: Mumby, P.J., C.P. Dahlgren, A.R. Harborne, C.V. Kappel, 360-365. F. Micheli, D.R. Brumbaugh, K.E. Holmes, J.M. Mendes, K. Broad, J.N. Sanchirico, K. Buch, S. Box, Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, R.W. Stoffle & A.B. Gill, 2006. Fishing, trophic L.W. Botsford, B.J. Bourque,C.H. Peterson, R.S. cascades, and the process of grazing on coral reefs. Steneck, M.J. Tegner & R.B. Warner. 2001. Historical Science 311: 98-101. overfishing and the recent collapse of coastal ecosys- Mumby, P.J. & A.R. Harborne. 2010. Marine reser- tems. Science 293: 629-638. ves enhance the recovery of corals on Caribbean reefs. PloS One 5(1): e8657. doi:10.1371/journal. Jennings, S. & M.J. Kaiser. 1998. The effects of fishing pone.0008657 on marine ecosystems. Adv. Mar. Biol. 34: 201-352. Norström, A.V., M. Nyström, J. Lokrantz & C. Folke. Jones, G.P., G.R. Almany, G.D. Russ, P.F. Sale, R.S. Ste- 2009. Alternative states on coral reefs: beyond coral– neck, M.J.H. van Oppen & B.L. Willis. 2009. Larval macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376: retention and connectivity among populations of 295-306. corals and reef fishes: history, advances and challen- ges. Coral Reefs 28: 307-325., N. & J.B.C. . . Shifting Nyström, M. & C. Folke. 2001. Spatial resilience of coral baselines, local impacts, and global change on coral reefs. Ecosystems. 4: 406-417. reefs. PLoS Biology 6: e54, 6. Nyström, M., N.A.J. Graham, J., Lokrantz & A. Norström. Lang, J.L. 2003. Status of coral reefs in the western Altan- 2008. Capturing the cornerstones of coral reef res- tic: results of initial surveys, Atlantic and Gulf Rapid ilience: linking theory to practice. Coral Reefs 27: Reef Assessment (AGGRA) program. Atoll Res. 795-809. Bull. 496, 630 p. Obura, D.O. & G. Grimsdith (eds.). 2009. Resilience Lang, J., K.W. Marks, P.A. Kramer, P.R. Kramer & R.N. Assessment of coral reefs – Assessment protocol for Ginsburg. 2010. AGRRA Protocols Version 5.4. onli- coral reefs, focusing on coral bleaching and thermal ne at http://www.agrra.org/method/methodhome.html stress. IUCN working group on Climate Change and Coral Reefs. IUCN, Gland, Switzerland. 70 p. Lessios, H.A. 1988. Mass mortality of Diadema antillarum in the Caribbean: What have we learned? Ann. Rev. Raymundo, L.J., C.S. Couch, A.W. Bruckner, C.D. Har- Ecol. Syst. 19: 371-393. vell, T.M. Work, E.Weil, C.M. Woodley, E. Jordan- Dahlgren, B.L. Willis, G.S. Aeby & Y. Sato. 2008. McClanahan, T.R., M.J. Marnane, J.E. Cinner & W.E. Coral Disease Handbook: Guidelines for Assessment, Kiene. 2006. A comparison of marine protected areas Monitoring and Management. CRTR, Australia. and alternative approaches to coral-reef management. 131 p. Curr. Biol. 16: 1408-1413. Roberts, C.M. 1997. Connectivity and management of Caribbean coral reefs. Science 278: 1454-1457. McClanahan, T.R., N.A.J. Graham, M. A. MacNeil, N.A. Muthiga, J.E. Cinner, J. Henrich Bruggemann & S.K. Roberts, C.M., J.A. Bohnsack, F. Gell, J.P. Hawkins, and Wilson. 2011. Critical thresholds and tangible targets R. Goodridge, 2001. Effects of marine reserves on for ecosystem-based management of coral reef fishe- adjacent fisheries. Science 294: 1920-1923. ries. Proc. Natl. Acad. Sci. USA 108: 17230-17233 Rogers, C.S., J. Miller, E. Muller, P. Edmunds, R.S. Meesters, E.H., M. Noordeloos & R.P.M. Bak. 1994. Nemeth, J.P. Beets, A.M. Friedlander, T.B. Smith, Damage and regeneration: links to growth in the reef- R. Boulon, C.F.G. Jeffrey, C. Menza, C. Caldow, building coral Montastrea annularis. Mar. Ecol. Prog. N. Idrisi, B. Kojis, M.E. Monaco, A. Spitzack, E.H. Ser. 112:119-128. Gladfelter, J.C. Ogden, Z. Hillis-Starr, I. Lundgren, W.B. Schill, I.B. Kuffner, L.L. Richardson, B.E. Muller, E., C. Rogers, A. Spitzack & R. van Woesik. 2008. Devine & J.D. Voss. 2008. Ecology of coral reefs in Bleaching increases likelihood of disease on Acropo- the US Virgin Islands, p. 303–374. In B. Riegl & R. E. ra palmata (Lamarck) in Hawksnest Bay, St John, US Dodge (eds.) Coral Reefs of the World. 1. Coral Reefs Virgin Islands. Coral Reefs 27: 191–195. of the USA. Springer, Berlin, Germany.

56 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 Soong, K. 1991. Sexual reproductive patterns of shallow- Sutherland, K., J. Porter & C. Torres. 2004. Disease and water reef corals in Panama. Bull. Mar. Sci. 49: immunity in Caribbean and Indo- 832-846. Pacific zooxanthellate corals. Mar. Ecol. Prog. Ser. 266: Soong, K. & J.C. Lang. 1992. Reproductive integration in 273-302. reef corals. Biol. Bull. 183: 418-431. Weil, E. 2004. Coral reef diseases in the wider Caribbean, p. Szmant-Froelich, A.M. 1985. The effect of colony size on 35-68. In E. Rosenberg & Y. Loya (eds.) Coral Health the reproductive ability of the Caribbean coral Mon- and Disease. Springer-Verlag, Berlin, Germany. tastrea annularis (Ellis and Solander). Proc. 5th Int. Coral Reef Congress, Tahiti 4: 295-300. Worm, B., E.B. Barbier, N. Beaumont, J. E Duffy, C. Folke, B.S. Halpern, J.B.C. Jackson, H.K. Lotze, F. Micheli, Szmant, A.M. 1991. Sexual reproduction by the Caribbean S.R. Palumbi, E. Sala, K.A. Selkoe, J.J. Stachowicz reef corals Montastrea annularis and M. cavernosa. & R. Watson. 2006. Impacts of biodiversity loss on Mar. Ecol. Prog. Ser. 74: 13–25. ocean ecosystem services. Science 314: 787-790.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 39-57, March 2012 57

Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

Virginia H. Garrison1 & Greg Ward1,2 1. U.S. Geological Survey, 600 Fourth Street South, St. Petersburg, Florida 33701, U.S.A.; [email protected] 2. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, South Florida Regional Lab, 2796 Overseas Highway, 119, Marathon, Florida 33050; [email protected]

Received 8-VII-2011. Corrected 16-XII-2011. Accepted 20-XII-2011.

Abstract: In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between trans- plant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or eliminated. Rev. Biol. Trop. 60 (Suppl. 1): 59-70. Epub 2012 March 01.

Keywords: Acropora cervicornis, A. palmata, coral mortality, Porites porites, reef restoration, coral transplantation.

Continuing declines and the lack of recov- response to declining abundance of corals and ery on coral reefs worldwide have sparked other reef organisms. In cases of acute physical renewed calls for action by the scientific, con- damage to reefs, such as in ship groundings, servation, and reef management communities sophisticated engineering methods have been (e.g., Bruno & Selig 2007, Mumby & Steneck developed to mitigate damage and to maximize 2008, Rinkevich 2008, Teplitski & Ritchie recovery and are used in combination with 2009). Consensus exists around the need to substrate stabilization and colony transplanta- maintain as much genetic diversity, structural tion (e.g., Jaap et al. 2006). But increasingly, and biological integrity, and ecological ser- loss of live coral has been related to disease vices as possible if reefs are to be sustainable and abnormally high water temperatures and over time (e.g., Roberts et al. 2006, Shearer et not to direct impacts from human activities al. 2009). Less agreement surrounds how best (e.g., Miller et al. 2009). As researchers work to achieve those goals and how to proceed in to deepen understanding of reef ecology, coral

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 59 reproduction, disease processes, and preda- relevant temporal and spatial scales. This con- tion and to identify environmental drivers and troversy is due in part to the small scale of effects from a changing climate, what is the transplant studies compared to the scale of appropriate response to the continuing loss of reef damage (e.g., Edwards & Gomez 2007) coral? What response at the local level will and the relatively short duration of most stud- most effectively reduce further losses, mini- ies. Published research documenting transplant mize species extinctions, guard against loss of survival for 5 years or more is rare in the sci- reproductive capacity, and maintain reef ser- entific literature (Bruckner & Bruckner 2006, vices such that local reefs and the well-being Garrison & Ward 2008, Bruckner et al. 2009), of human communities are simultaneously although reports from proprietary restorations maintained (Knowlton 2006)? (e.g., ship groundings) exist but are difficult to Recently, restoration strategies have access. Recently, a few large-scale transplanta- focused on the broader conservation effort, tion studies have been initiated (Normile 2009). emphasizing the need to combine local man- Their findings after 5 years, 10 years and agement actions, such as establishment of beyond will be of great interest. no-harvest marine reserves and effective man- In 1999, a small-scale coral fragment agement of the coastal zone (both terrestrial and transplantation project was initiated in a Carib- marine), with direct actions, such as transplan- bean marine protected area (Virgin Islands tation (Epstein et al. 2005, Edwards & Gomez National Park, U.S. Virgin Islands). The pri- 2007, Mumby & Steneck 2008, Young 2000). mary objectives were to (1) identify a source Transplantation of coral colonies or fragments, of coral colonies for transplantation that would whether from aqua-, mariculture or harvest- not result in damage to reefs, (2) test the fea- ing from a healthy colony, has been the most sibility of collecting and transplanting storm- frequently recommended action for increasing generated coral fragments, and (3) develop a coral abundance on damaged or degraded reefs simple, inexpensive method for transplanting and for conserving listed or “at-risk” species fragments that could be conducted by the local (e.g., Epstein et al. 2005, Edwards & Gomez community. The ultimate goal was to enhance 2007, Rinkevich 2008, Teplitski & Ritchie abundance of threatened reef-building species 2009). Yet there is a deepening awareness that on local reefs. Although small in scope, this no habitat, once damaged or degraded, can be is one of only two long-term studies of coral restored to its original condition (Young 2000) transplants. The survival and growth of trans- and that the basic factors causing declines plant and reference colonies over 12 years are must be addressed if restoration of reefs and presented, as are lessons learned. conservation of threatened reef species are to succeed over time (Edwards & Clark 1998, MATERIALS AND METHODS Birkeland 2004, Kaufman 2006, Bruno & Selig 2007). It has been suggested that newly Study: This study was conducted from developed molecular tools be used to optimize May 1999 to April 2011 on four reefs within selection of coral propagules for cultivation and Virgin Islands National Park (VINP, St. John, transplantation, to deepen our understanding of U.S. Virgin Islands; Fig. 1). The study sites, transplant survival (Baums 2008, Vollmer & experimental design, field methods (coral frag- Kline 2008), and to identify and maximize the ment collection, handling, transport, placement genetic diversity of transplants (Shearer et al. and orientation), criteria for attachment-sub- 2009), which is considered essential. Debate strate, data collection and analysis, and statisti- continues over the effectiveness of transplan- cal models are detailed in Garrison & Ward tation in conserving threatened coral species, (2008), as are analysis and interpretation of increasing coral abundance, and accelerating the first 5 years (1999-2004) of data. Briefly, reef restoration or enhancement at ecologically unattached storm-produced fragments of three

60 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 Trunk Cay Whistling Cay Leinster 15 15 15 12 12 12 9 9 9 6 6 6 3 3 3 0 0 0 A. cervicornis A. palmata P. porites A. palmata A. palmata A. cervicornis A. palmata transplants transplants transplants reference transplants reference reference VINP Boundary

H = Hawksnest Bay W L T = Trunk Bay W = Whistling Cay T H L = Leinster Bay S S = Scott Beach St. John U.S. Virgin Islands Hawksnest 18º20’ N 15 12 9 Disappeared 64º45’ W 6 Died-in-place 3 Alive 0 1 km P. porites A. palmata reference reference

Fig. 1. Map of transplant and donor reefs in Virgin Islands National Park (VINP), St. John, U.S. Virgin Islands. Bar graphs represent the proportion of transplants and reference colonies that survived (white), died in place (dark gray), or were lost to displacement (disappeared; light gray) for each species at each site at 12 years (2011).

fast-growing Caribbean species [Acropora pal- ties were selected over uncoated wire, mono- mata (Lamarck, 1816) (elkhorn coral), A. cer- filament line, and underwater epoxy to secure vicornis (Lamarck, 1816)(staghorn coral), and the fragments to dead, standing A. palmata Porites porites (Pallas, 1766)(finger coral)] skeletons or other reef framework (see Garrison were collected from shallow (1-3m) sandy or & Ward 2008). bare substrate unfavorable for survival due to To follow the natural mortality rates of abrasion and tumbling (e.g., Bowden-Kerby each of the three species over the timespan of 2001) and were transplanted to degraded reefs. the experiment and to control for environmen- These three species were chosen based on their tal/site effects, reference colonies on donor and life histories and reproductive strategies: all are transplant reefs were selected to be as similar fast growing; all colonize primarily via frag- to transplanted fragments as possible, based on mentation; and healthy-appearing fragments size, depth, and exposure to ocean swells (Table of all three species were available in sufficient 1). There was no reference colony monitoring numbers for transplantation. Transplant reefs at Scott Beach due to hazardous boat traffic, were selected based on similarity to fragment and coral abundance was too low at Trunk Cay donor reefs in regard to depth, substrate type, and Scott Beach for monitoring. One hundred water quality, water-mass turnover, and the thirty-five corals (60 transplanted fragments presence of dead, intact A. palmata skeletons and 75 reference colonies) were tagged, photo- for attachment of transplants. Inert nylon cable graphed, measured, and qualitatively assessed

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 61 TABLE 1 The numbers of monitored reference colonies and transplanted fragments are shown for each species (Acropora cervicornis, A. palmata, and Porites porites) by site. Source reefs of transplanted fragments are indicated (adapted from Garrison & Ward 2008)

Number of Number of Source of St. John, U.S. Latitude Coral species reference fragments transplanted Virgin Islands Longitude colonies transplanted fragments Trunk Cay 18.353 N A. cervicornis 15 Scott Bay 64.763W A. palmata 15 Leinster Bay P. porites 15 Scott Bay Hawksnest Bay 18.347 N A. palmata 15 64.780W P. porites 15 Whistling Cay 18.372 N A. palmata 15 15 Leinster Bay 64.747W Leinster Bay 18.363 N A. cervicornis 15 64.750W A. palmata 15 Total colonies A. cervicornis 15 15 A. palmata 45 30 P. porites 15 15 All species 75 60 at 6-month intervals from May 1999 to July seldom meet statistical assumptions required 2001, annually from 2001 to 2004, 2009, and for ordinary regression (Peng et al. 2002). 2011. For the year-12 assessment in 2011, all After 12 years, the complexity of the transplanted fragments that were in place on experimental design and size of the data set the reef and reference colonies, alive or dead, resulted in categorical independent variables were photographed, live tissue was measured, that were often defined by low sample sizes and the presence of lesions, disease signs, pal- and/or risk sets. In conjunction with coarsening ing, and predators was recorded. of sampling periods over a relatively long-dura- tion study, a more parsimonious linear time Data analysis: In survivorship analyses, effects model was chosen to avoid problems in coral colonies were considered dead and were model fitting associated with maximum-like- removed from further inclusion in the dataset lihood algorithms (e.g., model convergence, if: (1) the entire colony or fragment had dis- coefficient stability). Based on previous analy- appeared and could not be relocated (physi- ses of the 1999-2004 data set (Garrison & Ward cal dislodgement), or (2) live tissue was not 2008), a linear regression model was chosen to observed (100% tissue loss). Differences in describe risk sets over time and was allowed to survival probability were assessed using the interact non-proportionally with time. Param- generalized linear model module of Statistica eter effects were included based on significant 6.0 with a specified binomial distribution and improvements (α = 0.05) in the log-likelihood complimentary log-log (clog-log) link. The ratio, against the χ2-distribution, relative to clog-log link function is recommended when a constant time-effects model (i.e., intercept data are “interval censored” (i.e., mortality only, hazard is constant through time). occurs in continuous time, but is observed at discrete intervals; Singer & Willett 2003). RESULTS Logistic regression procedures offer an alterna- tive to ordinary least-squares regression, since Coral survival: After 12 years, only 9% bivariate outcomes (e.g., survival or death) (12) of the initial 135 colonies were alive: 3%

62 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 of A. palmata transplants (1 of 30) and 18% (8 dislodgement was the major cause of mortality of 45) of reference colonies; no A. cervicornis of transplants and reference colonies in the first colonies; and 13% (2 of 15) of P. porites trans- year (67% and 75%, respectively). Mortality in plants and one reference colony (7%; Fig. 2). place played a greater role in A. palmata (56%) The mean mortality rates of A. palmata and than in A. cervicornis (47%) or P. porites losses P. porites colonies remained constant over the (27%; Fig. 2) and was most likely the result study (31 and 33% yr-1 likelihood of colony of disease, predation, high-temperature stress, loss, respectively), whereas for A. cervicornis or some combination. Physical damage was the mortality rate increased on average by observed on most colonies at all sites and at a factor of 1.5 annually (Fig. 2; Garrison & most assessments, yet damage to colonies did Ward 2008). Acropora palmata transplants not predict future survival/morality. Many col- were 2.3 times more likely to die in the first onies sustained serial damage only to survive year than reference colonies, but not thereaf- and grow while others died despite no visible ter (Fig. 2). There was no significant differ- physical damage. ence between transplant and reference colony Survival of A. palmata transplants 2 2 survival for A. cervicornis (χ (0.05, 2 =0.359, (χ (0.05, 3)=2.804, p=0.246) and A. cervicornis 2 p=0.836), P. porites (χ (0.05, 3)=1.848, p=0.605), and P. porites transplants and reference colo- or between A. palmata colonies transplanted nies did not show a site effect, whereas survival from Hawksnest Bay to Trunk Cay and refer- of A. palmata reference colonies differed sig- 2 ence colonies in Hawksnest Bay (χ (0.05, 2) nificantly among sites (Table 2 and Fig. 1; =2.51, p=0.285; Fig. 1). However, the mean Leinster 47%, Hawksnest 7%, and Whistling probability of A. palmata transplant mortality Cay 0%). In the first year, A. palmata reference in Whistling Cay was 4.8 times greater than the colonies exhibited a 12% yr-1 mean probability Leinster Bay reference colonies in the first year of mortality at all sites. Reference colonies in 2 of the study (χ (0.05, 1) =11.74, p<0.001) but did Leinster Bay continued on this trajectory for not significantly differ in the year-to-year rate 12 years, whereas the mean mortality rate at of decline thereafter. Whistling Cay and Hawksnest Bay increased Over the 12-year study, 56% of the initial annually by 1.25- and 1.32-fold, respectively 2 135 corals were lost due to physical dislodge- (χ (0.05, 2)=8.688, p<0.013). ment and 35% died in place. The relative roles The initial log-mean live-tissue size of of physical dislodgement and mortality in transplanted coral fragments differed from place varied among years (Fig. 2). Physical reference colonies across all species, with

TABLE 2 Reduced linear model, logistic regression results of the survival of 45 Acropora palmata reference colonies: 15 colonies each on Leinster Bay, Hawksnest Bay, and Whistling Cay reefs. Survivorship was monitored for 12 years. Probability of mortality of reference colonies at Leinster Bay did not change over time, whereas probability of A. palmata reference colony mortality increased annually by a factor of 1.25 on Hawksnest and 1.32 on Whistling Cay reefs

Reduced linear model β SE β Wald’s χ2 d.f. p Hazard ratio (eβ) Intercept -2.01 0.23 80.53 1 <0.001 NA Hawksnest Bay colony survival x 0.22 0.06 12.79 1 <0.001 1.25 time interaction Whistling Cay colony survival x 0.28 0.07 17.37 1 <0.001 1.32 time interaction

Logit parameter estimates (ß) and standard errors, Wald’s chi-square statistics (Wald χ2), degrees of freedom (d.f.), significance test results (p), and Hazard ratio [(eβ; an estimate of the size of effect of time on the base hazard (in this case, the intercept estimate)].

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 63 Acropora cervicornis n = 15n = 15 100

80

60 % 40

20

0

Acropora palmata n = 45n = 30 100

80 Disappeared

60 Died %

40 Alive

20

0

Porites porites

n = 15n = 15 100

80

60 % 40

20

0 1999 reference yr-1 yr-2 yr-3 yr-4 yr-5 yr-10 yr-12 transplant

Fig. 2. The percentage of transplants (solid color bars) and reference colonies (pebble-texture bars) that survived (white), died in place (dark gray), or were lost to displacement (light gray) for each species over 12 years.

64 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 reference colonies generally larger than trans- Cost: Transplantation costs were low plants (see Table 2, Garrison & Ward 2008). despite the small scale of the project and use Size was a factor in survival only for A. pal- of boats and scuba, all of which would be mata colonies in the first 5 years; the prob- expected to increase the cost per transplant ability of mortality or dislocation of an A. (Garrison & Ward 2008). Cost of all materials, palmata colony or transplant in the following use of a boat and scuba, and scientist salary year decreased by 15% per year with every 0.1 totaled US$21 per transplant (Garrison & Ward unit increase in log-maximum colony length 2008). Cost would decrease further to a fraction over the first 5 years (β=-1.60, 95% C.I.=-2.59, of US$1 per transplant for nylon cable ties if all -0.61; Garrison & Ward 2008). work was conducted by volunteers on snorkel (Garrison & Ward 2008). Collection, transpor- Colony growth: Two of the three trans- tation, and attachment of each fragment to a plants and 67% (6/9) of the reference colo- reef 1 - 5 km distant required 0.6 hr per frag- nies alive at 12 years had increased in size. ment (Garrison & Ward 2008). Maximum diameter of the single surviving A. palmata transplant increased more than 6-fold DISCUSSION over the 12-year study [from 20 cm in 1999 to 130 cm prior to being physically dislodged in The transplantation methods and concepts spring 2011 (Fig. 3)]. tested in the field over the 12-year study were shown to work. (1) Storm-produced coral frag- ments of A. palmata, A. cervicornis, and P. porites that were collected, transplanted, and attached to the reef using nylon cable ties had survival rates similar to reference colonies over 12 years. (2) No damage was inflicted on reefs or coral colonies in obtaining coral transplants. (3) Although physical displacement was the primary cause of mortality overall, the loss of a greater proportion of reference colonies than transplants to physical displacement supports the effectiveness of inexpensive and easy- to-use cable ties for transplant attachment and confirms conclusions reached by oth- ers (Bruckner & Bruckner 2001, Williams & Miller 2010, Forrester et al. 2011). However, concepts and processes shown to work in the field do not necessarily translate into viable solutions for coral reef rehabilitation. Coral mortality was striking with loss of all A. cervicornis by year-5 and most A. pal- mata and P. porites transplant and reference colonies by year-12 (Fig. 2). Although the high rates of mortality observed could be an artifact of small sample size and the dramatic Fig. 3. Images of transplanted Acropora palmata fragment diminishing of sample size through time, the that survived 12 years. Top image: fragment when it was transplanted in 1999 (20 cm maximum dimension); bottom findings are consistent with most Caribbean image: same transplanted fragment had grown to 130 cm region research (e.g., Hughes 1994, Aronson & maximum dimension in 2009. Precht, 1997, 2001, Rogers 1999, Bruckner et

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 65 al. 2009). Patches of healthy A. palmata and A. storm-generated fragments may have lower cervicornis exist (e.g., Vargas-Ángel & Thom- survival rates as a result of damage sustained as 2002, Vargas-Ángel et al., 2003) but the during the fragmentation process itself and regional picture is one of decline (e.g., Gardner from subsequent abrasion. However, similar et al. 2003, Rogers et al. 2009, and references survival rates for transplants and reference therein). These findings paint an unambiguous colonies were documented for three of the four picture of dynamic turnover of individual coral sets of transplants (A. cervicornis, P. porites, colonies on shallow-water Caribbean reefs and and A. palmata Trunk transplants/Hawksnest present a bleak outlook for the (1) long-term reference colonies), indicating that damage survival of transplants of these species and (2) to transplants from the natural fragmentation the viability of two of the study species – A. process, or from collection and transplantation cervicornis and P. porites. Both A. palmata was not a factor in survival. and A. cervicornis have been key reef-building The high mortality of transplants and ref- species in the Caribbean for thousands of years erence colonies overall indicates that environ- (e.g., Aronson & Precht 1997, Pandolfi et al. mental (extrinsic) and/or organismal (intrinsic 2005) and even though the life spans of indi- genotypic or molecular-level function) factors vidual colonies may be relatively short, popula- and not transplant/reference status or experi- tions may persist over time (Jaap et al. 2006). mental methodology were driving mortality. Nonetheless, the accelerating decline of A. An extrinsic factor, storm-generated swells, cervicornis documented in the first 5 years and appeared to play a key role. Physical dislodge- the high mortality rates of transplants and refer- ment caused more than one-half of A. cervicor- ence colonies of all three species documented nis and P. porites colony mortality and nearly here invoke concern. one-half of A. palmata transplant and refer- Most coral transplantation research spans ence colony mortality (Fig. 2). Surprisingly, months, with few studies continuing for more the effect of location on survival of A. palmata than 2 years. Acropora palmata transplant colonies was not related to degree of direct survival documented in this study was simi- exposure to ocean swells or distance from lar to but lower than that reported in the only human activities. The site with highest A. pal- other long-term study of reattached A. palmata mata transplant and reference colony mortality fragments (Bruckner et al. 2009), despite the (Whistling Cay) was the most protected from considerable difference in scale of the studies ocean swells, farthest from the island of St. [n=30 this study (VI); n=1857, Mona Island, John and associated pollution, and subjected Puerto Rico (PR)]. The difference in fragment to the least human activity (Fig. 1). The sites survival between the two studies narrowed with lowest mortality (Leinster and Hawk- from year-2 (43% VI; 57% PR, Bruckner & snest) were directly exposed to storm swells Bruckner 2001] to year-10 (3% VI; 6% PR, and human activities (boats and snorkeling) Bruckner et al. 2009), indicating a realistic and directly adjacent to the island and a road range of A. palmata fragment survival over (Fig. 1). Reef architecture or bathymetric con- time that could be expected in restoration figuration at each site may have differentially efforts in the NE Caribbean. Storm-generated enhanced or impeded water movement and coral fragments were selected as the source of have been a factor driving differences in mor- corals to transplant in this study because (1) tality observed among sites. Intrinsic factors intact corals were not damaged to create trans- such as genotypes that produce faster growth plants, (2) fragment survival was maximized by or stronger and less brittle skeletons could attachment to the substrate (Williams & Miller account for the apparent robustness of colonies 2010, Forrester et al. 2011), and (3) damage that survived strong storm swells at the lower- to intact colonies from unattached fragment mortality sites (Bowden-Kerby 2009). Similar- projectiles was reduced. A valid concern is that ly, although disease-like lesions were observed

66 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 at all sites, colonies with disease-resistant even on the scale of tens of thousands of trans- genotypes or more robust immune function plants across tens of hectares, could succeed would be more likely to resist and survive in conserving species or restoring reefs over infection (e.g., Ritchie 2006, Rosenberg et time if the drivers of mortality and degradation al. 2007, Vollmer & Kline 2008, Teplitski & are not addressed (Birkeland 2004, Kaufman Ritchie 2009). Multiple environmental fac- 2006). Is 3% survival of transplants at 12 years tors that may have adversely impacted cor- an acceptable outcome? Will 3% transplant sur- als during the study period include elevated vival at 12 years be effective in halting declines water temperatures, disease, chemical pol- of threatened coral species, maintaining genetic lutant or nutrient influx, changes in salinity, diversity and ecosystem services and functions, acidification, sedimentation, predation, and or staving off species extinction if corals on the the more subtle effects from loss of top preda- surrounding reefs are dying at a similar rate? tors or herbivores on reefs. Possible intrinsic To retain A. palmata genetic diversity when factors include impaired immune function restoring damaged coral reefs, Shearer et al. due to genotype (disease resistance; Vollmer (2009) suggest that fragments from 7-10 donor & Kline 2008); immunosuppressors in the environment; changes in the microbial com- colonies would retain 50% of allelic diver- munity of the coral holobiont (Ritchie 2006, sity and fragments from 30-35 colonies would Rosenberg et al. 2007, Teplitski & Ritchie retain 90% diversity. What fraction of that 2009); impaired calcification; and/or genetic transplanted genetic diversity can be expected sensitivity to environmental stressors. The to be retained with 3% survival of transplants factors driving differences in survival among at 12 years? Vollmer & Kline (2008) have pro- sites remain unknown but multiple factors are posed an interesting integrated strategy for con- likely (e.g., Birkeland 2004, Bruno et al. 2007, serving A. cervicornis, a threatened species that Muller et al. 2008, Nyström et al. 2008). has been decimated by epizootics, has limited Many restoration scientists have stressed sexual recruitment, and has been shown to have the need for coral transplantation to be sus- low gene flow (Vollmer & Palumbi, 2007): (1) tained over time and at an appropriate scale protect remnant populations that have survived if it is to be effective (e.g., Rinkevich 1995, epizootics or other extrinsic insults; and (2) 2008, Epstein et al. 2005, Edwards & Gomez transplant laboratory or maricultured disease- 2007). Results from this small-scale study resistant genotypes. This could be extended to bring into question whether such a major effort A. palmata, which in this study at this location could be successful if underlying factors driv- in this time period appeared to be more robust ing declines are not also addressed. In cases than A. cervicornis. where coral mortality and reef degradation are primarily due to acute damage from humans, transplantation of coral colonies might help to CONCLUSIONS conserve coral species and help accelerate reef recovery, but only if undertaken in conjunc- This project was initiated to test the feasi- tion with other actions such as management of bility of using a non-destructive source of coral human activities through use of marine protect- transplants by collecting storm-produced coral ed areas, enforcement of marine and terrestrial fragments and to develop a simple, inexpen- regulations, and education (e.g., Epstein et al. sive method for transplanting fragments that 2005, Rinkevich 2005, 2008). If chronic global could be conducted by the local community. or regional stressors such as abnormal water The ultimate goal was to enhance recovery of temperatures, contaminants, or disease are the important reef-building species that were in primary drivers of declines on coral reefs, it decline. The major lessons learned from this is difficult to understand how transplantation, 12-year study are:

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 67 • the larger the transplanted fragment, the comments on project design, and to anony- greater the probability of survival (Gar- mous reviewers for their thoughtful comments. rison & Ward 2008); Any use of trade names is for descriptive pur- • transplant survival varied among species; poses only and does not imply endorsement by • survival rates of storm-generated coral frag- the U.S. Government. ments collected and transplanted to reefs were similar to those of reference colonies; RESUMEN • inexpensive, inert nylon cable ties effec- tively attach coral fragments to dead En respuesta a la dramática pérdida de corales cons- coral skeleton. tructores de arrecifes y la continua falta de recuperación, • the low survival rates of A. palmata, A. un proyecto de pequeña escala de transplante de corales, cervicornis, and P. porites transplant and al cual se le dio seguimiento por 12 años, se inició en el Caribe (Islas Vírgenes de EUA) en 1999. Los principales reference colonies at 12 years brings into objetivos fueron (1) identificar fuentes de colonias de coral question the efficacy of transplantation for para el trasplante, que no produjeran daños a los arrecifes, conservation of coral species or reversal of (2) evaluar la viabilidad del trasplante de fragmentos de reef degradation; coral generados por tormentas, y (3) desarrollar un método • coral transplantation will not be effective simple y barato para transplantar fragmentos que pudiera in conserving coral species or in assisting ser realizado por la comunidad local. La meta última era aumentar la abundancia de especies constructoras de reef recovery over time until the underly- arrecife amenazadas en los arrecifes locales. Fragmentos ing factors causing degradation of reefs de coral producidos por tormenta de dos especies cons- and mortality of corals are understood, tructoras de arrecife amenazadas [Acropora palmata y A. addressed, and eliminated or mitigated; cervicornis (Acroporidae)] y otras especies de crecimiento • community involvement is important in rápido [Porites porites (Poritidae)] fueron recolectadas en ambientes no adecuados para la supervivencia de fragmen- building what Brightsmith et al. (2008) tos de coral y se trasplantaron a los arrecifes degradados. call “conservation constituencies,” an Fajitas de nylon inerte fueron utilizadas para unir los informed and engaged public that in turn fragmentos de corales transplantados al sustrato de coral educates the wider community, thereby muerto. La sobrevivencia de 75 colonias de referencia y de reducing damage to reefs. 60 transplantadas fueron monitoreadas por más de 12 años. Sólo el 9% de las colonias estaban vivas tras 12 años, sin presencia de A. cervicornis, el 3% de los transplantes de A. ACKNOWLEDGMENTS palmata y el 18% de las colonias de referencia de Acropo- ra. El 13% de los transplantes de P. porites y el 7% de las Thanks go to the National Park Foundation, colonias de referencia sobrevivieron. El desprendimiento físico resultó en la pérdida del 56% de las colonias, mien- Canon U.S.A., Inc., and the U.S. Geological tras que el 35% murió en el lugar. Solamente A. palmata Survey for funding the project and to Friends mostró una diferencia en sobrevivencia entre los trasplantes of Virgin Islands National Park, the Trust y las colonias de referencia, eso fue solo en el primer año. for Public Land, and Virgin Islands National La ubicación fue un factor en la sobrevivencia sólo para Park for in-kind support. This research was las colonias de referencia de A. palmata y después de 10 conducted under NPS permits #VIIS-2002- años. A pesar de que los métodos y los conceptos fueron probados efectivamente en el campo por más de 12 años de SCI-0012 (VIIS-0217), VIIS-2004-SCI-0023 estudio, no mostraron ser la solución. Ninguna estrategia (VIIS-04020), and VIIS-2009-SCI-0009 (VIIS- de conservación va a ser efectiva hasta que se delimiten 09010). We are indebted to: M. Quade, B. y sean entendidos, mitigados o eliminados los factores Bremser-Nielsen, S. Caseau, D. Downs, J. intrínsecos y/o extrínsecos que conducen a las altas tasas Garrison, T. Kelley, E. Link, W. Stelzer, R. de mortalidad. Waara, 70 community volunteers, and the Palabras clave: Acropora cervicornis, A. palmata, morta- th Pine Peace School 5th- and 6 -grade science lidada de coral, Porites porites, restauración de arrecifes, classes. Thanks to C. Rogers for insightful transplantes de corales

68 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 REFERENCES Edwards, A.J. & S. Clark. 1998. Coral transplantation: A useful management tool or misguided meddling? Aronson, R.B. & W.F. Precht. 1997. Stasis, biological Mar. Pollut. Bull. 37: 474-487. disturbance, and community structure of a Holocene coral reef. Paleobiology 23: 326-346. Edwards, A.J. & E.D. Gomez. 2007. Reef restoration con- cepts and guidelines: Making sensible management Aronson, R.B. & W.F. Precht. 2001. Evolutionary paleoeco- choices in the face of uncertainty. Coral Reef Targe- logy of Caribbean coral reefs, p. 171-233. In W.D. ted Research & Capacity Building for Management Allmon & D.J. Bottjer (eds). Evolutionary Paleoeco- Programme, St. Lucia and Australia 4: 1-38. logy: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. Epstein, N., M.J.A. Vermeij, R.P.M. Bak & B. Rinkevich. 2005. Alleviating impacts of anthropogenic activities Baums, I.B. 2008. A restoration genetics guide for coral by traditional conservation measures: Can a small reef conservation. Mol. Ecol. 17: 2796-2811. reef reserve be sustainably managed? Biol. Conserv. 121: 243-255. Birkeland, C. 2004. Ratcheting down the coral reefs. BioScience 54: 1021-1027. Forrester, G.E., C. O’Connell-Rodwell, P. Baily, L.M. Forrester, S. Giovannini, L. Harmon, R. Karis, J. Bowden-Kerby, A. 2001. Low-tech coral reef restoration Krumholz, T. Rodwell & L. Jarecki. 2011. Evaluating methods modeled after natural fragmentation proces- methods for transplanting endangered Elkhorn Corals ses. B. Mar. Sci. 69: 915-931. in the Virgin Islands. Restor. Ecol. 19: 299-306.

Bowden-Kerby, A. 2009. Restoration of threatened Acro- Gardner, T.A., I.M. Côté, J.A. Gill, A. Grant, & A.R. pora cervicornis corals: intraspecific variation as Watkinson. 2003. Long-term region wide declines in a factor in mortality, growth, and self-attachment. Caribbean coral reefs. Science. 301: 958-960. Proceedings of the 11th Intl. Coral Reef Symp., Ft. Garrison, V. & G. Ward. 2008. Storm-generated coral Lauderdale, Florida 2: 1194-1198. fragments – A viable source of transplants for reef Brightsmith, D.J., A. Stronza & K. Holle. 2008. Ecotou- rehabilitation? Biol. Conserv. 141: 299-306. rism, conservation biology, and volunteer tourism: A Hughes, T.P. 1994. Catastrophes, phase shifts and large- mutually beneficial triumvirate. Biol. Conserv. 141: scale degradation of a Caribbean coral reef. Science 2832-2842. 265: 1547-1551. Bruckner, A.W. & R.J. Bruckner, 2001. Condition of res- Jaap, W.C., J.H. Hudson, R.E. Dodge, D. Gilliam & R. tored Acropora palmata fragments off Mona Island, Shaul. 2006. Coral reef restoration with case studies Puerto Rico, 2 years after Fortuna Reefer ship groun- from Florida: p. 478-514. In M. Côte & D. Reynolds ding. Coral Reefs 20: 235–243. (eds.). Coral Reef Conservation. Univ. Cambridge Press, Cambridge, UK. Bruckner, A.W. & R.J. Bruckner. 2006. Survivorship of restored Acropora palmata fragments over six years Kaufman, L. 2006. If you build it, will they come? Toward at the M/V Fortuna Reefer ship grounding site, Mona a concrete basis for coral reef gardening: p. 119- th Island, Puerto Rico. Proceedings of the 10 Intl Coral 142. In W.F. Precht (ed). Coral Reef Restoration Reef Symp., Okinawa, Japan 1: 1645-1650. Handbook. Chemical Rubber Company, Taylor and Francis, Boca Raton, Florida. Bruckner, A.W., R.J. Bruckner & R. Hill. 2009. Improving restoration approaches for Acropora palmata: Les- Knowlton, N. 2006. Coral reef coda: What can we hope sons from the Fortuna Reefer grounding in Puerto for?: p. 538-549. In M. Côte & D. Reynolds (eds). Rico. Proceedings of the 11th Intl. Coral Reef Symp. Coral Reef Conservation. Univ. Cambridge Press, Ft. Lauderdale, Florida 2: 1199-1203. Cambridge, UK.

Bruno, J.F. & E.R. Selig. 2007. Regional decline of coral Miller, J., E. Muller, C. Rogers, R. Waara, A. Atkinson, K. cover in the Indo-Pacific: Timing, extent, and subre- R. T. Whelan, M. Patterson & B. Witcher. 2009. Coral gional comparisons. PLos ONE 8: e711. disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Bruno, J.F., E.R. Selig, K.S. Casey, C.A. Page, B.L Willis, Islands. Coral Reefs 28:925-937. C.D. Harvell, H. Sweatman & A.M. Melendy. 2007. Thermal stress and coral cover as drivers of coral Muller, E., C.S. Rogers, A.S. Spitzack, & R. van Woesik. disease outbreaks. PLoS Biol. 5: e124. 2008. Bleaching increases likelihood of disease on

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 69 Acropora palmata (Lamarck) in Hawksnest Bay, St. Rogers, C.S., E.M. Muller, A. Spitzack, & J. Miller. 2009. John, U.S. Virgin Islands. Coral Reefs 27: 191-195. The future of coral reefs in the US Virgin Islands: Is Acropora palmata more likely to recover than Mumby, P.J. & R.S. Steneck. 2008. Coral reef management Montastraea annularis complex? Proceedings of the and conservation in light of rapidly evolving ecologi- 11th Intl. Coral Reef Symp., Ft. Lauderdale, Florida cal paradigms. Trends Ecol. Evol. 23, 555-563. 1: 226-230. Normile, D. 2009. Bringing coral reefs back from the living Rosenberg, E., O. Koren, L. Reshef, R. Efrony & I. Zilber- dead. Science 325: 559-561. Rosenberg. 2007. The role of microorganisms in coral Nyström, M., N.A.J. Graham, J. Lokrantz, & A.V. Nors- health, disease and evolution. Nat. Rev. Microbiol. tröm, 2008. Capturing cornerstones of coral reef 5: 355-362. resilience: Linking theory to practice. Coral Reefs 27: 795-809. Shearer, T.L., I. Porto & A.L. Zubillaga. 2009. Restoration of coral populations in light of genetic diversity esti- Pandolfi, J.M., J.B.C. Jackson, J.B.C., N. Baron, R.H. mates. Coral Reefs 28: 727-733. Bradbury, H.M. Guzmán, T.P. Hughes, C.V. Kappel, F. Micheli, J.C. Ogden, H.P. Possingham & E. Sala. Singer, J.D. & J.B. Willett. 2003. Applied Longitudinal 2005. Are US coral reefs on the slippery slope to Data Analysis: Modeling Change and Event Occu- slime? Science 307: 1725-1726. rrence. Oxford University Press, New York.

Peng, C.J., K.L. Lee & G.M. Ingersoll. 2002. An intro- Teplitski, M. & K. Ritchie. 2009. How feasible is the bio- duction to logistic regression and reporting. J. Educ. logical control of coral diseases? Trends Ecol. Evol. Res. 96: 3-14. 24: 378-385. Rinkevich, B. 1995. Restoration strategies for coral reefs damaged by recreational activities: The use of sexual Vargas-Ángel, B. & J.D. Thomas. 2002. Sexual reproduc- and asexual recruits. Restor. Ecol. 3: 241-251. tion of Acropora cervicornis in nearshore waters off Ft. Lauderdale, Florida, USA. Coral Reefs 21: 25-26. Rinkevich, B. 2005. Conservation of coral reefs through active restoration measures: Recent approaches and Vargas-Ángel, B., J.D. Thomas & S.M. Hoke. 2003. last decade progress. Environ. Sci. Technol. 39: High-latitude Acropora cervicornis thickets off Fort 4333-4342. Lauderdale, Florida, USA. Coral Reefs 22: 465-473.

Rinkevich, B. 2008. Management of coral reefs: We have Vollmer, S.V. & D.L. Kline. 2008. Natural disease resistan- gone wrong when neglecting active reef restoration. ce in threatened staghorn corals. PLoS ONE 3: e3718. Mar. Pollut. Bull. 56: 1821-1824. Vollmer, S.V. & S.R. Palumbi. 2007. Restricted gene flow Ritchie, K. 2006. Regulation of microbial populations by in the Caribbean staghorn coral Acropora cervicor- coral surface mucus and mucus-associated bacteria. nis: Implications for the recovery of endangered Mar. Ecol. Prog. Ser. 322: 1-14. reefs. J. Hered. 98: 40-50. Roberts, C.M., J.D. Reynolds, I.M. Côte & J.P. Haw- Williams, D.E. & M.W. Miller. 2010. Stabilization of frag- kins. 2006. Redesigning coral reef conservation: p. 515-537. In M. Côte & D. Reynolds (eds). ments to enhance asexual recruitment in Acropora Coral Reef Conservation. Univ. Cambridge Press, palmata, a threatened Caribbean coral. Restor. Ecol. Cambridge, UK. 18 (S2): 446-451.

Rogers, C.S. 1999. Dead Porites patch reefs, St. John, US Young, T.P. 2000. Restoration ecology and conservation Virgin Islands. Coral Reefs 18: 1254. biology. Biol. Conserv. 92: 73-83.

70 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 59-70, March 2012 Benthic and fish population monitoring associated with a marine protected area in the nearshore waters of Grenada, Eastern Caribbean

Robert Anderson1, Clare Morrall2, Steve Nimrod2, Robert Balza1, Craig Berg3, Jonathan Jossart1 1. Wisconsin Lutheran College, 8800 W. Bluemound Rd., Milwaukee, WI 53226, USA; [email protected], [email protected], [email protected] 2. St. George’s University, P.O. BOX 7, St. George’s, Grenada, ; [email protected], [email protected] 3. Milwaukee County Zoo, 10001 W Bluemound Road, Milwaukee, WI 53226, USA; [email protected]

Received 15-VII-2011. Corrected 1-XII-2011. Accepted 20-XII-2011.

Abstract: Annual benthic and fish population surveys were completed at five locations in the nearshore waters along Grenada´s southwest coast during 2008 - 2010. Two survey sites are located in a newly launched Marine Protected Area (MPA). Photo Quadrat (PQ) and Point Line Intercept (PLI) surveys were used to determine substrate cover. Algae was the primary live cover increasing significantly from 45.9% in 2008 to 52.7% in 2010 (PLI). Algae was also predominant (61.0% - 59.3%) in the PQ surveys although annual variation was not significant. Hard coral cover ranged from 16.5% to 15.4% (PLI) and 11.4% to12.0% (PQ) with no significant differences between years. Branching and encrusting corals occurred more frequently than massive corals. In the three annual surveys neither algal cover nor hard coral varied significantly between MPA and non-protected areas (PLI). Relative abundance of fishes along 30x2m belt transects did not vary significantly among years however density of fishes decreased significantly across years for most major groups. Chromis spp. dominated the survey sites at 65.2% in 2008 and 49.8% in 2010, followed by territorial damselfish,11.1% and 15.5%, wrasse increased from 7.3% to 15.5%. Both the substrate cover and fish survey data analyses indicated a stable but degraded community. Annual surveys are planned at these sites for the foreseeable future. Existing and future data from this project will be valuable in determining the efficacy of MPA management, guiding resource management decisions and monitoring the health status of Grenada’s valuable reef systems. Rev. Biol. Trop. 60 (Suppl. 1): 71-87. Epub 2012 March 01.

Key words: benthic cover, coral, reef fish, monitoring, Grenada, Eastern Caribbean, marine protected area.

The island nation of Grenada is part of the to 1993, Jeffrey (2000) found that the number of Eastern Caribbean region recently classified as boats employed in the demersal fishery off the being at “very high risk” by the Reefs at Risk in west coast of Grenada increased by 200% how- the Caribbean report (Bouchon et al. 2008). Of ever the catch declined by nearly 75% during the 160 km2 of reef area in Grenada 41% were this seven year period. Local overfishing often listed as having a high-risk threat index and targets large herbivorous species reducing these 40% were listed as very high (Burke & Maidens fish stocks thus contributing to increased abun- 2004). The primary contributors to this rating dance of macroalgae on coral reefs (Hawkins & were coastal development and fishing pressure. Roberts 2003). One impact of increased algal Coral communities rely on large herbivo- abundance is reduced growth and recruitment rous fish species to manage levels of macroalgae of coral polyps (Bascompte et al. 2005, Arnold (Burkepile & Hay 2010, Ceccarelli et al. 2011, 2007, Birrell et al. 2008, Mora 2008). Walsh 2011). In an analysis of the Grenadian Introduction of excess nutrients to coral demersal fish catch and fishing effort from 1986 reef systems from coastal development further

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 71 enhances overgrowth of algae (Lapointe et Study Area: Five sites ranging in depth al.1997) and directly inhibits coral recruit- from 5.2m-12.2m, located along Grenada’s ment and growth (Littler et al. 2009). These southwest coast were established in 2008. local stressors weaken a coral community’s Similar reefs both inside and outside the resilience (Hughes 1994, Hughes et al. 2003, MPA that are frequently used by the dive Gardner et al. 2003, Wilkinson 2008) making industry were selected. Dragon Bay (12° it more vulnerable to global climate change and 5’6.00”N 61°45’45.36”W) and Flamingo increased storm activities (Goldenberg et al. Bay (12° 5’30.36”N 61°45’30.60”W) are in 2001, Eakin et al. 2010, Hughes et al. 2010). MPAs, while Northern Exposure Shallow (12° Grenada has been impacted by two major hur- 1’57.30”N 61°46’14.28”W), Northern Expo- ricanes in the past decade: Ivan in September sure Deep (12° 2’22.14”N 61°46’4.74”W) and 2004 and Emily in July 2005. Major storms Quarter Wreck (12° 1’40.98”N 61°47’0.84”W) such as these can result in devastating effects are in non-protected areas. Four 30m parallel on reefs breaking down the basic structure transects were set up at 5m intervals. Metal and dislodging corals leaving leveled areas of stakes mark the beginning and end of each rubble (Woodley et al. 1981). permanent transect. Many countries have established Marine Protected Areas (MPAs) that restrict some MATERIALS AND METHODS uses of coastal reef systems with the hope that these sections will provide a source of The substrate composition of Grenada’s biodiversity to adjacent or “down current” southwest coast was surveyed with the Photo locations. Unfortunately, there is a paucity Quadrat (PQ) and Point Line Intercept (PLI) of data that demonstrates the effectiveness of methods. The PQ method allows for care- specific management practices. While the Gre- ful identification of substrate types from a nadian government established legislation for digital photograph. Although identification of substrate types is not always optimal based the Moliniere-Beausejour MPA on the south- on digital photos this approach allowed more west coast of the island in 2001, no significant intense scrutiny of the substrate since time is management practices were implemented until not a factor in the sampling process. In addition 2010. Permanent mooring buoys were estab- using Coral Point Count with Excel extensions lished in 2009, warden patrols began in 2010 (CPCe) v.3.6 allowed a randomized sampling and some fishing practices were restricted from scheme for each picture (Kohler & Gill 2006). September 2010. Since there are 60 pictures associated with A development plan for Grenada’s Nation- each transect this increases the total number al Protected Areas System identified the need of observations. The PLI method developed by for external assistance in research and monitor- Crosby & Bruckner in 2002 based on Crosby ing of Grenada’s protected areas (Mac Leod & Reese (1996) was used to estimate relative 2007). Initial surveys at nine sites off the abundance of major types of substrate cover southwest coast of Grenada in 2006 and 2007 and fish species associated with the coral reefs identified macroalgae was the most abundant in Grenada’s nearshore waters. Four 30m per- substrate cover ranging from 36.5% (± 0.8%) manent transects were surveyed at each of the to 53.2 % (± 1.2%). Hard corals covered five locations. Fish species, as well as Diadema 23.8% (± 0.9%) to 38.1% (± 1.2%) (Bouchon antillarum, abundance occurring within a two- et al. 2008). This 2008-2010 study builds on meter wide belt (AGRRA Protocol v. 4.0) from the initial survey and establishes a foundation the substrate to water surface along each tran- upon which the effectiveness of the Molin- sect were recorded. Benthic substrate was iden- iere-Beausejour MPA management techniques tified and recorded at a point directly below may be evaluated. each half-meter mark along each transect.

72 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 Divers completed fish data collections along correction multiple comparison test was used each transect in ten minutes. to determine among which years a significant Sixty photo quadrats from each transect difference occurred. were processed using Coral Point Count with To identify interactions between the MPA Excel extensions (CPCe) v.3.6 (Kohler & Gill and non-protected area from 2008 to 2010 a 2006). A Canon EOS Digital Rebel XTI cam- two-way ANOVAR was used. This was only era in an Ikelite underwater housing was used done for the PLI data, because the PQ data to take a picture at every half-meter mark. had an insufficient sample size. In order to Attached to the underwater housing was a tube effectively make this comparison the same with a calibrated scale used to maintain a con- sample size needed to be used for the MPA and sistent distance (60cm) from the substrate and non-protected area. This was accomplished by to assist with scaling in the CPCe software pro- selecting two of the three non-protected loca- gram. The images were uploaded into the CPCe tions, Quarter Wreck and Northern Exposure software program, and a 20cm by 20cm square Shallow. The above criteria for assessing nor- was superimposed on the image. Eight points mality, sphericity, and significance were used. were randomly generated inside the square, When an interaction was found to be signifi- and the substrate under each point was identi- cant a follow up one-way analysis of variance fied. Dumas et al. (2009) found that whether (ANOVA) test was used to further examine nine or ninety-nine points were used in a1m2 the interaction. The same criteria for assess- area, the difference for large categories was not ing normality were used, and Levene’s test of significant. Thus for the 400 cm2 area in this homogeneity was used to evaluate the equality study 8 points were deemed sufficient. Also, a of variances. If the results of Levene’s test were Sony HDR-SR8 video camera in an Amphibico found to be significant, then a p<0.01 was used underwater housing was used to take video of to determine significance. The Bonferroni cor- each location to record a broader perspective of rection was still used when determining signifi- the survey sites. cance as well (Sokal and Rohlf 1995). For both the PLI and PQ data a repeated measure analysis of variance (ANOVAR) using RESULTS transects as the sampling unit was used to monitor Grenada’s southwest benthic com- Substrate (PLI): Algae was the dominant munity and fish assemblage from 2008 to substrate cover found at all locations off Grena- 2010. To satisfy the assumption of normal- da’s southwest coast (Fig. 1). Algae increased ity, proportional data was arcsine square root significantly from 45.9% (SE=1.7; n=35) in transformed and all non-proportional data was 2008 to 52.7% (1.4; 35) in 2010 (ANOVAR, log transformed. The Shapiro-Wilk test, as F=7.431, p=0.001). Comparison of major algal well as skewness and kurtosis values were used groups (macroalgae, turf and coralline) showed to assess normality. Non-normal distributions that macroalgae consistently dominated the were examined, and if appropriate outliers algal community. Turf algae decreased sig- were removed (Zar 1999). Mauchly’s sphe- nificantly in 2010 and coralline algae increased ricity test was used to determine sphericity, significantly in 2010 (Tables 1 & 2). if violated the Greenhouse-Geisser correction Algal cover in the MPA ranged from 46.3% was used to determine significance. Addition- (3.9; 12) to 51.4% (3.5; 12) over the three years, ally all cases of significance were verified with while in the non-protected area it ranged from the multivariate analyses, which do not assume 44.0% (3.2; 12) to 50.3% (2.2; 12); no signifi- sphericity. A Bonferroni correction (signifi- cant interaction between time and location was cance value (0.05)/ number of comparisons found (Two-way ANOVAR, F=1.528, p=0.239) made) was used when determining significance (Table 3). Yet the different types of algae experi- (Sokal and Rohlf 1995). Also, the Bonferroni enced significant interaction. Turf algae did have

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 73 70 2008 60 2009 50 2010

40

Percent 30

20

10

0 Algae Hard Coral NL Substrate Gorgonian Sponge

Fig. 1. Mean substrate cover with error bars (SE) based on Point Line Intercept surveys from Grenada’s southwest reefs during 2008-2010; * indicates a significant difference (ANOVAR; p<0.017).

Table 1 Mean percent cover for algal categories based on Point Line Intercept and Photo Quadrat surveys from Grenada’s southwest reefs during 2008-2010. A Bonferroni correction of p<0.017 was used to determine significance

PLI PQ Category Bonferroni Comparision Bonferroni Comparision n Mean % SE n Mean % SE Macroalgae 2008 32 74.7 2.1 18 70.6 1.9 2010 > 2008 (0.002) Macroalgae 2009 32 72.4 4.7 18 67.2 1.7 2010 > 2009 (0.001) Macroalgae 2010 32 71.7 2.2 18 78.0 2.1 Turf 2008 33 14.8 2.1 2010 < 2008 (p = 0.000) 17 3.8 0.6 2009 < 2008 (0.002) Turf 2009 33 23.1 4.6 2010 < 2009 (p = 0.000) 17 0.8 0.3 2009 < 2010 (0.001) Turf 2010 33 2.4 0.6 17 6.0 1.4 Coralline 2008 24 9.0 1.2 2010 > 2008 (p = 0.000) 16 24.7 2.1 2010 < 2008 (0.001) Coralline 2009 24 4.2 0.7 2010 > 2009 (p = 0.000) 16 32.6 1.4 2010 < 2009 (0.000) Coralline 2010 24 23.4 2.1 16 15.9 1.0

Table 2 ANOVAR for major Algal groups based on Point Line Intercept and Photo Quadrat surveys from Grenada’s southwest reefs during 2008-2010. Bonferroni correction of p<0.017 was used for determining significance (* indicates significant)

PLI PQ Category n F p n F p Macroalgae 2008-2010 32 1.306 0.271 18 13.795 0.000* Turf 2008-2010 33 14.577 0.000* 17 12.476 0.000* Coralline 2008-2010 24 31.393 0.000* 16 35.969 0.000*

74 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 Table 3 Substrate mean based on the Point Line Intercept surveys in non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. When the Two-way ANOVAR showed a significant interaction between time and location, a one way ANOVA was done for further examination. A Bonferroni correction of p<0.017 was used when determining significance

Non-Protected Area Marine Protected Area ANOVA Substrate n Mean % SE n Mean % SE F p Coral 2008 12 15.9 2.6 12 16.4 2.3 Coral 2009 12 17.6 1.3 12 15.2 2.2 Coral 2010 12 14.3 1.4 12 19.9 4.3 Gorgonian 2008 12 3.7 0.9 12 4.6 1.1 0.452 0.508 Gorgonian 2009 12 3.7 1.1 12 6.5 1.3 4.249 0.051 Gorgonian 2010 12 0.7 0.3 12 1.8 0.5 3.137 0.090 Algae 2008 12 47.6 2.6 12 46.9 3.3 Algae 2009 12 44.0 3.2 12 46.3 3.9 Algae 2010 12 50.3 2.2 12 51.4 3.5 NL Substrate 2008 12 21.6 2.5 12 23.2 3.1 NL Substrate 2009 12 23.1 2.7 12 16.1 2.5 NL Substrate 2010 12 13.6 1.9 12 15.3 3.1 Sponge 2008 12 5.6 1.9 12 5.5 0.8 0.857 0.365 Sponge 2009 12 1.4 0.7 12 4.4 1.0 7.511 .012 Sponge 2010 12 4.0 1.2 12 8.0 1.2 7.027 .015 a significant interaction (Two-way ANOVAR, ANOVAR, F=0.072, p=0.931) in overall per- F=6.738, p=0.005), but the follow up tests cent between the MPA and non-protected area showed no significant differences between the encrusting coral did have a significant inter- MPA and non-protected area. Coralline algae action between time and location (Two-way also exhibited a significant interaction (Two-way ANOVAR, F=7.049, p=0.004). Yet in follow up ANOVAR, F=17.752, p=0.000), and for 2010 analyses no significant differences between the the 32.4% (3.3; 12) found in the non-protected MPA and non-protected area was found. Mas- area was significantly greater than the 18.2% sive (Two-way ANOVAR, F=3.555, p=0.046) (3.6; 12) in the MPA. Macroalgae did not exhibit and branching (Two-way ANOVAR, F=3.170, any significant interaction (Two-way ANOVAR, p=0.091) coral had no significant interaction F=1.581, p=0.237) (Table 4). between time and location (Table 7). The hard coral cover did not vary signifi- While hard coral cover remained stable, cantly from year to year ranging from 16.5% gorgonian cover significantly dropped from (1.0; 35) to 15.4% (1.3; 35) (Fig. 1) (ANOVAR, 3.7% (0.4; 32) and 4.0% (0.6; 32) in 2008 and F=0.531, p=0.591) (Fig. 1). However the type 2009 to 1.8% (0.3; 32) in 2010 (ANOVAR, of hard coral (massive, encrusting and branch- F=19.609, p=0.000). Other significant changes ing) observed did change across the years. in the substrate were seen in the sponge and Encrusting coral occurred most frequently non-living categories. Sponge cover saw a in 2008 however by 2010 branching coral sudden decrease from 4.6% (0.8; 35) in 2008 occurred most frequently (Tables 5 & 6). to 2.2% (0.4; 35) in 2009, but recovered to Hard coral cover ranged from 15.2% (2.2; 4.9% (0.8; 35) in 2010 (ANOVAR, F=6.212, 12) to 19.9% (4.3; 12) in the MPA, and p=0.005). Also non-living substrate significant- 14.3% (1.4; 12) to 17.6% (1.3; 12) in the ly decreased from 25.2% (1.7; 35) and 21.9% non-protected area (Table 3). Although hard (1.9; 35) in 2008 and 2009 to 14.2% (1.3; 35) in coral did not differ significantly (Two-way 2010 (ANOVAR, F=14.745, p=0.000) (Fig. 1).

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 75 Table 4 Algae type mean based on the Point Line Intercept surveys in non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. When the Two-way ANOVAR showed a significant interaction between time and location, a one way ANOVA was done for further examination. A Bonferroni correction of p<0.017 was used when determining significance

Non-Protected Area Marine Protected Area ANOVA Algae Type n Mean % SE n Mean % SE F P Macroalgae 2008 12 70.3 2.9 12 75.6 2.9 Macroalgae 2009 12 64.0 8.1 12 87.3 2.5 Macroalgae 2010 12 63.7 3.2 12 78.5 4.1 Turf 2008 12 17.7 4.1 12 16.1 2.0 0.005 0.945 Turf 2009 12 29.9 7.9 12 8.4 2.0 4.595 0.043 Turf 2010 12 2.1 0.9 12 3.1 1.2 0.237 0.631 Coralline 2008 12 10.6 2.8 12 8.5 1.8 0.143 0.709 Coralline 2009 12 4.9 2.0 12 4.4 1.1 0.161 0.692 Coralline 2010 12 32.4 3.3 12 18.2 3.6 7.329 0.013

Table 5 Mean percent cover for hard coral categories based on Point Line Intercept and Photo Quadrat surveys from Grenada’s southwest reefs during 2008-2010. A Bonferroni correction of p<0.017 was used to determine significance

Photo Quadrat Bonferroni Point Line Intercept Bonferroni Category n Mean SE Comparison n Mean SE Comparison Massive 2008 18 36.8 3.6 35 12.9 2.1 2008<2009 (p=0.003) Massive 2009 18 31.3 3.4 35 27.6 3.1 2008<2010 ( p=0.007) Massive 2010 18 30.5 3.1 35 26.4 3.4 Branching 2008 19 41.0 6.0 35 32.3 3.9 Branching 2009 19 43.5 4.1 35 45.8 3.5 2008<2010 ( p=0.017) Branching 2010 19 42.8 4.1 35 44.7 3.9 Encrusting 2008 19 22.2 4.0 31 47.9 4.5 2008 > 2009 ( p=0.000) Encrusting 2009 19 22.0 2.8 31 21.9 2.9 2008 > 2010 ( p=0.000) Encrusting 2010 19 25.2 2.8 31 21.1 2.9

Table 6 ANOVAR for major coral forms based on Point Line Intercept and Photo Quadrat surveys from Grenada’s southwest reefs during 2008-2010. Bonferroni correction of p<0.017 was used for determining significance

Point Line Intercept Photo Quadrat Coral Form n F p n F p Massive 2008-2010 35 8.626 0.000* 18 1.630 0.211 Branching 2008-2010 35 4.714 0.012* 19 0.100 0.799 Encrusting 2008-2010 31 13.409 0.000* 19 0.798 0.458

Further comparisons of percent cover in and non-protected areas showed no significant the MPA to non-protected areas revealed that difference among years. Sponge cover also gorgonian cover did have a significant interac- exhibited a significant interaction (Two-way tion (Two-way ANOVAR, F=13.005, p=0.000). ANOVAR, F=8.654, p=0.002). The sponge Additional tests of gorgonian cover in the MPA cover in the MPA was not significantly different

76 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 Table 7 Coral Form mean based on the Point Line Intercept surveys in non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. When the Two-way ANOVAR showed a significant interaction between time and location, a one way ANOVA was done for further examination. A Bonferroni correction of p<0.017 was used when determining significance

Non-Protected Area Marine Protected Area ANOVA Coral Form n Mean % SE n Mean % SE F P Massive 2008 12 7.8 2.6 12 19.9 5.0 Massive 2009 12 23.4 4.9 12 34.1 6.2 Massive 2010 12 24.6 5.2 12 30.7 6.6 Branching 2008 12 39.9 9.4 11 29.1 7.0 Branching 2009 12 58.5 4.7 11 40.6 4.9 Branching 2010 12 54.1 7.1 11 34.2 9.0 Encrusting 2008 12 46.9 8.7 12 42.6 8.2 0.195 0.663 Encrusting 2009 12 13.5 3.4 12 17.7 3.3 0.568 0.459 Encrusting 2010 12 18.1 4.0 12 17.7 6.7 0.137 0.714 from the non-protected area in 2008; however in 2010 (ANOVAR, F=9.478, p=0.002, Bonfer- sponge cover in 2009 and 2010 showed that the roni p=0.004) (Fig. 2). MPA sponge cover was significantly greater than the non-protected area (Table 3). Fish: A total of 62 fish species were observed at the five sampling locations from Substrate (Photo Quadrat): Algae, the 2008 to 2010 (Table 8). The major groups of dominant substrate cover, ranging from 61.0% fish analyzed included Chromis spp., damsel- (1.5; 19) in 2008, 59.9% (1.9; 19) in 2009 fishes, parrotfishes, surgeonfishes, and wrasse. and 59.3% (1.8, 19) in 2010 showed no sig- Chromis spp. were separated from the damsel- nificant annual differences (ANOVAR, F=0.373, fishes because of their large number. Diversity p=0.616) (Fig. 2). Although the percent cover indices were quite high and similar across all of algae did not change across years, the type sites (Table 9). of algae observed did. Macroalgae which Relative abundance of all but one of the occurred more frequently than other types of most frequently occurring groups of fishes algae increased significantly in 2010. Turf algae did not vary significantly across the three dipped significantly in 2009 and coralline algae years of this study. Chromis spp., the largest decreased significantly in 2010 (Table 1 & 2). group observed, showed a downward trend Percent hard coral cover remained sta- going from 65.2% (3.5; 34) to 49.8% (4.2; ble across years ranging from 11.4% (0.7; 34); however the difference was not significant 18) to 12.0% (1.1; 18) (ANOVAR, F=0.037, (ANOVAR, F=3.611, p=0.032). Damselfishes p=0.964). Of the three hard coral forms record- ranged from 11.1% (1.7; 32) to 15.5% (1.7; ed branching coral occurred most frequently 32) (ANOVAR, F=3.531, p=0.035) and par- with no significant annual variation (Table 3 & rotfishes from 10.1% (1.6; 36) to 6.4% (0.7; 4). Cyanobacteria which was not recorded over 36) (ANOVAR, F=1.732, p=0.184) (Fig. 3). the three year sampling period with the PLI Surgeonfishes also remained stable between method was similar in percent cover to hard 0.9% (0.1; 31) and 1.3% (0.2; 31) (ANOVAR, coral ranging from 14.7% (1.5; 19) to 11.9% F=0.146, p=0.864). Wrasse however showed (1.7; 19) (ANOVAR, F=1.314, p=0.277). Per- a significant increase from 7.3% (1.0; 35) cent sponge cover did increase significantly to 15.5% (2.1; 35) (ANOVAR, F=7.341, from 1.6% (0.4; 19) in 2008 to 4.2% (0.7; 19) p=0.001) (Fig. 3).

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 77 Table 8 Fish species observed during surveys at five sampling locations over Grenada’s southwest reefs during 2008-2010

Acanthuridae Haemulidae Pomacentridae Acanthurus coeruleus Haemulon chrysargyreum Holacanthus tricolor Acanthurus chirurgus Haemulon flavolineatum Chromis cyanea Acanthurus bahianus Haemulon spp. Chromis multilineata Acanthurus spp. Holocentridae Stegastes partitus Apogonidae Myripristis jacobus Abudefduf saxatilis Apogon townsendi Holocentrus rufus Stegastes leucostictus Apogon spp. Holocenthus coruscus Stegastes diencaeus Aulostomidae Holocentrus adscensionis Stegastes planifrons Aulostomus maculatus Grammatidae Microspathodon chrysurus Balistidae Gramma loreto Scaridae Monacanthus spp. Labridae Scarus vetula Blenniidae Thalassoma bifasciatum Sparisoma aurofrenatum Blennidea spp. Clepticus parrae Sparisoma viride Bothidae Halichoeres bivittatus Scarus spp. Bothus lunatus Bodianus rufus Sciaenidae Carangidae Halichoeres garnoti Equetus lanceolatus Carangoides ruber Xyrichtys spp. Equetus punctatus Decapterus macarellus Lutjanidae Scorpaenidae Cirrhitidae Lutjanus synagris Scorpaena plumieri Amblycirrhitus pinos Lutjanus mahogoni Serranidae Chaetodontidae Ocyurus chrysurus Cephalopholis fulva Chaetodon capistratus Lutjanus spp. Cephalopholis cruentata Chaetodon striatus Mullidae Serranus tigrinus Chaetodon spp. Pseudupeneus maculatus Hypoplectrus spp. Diodontidae/Tetraodontidae Mulloidichthys martinicus Hypoplectrus guttavarius Canthigaster rostrata Hypoplectrus chlorurus Gobiidae breviceps Synodontidae Coryphopterus glaucofraenum Ostraciidae Synodus intermedius Coryphopterus hyalinus Acanthostracion quadricornis Elacatinus genie Acanthostracion polygonius Muraenidae Priacanthidae Echidna catenata Priacanthus arenatus

Table 9 Shannon-Wiener diversity index based on identified species observed during surveys over Grenada’s southwest reefs during 2008-2010. (Chromis were excluded because their large numbers would dominate the index)

2008 2009 2010 Location 2008-10 H’ Richness H’ Richness H’ Richness Dragon Bay 2.346 37 2.032 29 2.218 36 Flamingo Bay 2.183 27 2.459 30 2.217 30 N.E Shallow 2.417 29 2.143 32 2.061 25 N.E. Deep 2.392 35 2.608 33 2.411 30 Quarter Wreck 2.527 38 2.309 31 2.333 32 All Locations 2.548 51 2.598 49 2.500 53

78 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 70

60 2008

50 2009 2010 40

Percent 30

20

10

0 Algae Hard Coral NL Substrate Gorgonian Sponge Cyanobacteria

Fig. 2. Mean substrate cover with error bars (SE) based on Photo Quadrat surveys from Grenada’s southwest reefs during 2008-2010; * indicates a significant difference (ANOVAR; p<0.017).

70

60 2008

50 2009

40 2010

Percent 30

20

10

0 Chromis Damsel Parrot Wrasse Surgeon

Fig. 3. Mean fish composition with error bars (SE) based on Point Line Intercept surveys from Grenada’s southwest reefs during 2008-2010;* indicates a significant difference (ANOVAR; p<0.017).

In comparing the MPA to the non-protect- wrasse group also had a significant interac- ed area, a significant interaction between time tion between time and location (Table 11). and location was observed for the chromis, During 2008 the wrasse were significantly which ranged from 47.8% (6.8; 12) to 77.1% higher in the non-protected area at 11.9% (1.9; (3.7; 12) in the MPA and 42.0% (6.4; 12) to 12), whereas the MPA only had 3.5% (1.1; 45.8% (6.7; 12) in the non-protected area (Two- 12) wrasse (Table 10). None of the other fish way ANOVAR, F=6.303, p=0.007). Additional groups showed a significant interaction at time tests revealed that percent chromis observed and location (Table 11). in 2008 was significantly lower in the non- The density of fishes on the other hand did protected area then the MPA (Table 10). The show significant differences for most groups

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 79 Table 10 Mean Fish percent based on the Point Line Intercept surveys in non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. When the Two-way ANOVAR showed a significant interaction between time and location, a one way ANOVA was done for further examination. A Bonferroni correction of p<0.017 was used when determining significance

Non-Protected Area Marine Protected Area ANOVA Fish Observed n Mean % SE n Mean % SE F p Chromis 2008 12 42.7 6.4 12 77.1 3.7 20.476 0.000 Chromis 2009 12 42.0 7.6 12 63.2 8.2 3.529 0.074 Chromis 20010 12 45.8 6.7 12 47.8 6.8 0.025 0.876 Damselfish 2008 12 21.1 2.9 12 9.7 1.4 Damselfish 2009 12 15.3 3.3 12 9.3 2.7 Damselfish 2010 12 18.0 3.0 12 14.6 2.8 Parrotfish 2008 12 9.6 1.7 12 3.9 0.6 Parrotfish 2009 12 13.2 2.8 12 6.4 1.8 Parrotfish 2010 12 7.0 1.1 12 5.3 1.5 Surgeonfish 2008 11 1.7 0.4 12 0.6 0.1 Surgeonfish 2009 11 1.2 0.4 12 1.0 0.4 Surgeonfish 2010 11 0.8 0.3 12 1.7 0.5 Wrasse 2008 12 11.9 1.9 12 3.5 1.1 18.988 0.000 Wrasse 2009 12 8.0 2.0 12 10.3 2.4 0.522 0.478 Wrasse 2010 12 14.8 2.2 12 23.5 4.5 2.576 0.123 over the years of the study. Chromis spp. group that experienced a significant interac- decreased significantly from 669.3 fish/100m2 tion between time and location for density (180.5; 30) to 286.6 fish/100m2 (78.3; 30) was damselfish (Two-way ANOVAR, F=7.288, (ANOVAR, F=9.215, p=0.000). Damselfish- p=0.016) (Table 11). Damselfish in 2010 were es density also significantly decreased from significantly higher in the non-protected area 2 70.3 fish/100m (3.7; 34) in 2008 to 40.6 at 54.9% (3.5; 11), while only 36.8% (4.8; 12) 2 fish/100m (2.7; 34) in 2009 (Bonferroni, were observed in the MPA (ANOVA, F=9.600, 2 p=0.000) and 55.3 fish/100m (5.2; 34) in 2010 p=0.005) (Table 12). (Bonferroni, p=0.015) (ANOVAR, F=17.994, The observed fish assemblage was divided p=0.000). The density of parrotfishes signifi- into feeding groups based on the classifica- cantly decreased from 39.5 fish/100m2 (3.2; tion of Sadin (2008b). Combined data from 30) and 39.7 fish/100m2 (4.2; 30) in 2008 all sites across years (2008-2010) showed the and 2009 to 26.3 fish/100m2 (4.5; 30) in 2010 dominant feeding group of the assemblage (ANOVAR, F=10.786, p=0.000). Wrasse den- to be planktivores at 81.3% (1.8%; 35) to sity however showed an increase from 37.6 fish/100m2 (4.6; 34) and 30.2 fish/100m2 (3.5; 74.7 (3.5%; 31). Herbivores represented 9.7% 34) in 2008 and 2009 to 68.6 fish/100m2 (15.4) (1.0%; 35) to 13.6 (2.0%; 36), while carnivores in 2010 but the change was not significant comprised 10.9 (1.3%; 30) to 14.9% (2.2; 34). (ANOVAR, F=3.525, p=0.035). The density Fish feeding groups were not significantly dif- of surgeonfishes did not significantly change, ferent between years. In addition there was no however it showed a downward trend going significant difference between the MPA and from 6.3 fish/100m2 (0.8; 25) in 2008 to 5.9 non-protected areas in the percent plankti- fish/100m2 (1.4; 25) in 2009, and finally to vores (Two-way ANOVAR, F=3.891, p=0.036), 4.5 fish/100m2 (0.5; 25) in 2010 (ANOVAR, herbivores (Two-way ANOVAR, F=2.900, F=1.859, p=0.179) (Fig. 4). The only fish p=0.078) or carnivores (Two-way ANOVAR,

80 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 Table 11 Two-way ANOVAR of Fish percent and density at time and location from non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. A bonferroni correction factor of p<0.017 was used to determine significance (*indicates significant)

Fish Percent Fish Density Interaction n F p n F p Chromis Time*Location 12 6.303 0.007* 10 1.965 0.169 Damsel Time*Location 12 4.424 0.024 11 7.288 0.016* Parrotfish Time*Location 12 1.784 0.191 12 0.072 0.931 Surgeonfish Time*Location 10 2.279 0.131 10 0.192 0.183 Wrasse Time*Location 12 13.656 0.000* 11 3.595 0.046

Table 12 Mean Fish density based on the Point Line Intercept method from non-protected and marine protected areas from Grenada’s southwest reefs during 2008-2010. If the Two-way ANOVAR showed a significant interaction between time and location, a follow up one way ANOVA was done for further examination. A Bonferroni correction of p<0.017 was used when determining significance

Non-Protected Area Marine Protected Area ANOVA Fish Group n Mean (fish/100m2) SE n Mean (fish/100m2) SE F p Chromis 2008 11 439.6 88.6 11 498.6 112.2 Chromis 2009 11 422.0 192.7 11 972.3 378.6 Chromis 20010 11 348.3 171.6 11 171.1 26.7 Damselfish 2008 11 69.4 6.5 12 64.9 4.7 0.294 0.593 Damselfish 2009 11 43.4 4.4 12 27.9 4.7 7.559 0.012 Damselfish 2010 11 54.9 3.5 12 36.8 4.8 9.600 0.005 Parrotfish 2008 12 49.0 6.0 12 22.0 3.5 Parrotfish 2009 12 41.3 5.4 12 18.9 3.9 Parrotfish 2010 12 30.5 9.0 12 13.1 2.8 Surgeonfish 2008 12 4.1 0.6 11 7.3 1.5 Surgeonfish 2009 12 5.0 1.1 11 6.0 2.9 Surgeonfish 2010 12 3.1 0.8 11 3.8 0.8 Wrasse 2008 12 42.8 7.6 12 46.1 9.5 Wrasse 2009 12 24.0 3.3 12 39.4 6.2 Wrasse 2010 12 88.7 37.8 12 75.1 21.1

F=2.490, p=0.111) since none exhibited a sig- and location for diadema (Two-Way ANOVAR, nificant interaction between time and location. F=1.853, p=0.197). Combined Diadema antillarum density for Grenada’s southwest coast exhibited a signifi- DISCUSSION cant downward trend having 3.1 urchins/100m2 (0.5; 36) in 2008, to 1.9 urchins/100m2 (0.5; Data collected during three annual sur- 36) in 2009 and to only 0.2 urchins/100m2 (0.1; veys indicates benthic cover in the nearshore 36) in 2010 (ANOVAR, F=6.078, p=0.004). It waters off the southwest coast of Grenada was should be noted even after log transformation similar to many reported findings from across the data did not fulfill the assumption of nor- the Caribbean. Algae dominated the substrate mality, however sphericity could be assumed. (45.9% to 61.0%) and live hard coral cover- There was also no significant interaction at time age (16.5% to 11.4%) was quite low. Algae

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 81 900

800 2008 700

600 2009 2 500 2010

400 Fish/100 m Fish/100 300

200

100

0 Chromis Damsel Parrot Wrasse Surgeon

Fig. 4. Mean fish density with error bars (SE) based on Point Line Intercept surveys from Grenada’s southwest reefs during 2008-2010; * indicates a significant difference (ANOVAR; p<0.017). dominated systems have been reported for western and northern Caribbean. In both stud- many nearshore communities in the Carib- ies fleshy macroalgae generally dominated the bean (Hughes 1994, Gardner 2003, Burke & reef benthic communities where these low D. Maidens 2004, Bouchon et al. 2008, Wilkin- antillarum densities occurred. son 2008, Mumby 2009, Walsh 2011). Algae Given the importance of D. antillarum in has been the dominant substrate cover on the coral reef community reestablishment of D. Caribbean reefs since a major ecological antillarum may have potential as a management phase shift occurred in the 1980s. Overfish- tool to enhance coral growth in algal dominated ing, hurricane damage and a disease-induced systems. This potential became apparent when die-off of D. antillarum have been proposed a phase shift reversal was noted on Jamaica’s as major factors in this shift (Hughes 1994, north coast. Coral cover increased from 23% Gardner et al. 2003). in 1995 to 54% in 2004 with higher growth Low densities of D. antillarum in Grena- rates of juvenile corals and higher densities of dian nearshore waters may be one of the key small juvenile recruits in “dense urchin zones” factors in the high algal component of this (Idjadi et al. 2006, 2010, Bechtel et al. 2006). benthic community. The mean D. antillarum The potential impact of increased numbers density found in 2x30m belt transects off the of D. antillarum on coral recovery sparked coast of Grenada during this study ranged from introductions of additional D. antillarum into 0.002/m2 to 0.031/m2 which is much lower than Grenada’s MPA from adjacent populations in the 4.25/m2 densities measured in 2003 by Car- 2011 (Nimrod personal communication). These penter & Edmunds (2006) for these waters and relocations will hopefully result in significant the 1.7-8.9/m2 they found associated with reefs increases in local populations of D. antillarum of six countries around the Caribbean. Based that will reduce macroalgae and facilitate an on general surveys across a spectrum of west- increase in coral recruitment and growth. ern Atlantic reefs between 1998-2000 Kramer Understanding the composition of Gre- (2003) reported mean D. antillarum densities nada’s southwest coastal nearshore fish com- of 0.029/m2. Newman et al. (2006) found mean munity will also inform existing and future densities of 0.019/m2 at similar depths in the fisheries management practices. Heavy fishing

82 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 pressure has been identified as one of the key dominated by parrotfishes (Scaridae) at 70.2% factors in transformation of coral reefs to algal followed by territorial damselfish fish (Poma- dominated systems (Hawkins & Roberts 2003). centrus spp., Stegastes spp., Microspathodon Fishing methods in Grenada include beach spp.) at 17.9% and surgeonfish (Acanthurus seining, trap nets, hand lines and spearing. Tar- spp.) at 11.5%. Thus “farmers” comprised only get species are mainly carnivores such as Lut- 17.9% in the Grenadian nearshore herbivorous janidae (snapper), Serranidae (groupers) and fish community while “foragers” made up Carangidae (jacks, pompanos and mackerels 82.1%. It is understandable therefore that turf and scad) (Finlay 2000). Large herbivores such algae comprised such a small portion of the as Scaridae (parrotfish) and Acanthuridae (sur- algal community and fleshy macroalgae made geonfishes and tang) are also frequently seen up the majority. Arnold (2007) demonstrated in Grenadian fish markets. Observations during that grazing by scrapers such as parrotfish and 2008-2010 indicated that planktivores (74.7 urchins facilitate coral recruitment more than - 81.3%) dominated the nearshore Grenadian territorial damselfishes that maintain low levels fish community followed by herbivores (9.7 of turf algae. Since the species composition - 13.6%), carnivores (10.9 - 13.9%). The her- of herbivores in Grenada’s nearshore waters bivore component of Grenada’s nearshore fish is primarily comprised of “foragers” rather assemblage seems low when compared to other than “farmers” potential benefits are likely for studies. Toller et al. (2010) found 65% herbi- future coral recruitment if the overall number vores off Saba Island in habitat types similar to of herbivores can be increased. It is hoped those in Grenada. In a synthesis of Caribbean that newly implemented fishing restrictions in wide surveys between 1998 and 2000, Kramer the Moliniere-Beausejour MPA will facilitate (2003) found herbivores made up 64.6% of the increased abundance of herbivorous fishes. fish community sampled. Simply determining In addition to low numbers of herbivores, that the herbivore component of the Grenadian algal dominance is also driven by increases fish community is low compared to other loca- in nutrients in nearshore waters. Littler et al. tions does not allow a full understanding of the (2009) described the importance of taking impact this has on substrate cover. Burkepile into consideration the complex interaction of & Hay (2010) pointed out the importance of herbivory, nutrient levels and stochastic events species level identification in reef fish monitor- in understanding existing conditions and devel- ing. Each herbivorous species can have unique oping management strategies for coral reef impacts on algal succession and coral growth. communities. Lapointe et al. (1997) argued that A diverse assemblage of herbivorous fishes can nutrient input from non-point source pollution reduce development of macroalgae communi- related to development and population increas- ties and thereby enhance recruitment of coral to es on the island of Jamaica was a major factor open substrates. Ceccarelli et al. (2011) divides in driving the shift from a coral dominated herbivorous fishes into roving herbivores or system to an algal dominated community. In a “foragers” (parrotfish Scarus spp. and surgeon- comparative study of reef communities Sandin fish Acanthurus spp.) and “farmers” (territorial et al. (2008a) saw a shift from dominance by damselfish Stegastes spp.) in order to evaluate a few large top predator fish species to domi- their potential influence on algal succession nance by small lower trophic level consumers, and coral reef recovery. “Farmers” tend to sup- primarily planktivores, in areas of increasing press algal succession preventing development human populations. The dominance of plank- of the fleshy macroalgae stage. “Foragers” have tivores (primarily Chromis spp.) in Grena- an intermediate effect allowing development of dian nearshore waters may be an indicator of some macroalgae but not a late-successional excess nutrients into these waters. Two major assemblage (Ceccarelli et al. 2011). In Grena- rivers (St. Johns and Beausejour), flow into da’s nearshore fish community herbivores were the nearshore waters of Grenada’s southwest

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 83 coast. These rivers drain heavily populated management plan was not fully implemented areas as well as agricultural lands and have until September 2010. After full implementa- the potential of delivering excess nutrients into tion of the plan wardens began to patrol the the reef communities. These nutrients have the area and prevent fishing from boats and enforce potential of enhancing macroalgal growth and the use of permanent mooring buoys by divers inhibiting the recruitment and growth of coral and snorkelers in the MPA. Future monitoring (Littler et al. 2009). efforts will be able to use the results of this The three years of monitoring at perma- study as a basis for comparison in order to nent transects in this study provide a basis assess the impact of the newly implemented for future trend analysis and evaluation of management practices in the MPA. Expan- management practices. Hughes et al. (2010) sion of current studies will allow a better advocates long term monitoring of important understanding of mechanisms and feedbacks taxonomic groups as well as identification of in these reef systems. Video and photographs mechanisms and feedbacks in order to detect of transects and surrounding habitats are being indicators of phase shifts. He also encourages incorporated into public presentations for Gre- agencies involved in research and management nadian resource managers and the general pub- of reefs to take a proactive integrative approach lic to encourage a broader understanding of the through education of grassroots constituencies, importance of careful resource management. enhancing access to existing information and In addition to focusing on local environ- expertise and strengthening regulations associ- ments it is important to connect these studies ated with harvesting important species from to broader ecosystem wide analyses. Ogden these communities. This approach is beginning (2010) encourages moving toward an ecosys- to be implemented in Grenada through the tem-based management plan for the Caribbean. work of the Grenada Government Fisheries Ogden cites plans for regional management Division and the Moliniere-Beausejour Marine inspired by the CARICOMP network of marine Protected Area Stakeholder Group. laboratories and encourages going beyond local This study establishes a baseline of infor- problems and addressing issues like the D. mation but long term and more specific monitor- antillarum die-off, wide spread white band ing is needed to better understand the trajectory disease and the annual plume of discharge from of Grenada’s reef communities. Gardner et al. Venezuela’s Orinoco River. Efforts are ongo- (2003) indicated that areas of coral recovery ing to strengthen connections of this ongoing are often dominated by non-framework build- monitoring effort to the network of Caribbean ers such as Agaricia and Porites rather than marine laboratories and provide information framework builders such as Acropora and that will assist regional management. Montastrea. These framework builders that formerly dominated reefs in the Caribbean are ACKNOWLEDGEMENTS essential to surviving the destructive forces of major storms. The coral community in Gre- Funding for this project was provided by nada’s nearshore waters is comprised primarily the Fischer Family Foundation and Mr. Gary of branching coral much of which is Agaricia Stimac and is greatly appreciated. A special and Porites. Given the importance of frame- thanks to Jacob Krause for playing a major work builders to the resilience of coral reef role in developing this program. Thanks are communities identification of coral species will also offered to Jillian Groeschel, Kyle Fos- be added to the monitoring program to better ter, Svetlana Bornschlegl, Victoria Krueger, understand the coral community. Thomas Dietrich, Ben Hermanson, Laurelyn The similarity between the MPA and non- Dexter, Angela Majeskie, Emily Bolda, Allison protected areas seen in this study may be due Page, and Angela Blasezyk for data collection. to the fact that the Moliniere-Beausejour MPA Kayli Giertych and Stephen Vandenberg are

84 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 thanked for assistance with the manuscript. Bil- Birrell, C.L., L. J. McCook, B.L. Willis & G.A. Diaz- lie Harrison of the Racine Zoo is also thanked Pulido. 2008. Effects of benthic algae on the reple- nishment of corals and the implications for the for field assistance. resilience of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 46: 25-63.

RESUMEN Bouchon, C., P. Portillo, Y. Bouchon-Navaro, M.Louis, P. Hoetjes, K. De Meyer, D. Macrae, H. Armstrong, V. Un estudio sobre poblaciones bentónicas y de peces Datadin, S. Harding, J. Mallela, R. Parkinson, J. van fue realizado en cinco localidades en la zona costera en Bochove, S. Wynne, D. Lirman, J. Herlan, A. Baker, el suroeste de Grenada entre 2008 y 2010. Dos sitios se L. Collado, S. Nimrod, J. Mitchell, C. Morrall, C. ubicaron en una Área Marina Portegida (AMP) reciente- Isaac. 2008. Chapter 19. Status of coral reefs of mente creada. Para determinar la cobertura se utilizaron the Lesser Antilles: The French West Indies, The foto-cuadrantes (FQ) y transectos de intersección de puntos Netherlands Antilles, Anguilla, Grenada, Trinidad (TIP). Las algas fueron el principal componente del bentos, and Tobago, p. 265-279 In: Wilkinson, C. (Ed.). aumentando significativamente de 45,9% en 2008 a 52,7% Status of coral reefs of the world 2008. Global Coral en 2010 (TIP). Las algas también fueron predominantes Reef Monitoring and Reef and Rainforest Research (61,9%-59,3) en los FQ, aunque las diferencias anuales no Centre, Townsville, Australia. fueron significativas. La cobertura de corales pétreos tenía un ámbito de 16,5% a 15,4% (TIP) y de 11,4% a 12,0% Burke, L. & J. Maidens. 2004. Reefs at Risk in the (FQ), sin diferencias significativas entre años. Los corales Caribbean. World Resources Institute, Washington ramificados e incrustantes fueron más frecuentes que los D.C., USA. corales masivos. En los tres años no hubo diferencias significativas entre las AMPs y las áreas no protegidas. Burke, L., K. Reytar, M. Spalding & A. Perry. 2011. Reefs La abundancia relativa de peces a lo largo de un transecto at Risk Revisited. World Resource Institute, Washing- de 30x2m no varió significativamente entre los años, sin ton, D.C., USA. embargo, la densidad de peces decreció significativamente a través de los años, para los grupos principales. Chromis Burkepile, D.E. & M.E. Hay. 2010. Impact of herbivore spp. predominó con 65,2% en 2008 y 49,8% en 2012, identity on algal succession and coral growth on a seguido por damiselas territoriales, 11,1% y 15,5%, y los Caribbean reef. PLoS ONE 5: e8963. lábridos aumentaron de 7,3% a 15,5%. Tanto la coberura Carpenter, R.C. & P.J. Edmunds. 2006. Local and regional del sustrato como los datos de peces indican una comuni- scale recovery of Diadema promotes recruitment of dad estable pero degradada. Sondeos anuales están planea- scleractinian corals. Ecol. Lett. 9: 268-277. dos para el futuro. Los datos existentes y futuros de este proyecto serán muy útiles para determinar la eficacia de la Ceccarelli, D.M., G.P. Jones & L.J. McCook. 2011. Inte- gestión de las AMPs y el estado de salud de los sistemas ractions between herbivorous fish guilds and their arrecifales de Grenada. influence on algal succession on a coastal coral reef. J. Exp. Mar. Biol. Ecol. 399: 60-67. Palabras clave: cobertura bentónica, coral, peces de arre- cife, monitoreo, Grenada, Caribe Oriental. Crosby, M.P. & E. S. Reese. 1996. A manual for monitoring coral reefs with indicator species: butterfly fishes as indicators of change on the Indo-Pacific reefs, REFERENCES Office of Ocean and Coastal Resource Management, NOAA, Silver Spring, Maryland, USA. Arnold, S.N. 2007. Running the gauntlet to coral recruitment through a sequence of local multis- Dumas, P., A. Bertaud, C. Peignon, M. Leopold & D. Pelle- cale processes. MSc Thesis, Univ. Maine, Orono, tier. 2009. A “quick and clean” photographic method Maine, USA. for the description of coral reef habitats. J. Exp. Mar. Biol. Ecol. 368:161-168. Bascompte, J., C.J. Melian & E. Sala. 2005. Interac- tion strength combinations and the overfishing of a Eakin, C.M., J.A. Morgan, S.F. Heron, T.B. Smith, G. Liu, marine food web. Proc. Natl. Acad. Sci. USA 102: L. Alvarez-Filip, B. Baca, E. 5443-5447. Bartels, C. Bastidas, C. Bouchon, M. Brandt, A. Bruckner, Bechtel, J.D., P. Gayle & L. Kaufman. 2006. The return of L. Bunkley-Williams, A. Cameron, B.D. Causey, M. Diadema antillarum to Discovery Bay: patterns of Chiappone, T.R.L. Christensen, M.J.C. Crabbe, O. distribution and abundance. Proc. 10th Int. Coral Reef Day, E. de la Guardia, G. Díaz-Pulido, D. DiRes- Symp., Okinawa 1: 367-375. ta, D.L. Gil-Agudelo, D. Gilliam, R. Ginsburg, S.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 85 Gore, H.M. Guzman, J.C. Hendee, E.A. Hernández- Idjadi, J.A., R.N. Haring & W.F. Precht. 2010. Recovery Delgado, E. Husain, C.F.G. Jeffrey, R.J. Jones, E. of the sea urchin Diadema antillarum promotes scle- Jordán-Dahlgren, L. Kaufman, D.I. Kline, P. Kramer, ractinian coral growth and survivorship on shallow J.C. Lang, D. Lirman, J. Mallela, C. Manfrino, J.P. Jamaican reefs. Mar. Ecol. Prog. Ser. 403: 91-100. Maréchal, K. Marks, J. Mihaly, W.J. Miller, E.M. Mueller, E. Muller, C.A. Orozco-Toro, H.A. Oxen- Jeffrey, C.F.G. 2000. Annual, coastal and seasonal variation ford, D. Ponce-Taylor, N. Quinn, K.B. Ritchie, S. in Grenadian demersal fisheries (1986-1993) and Rodríguez, A. Ramírez, S. Romano, J.F. Samhouri, implications for management. Bull. Mar. Sci. 66: 305-319. J.A. Sánchez, G.P. Schmahl, B. Shank, W.J. Skirving, S.C.C. Steiner, E. Villamizar, S.M. Walsh, C. Walter, Kohler, K.E. & S.M. Gill. 2006. Coral Point Count with E. Weil, E. H. Williams, K. W. Roberson & Y. Yusuf. excel extensions (CPCe): A visual basic program for 2010. Caribbean corals in crisis: record thermal the determination of coral and substrate coverage stress, bleaching, and mortality in 2005. PLoS ONE using random point count methodology. Comput. 5: e13969. Geosci. 32: 1259-1269.

Finlay, J. 2000. Grenada: National Biodiversity Strate- Kramer, P.A. 2003. Synthesis of coral reef health indica- gy and Action Plan: Assessment and Analysis of tors for the western Atlantic: results of the AGRRA Fisheries Marine and Coastal Areas, Consultants program (1997-2000). Atoll. Res. Bull. 496: 1- 57. Report. United Nations Development Programme; Global Environmental Facility. Project No.: GRN/98/ Lapointe, B.E., M.M. Littler & D.S. Littler. 1997. Macroal- G31/A/1G/99 gal overgrowth of fringing coral reefs at Discovery Bay, Jamaica: bottom-up versus top-down control. Gardner, T.A., I.M. Côté, J.A. Gill, A. Grant & A.R. Wat- Proc. 8th Int. Coral Reef Symp., Panama. 927-932. kinson. 2003. Long term region-wide declines in Caribbean corals. Science 301: 958-960. Littler, M.M., D.S. Littler & B.L. Brooks. 2009. Herbivory, nutrients, stochastic events, and relative dominances Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nuñez & of benthic indicator groups on coral reefs: a review W.M. Gray. 2001. The recent increase in Atlantic and recommendations. Proc. Mar. Sci. Network hurricane activity: causes and implications. Science Symp., Washington, DC, USA. Smithsonian Contr. 293: 474-479. Mar. Sci. 38: 401-414.

Hawkins, J.P. & C.M. Roberts. 2003. Effects of artisanal Mora, C. 2008. A clear human footprint in the coral reefs fishing on Caribbean coral reefs. Conserv. Biol. 18: of the Caribbean. Proc. Royal Soc. B. 275: 767-773. 215-226. Mumby, P.J. 2009. Phase shifts and the stability of macroal- Hughes, T.P. 1994. Catastrophes, phase shifts, and large- gal communities on Caribbean coral reefs. Coral scale degradation of a Caribbean coral reef. Science Reefs 28: 761-773. 265: 1547-1551. Newman, M.J.H., G.A. Paredes, E. Sala & J.B.C. Jackson. 2006. Structure of Caribbean coral reef communities Hughes, T.P., A.H. Baird, D.R. Bellwood, M. Card, S.R. across a large gradient of fish biomass. Ecol. Lett. 9: Connolly, C. Folke, R. Grosberg, O. Hoegh-Gul- 1216-1227. dberg, J.B.C. Jackson, J. Kleypas, J.M. Lough, P. Marshall, M. Nystrom, S.R. Palumbi, J. M. Pandolfi, Ogden, J. 2010. Marine spatial planning (MSP): A first step B. Rosen & J. Roughgarden. 2003. Climate change, to ecosystem-based management (EBM) in the wider human impacts, and the resilience of coral reefs. Caribbean. Rev. Biol. Trop. 58 (Suppl. 3): 71-79. Science 301: 929-933. Sandin, S.A., J.E. Smith, E.E. DeMartini, E.A. Dinsdale, Hughes, T.P., N. Graham, J.B.C. Jackson, P.J. Mumby S.D. Donner, A.M. Friedlander, T. Konotchick, M. & R.S. Steneck. 2010. Rising to the challenge of Malay, J.E. Maragos, D. Obura, O. Pantos, G. Paulay, sustaining coral reef resilience. Trends Ecol. Evol. M. Richie, F. Rohwer, R.E. Schroeder, S. Walsh, 25: 633-642. J.B.C. Jackson, N. Knowlton & E. Sala. 2008. Base- lines and degradation of coral reefs in the Northern Idjadi, J.A., S.C. Lee, J.F. Bruno, W.F. Precht, L. Allen- Line Islands. PLoS ONE 3: e1548. Requa & P.J. Edmunds. 2006. Rapid phase shift reversal on a Jamaican coral reef. Coral Reefs Sokal, R.R. and J.F. Rohlf. 1995. Biometry. 3rd ed. W.H. 25:65-68. Freeman, New York.

86 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 Toller, W., A.O. Debrot, M.J.A. Vermeij & P. C. Hoetjes. Woodley, J. D., E.A Chronesky, P.A. Clifford, J.C.B. Jack- 2010. Reef fishes of Saba Bank, Netherlands Anti- son, L.S. Kaufman, N. Knowlton, J.C. Lang, M.P. lles: assemblage structure across a gradient of habitat Pearson, J.W. Porter, M.C. Rooney, K.W. Rylaars- types. PLoS ONE 5: e9207. dam, V.J. Tunnicliffe, C.M. Wahle, J.L. Wulff, A.S. . Curtis, M.D. Dallmeyer, B.P. Jupp, M.A.R. Koehl, J. Walsh, S.M. 2011. Ecosystem-scale effects of nutrients and fishing on coral reefs. Mar. Biol. 2011: 1-13. Neigel & E.M. Sides. 1981. Hurricane Allen’s impact on Jamaican coral reefs. Science 214: 749-755. Wilkinson, C. 2008. Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice Rainforest Research Centre, Townsville, Australia. Hall, New Jersey.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 71-87, March 2012 87

Abundancia y distribución de larvas de Strombus gigas (Mesogastropoda: Strombidae) durante el período reproductivo de la especie en el Caribe Mexicano

José Francisco Chávez Villegas1, Martha Enríquez Díaz1, Jorge Arturo Cid Becerra2 & Dalila Aldana Aranda1 1. Laboratorio de Biología y Cultivo de Moluscos. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Carretera Antigua a Progreso, Km. 6, A.P. 73 Cordemex, C.P. 97310, Mérida, Yucatán, México. Tel. +52(999)9429400 ext. 2538; [email protected], [email protected] & [email protected] 2. Laboratorio de Ecología Costera. Universidad de Occidente, Unidad Los Mochis, Blvd. Macario Gaxiola y Carretera Internacional s/n, A.P. 936, C.P.81223, Los Mochis, Sinaloa, México; [email protected]

Recibido 14-VII-2011. Corregido 20-X-2011. Aceptado 20-XII-2011.

Abstract: Abundance and distribution of Strombus gigas (Mesogastropoda: Strombidae) larvae during their reproductive period in the Mexican Caribbean. The Queen Conch (Strombus gigas Linnaeus, 1758) is a spe- cies of economic importance in the Caribbean Sea, which, in the 1980’s represented the second fishery after de spiny lobster, reason that is currently in a state of overfishing. In order to determine the larval abundance varia- tion during the reproductive season, four locations of the Mexican Caribbean “MC” (Mexico: Puerto Morelos, Sian Ka’an, Mahahual; Belize: San Pedro) were sampled. Monthly, from May to October 2008, planktonic net drags (300μm) were carried out at each location. Temperature (°C), salinity (ppm) and dissolved oxygen (mg L-1) were recorded for each site. A mean larval density of 0.34±0.87 (larvae 10 m-3) was registered between locations, with a peak in August and September (0.82±1.00 and 0.76±1.68 larvae 10m-3, respectively). The larval density was 60% correlated with salinity (r=0.6063, p<0.05). A one-way ANOVA showed significant statistical larval density in time (p<0.05) and space (p<0.05), where Puerto Morelos displayed the higher records during the study (0.54±1.49 larvae 10m-3). An average larval size of 332.44±59.66µm was recorded. Larval sizes differed significantly between locations (p<0.05), but not considering months (p>0.05). A 100% of the captured larvae correspond to stage I, showing local reproductive activity, that might indicate the sampled sites in the MC are a source of larvae to S. gigas. Rev. Biol. Trop. 60 (Suppl. 1): 89-97. Epub 2012 March 01.

Key words: Reproductive season, larval densities, Strombus gigas.

El Caracol rosa Strombus gigas (L.) se dis- La larva veliger de S. gigas tiene un lapso tribuye en el Mar Caribe del sureste de Florida de desarrollo de 21-30 días (Davis et al. 1993, al norte de Sudamérica, incluyendo las Antillas Aldana Aranda & Patiño Suárez 1998). Los menores y (Randall 1964, Stoner estudios de abundancia larval de S. gigas ini- 1997). En el Caribe, la duración de la tempora- cian en los 90, citándose los países de Bahamas da reproductiva presenta un periodo de 5 meses (Chaplin & Sandt 1992, Stoner & Davis 1997a, observado en Bermuda (Berg & Olsen 1989) Stoner & Davis 1997b), Florida (Stoner et al. a 12 meses reportado en México (Corral & 1997, Delgado et al. 2008), México (de Jesús Ogawa 1987), con mayor incidencia de mayo Navarrete 1999, de Jesús Navarrete & Aldana a octubre (de Jesús Navarrete 1999, Aldana Aranda 2000, Oliva Rivera & de Jesús Nava- Aranda & Pérez Pérez 2007; de Jesús Navarrete rrete 2000, de Jesús Navarrete 2001, Pérez & Pérez Flores 2007, Bravo Castro 2009). Pérez et al. 2003, de Jesús Navarrete & Pérez

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 89 Flores 2007, Aldana Aranda & Pérez Pérez 87°42’10”-87°42’30”W) y Belice (San 2007, Pacheco Archundia 2007, Bravo Castro Pedro: 17°50’44”-18°06’41”N, y 87°50’09”- 2009), Venezuela (Posada 2003) y Puerto Rico 88°01’14”) (Fig. 1). (Appeldoorn 1993). La mayoría de estos estudios se han rea- Análisis de muestras: Se efectuaron lizado de forma puntual, así como en un ciclo arrastres de plancton (n=3) en cada sitio de anual, y unos pocos han sido realizados durante muestreo desde una embarcación con motor la temporada reproductiva de esta especie (Sto- fuera de borda a una velocidad constante de ner & Davis 1997a, Stoner & Davis 1997b, Sto- 5m min-1, con una duración de 5 minutos y ner et al. 1997) mientras que regionalmente se a una profundidad máxima de 1m de la línea cita sólo un trabajo para el norte de la Península costera hacia la barrera arrecifal. Se utilizó una de Yucatán (Pérez Pérez et al. 2003),en razón red cónica de 30cm de diámetro de boca, 1.5m de ello, se propusó está investigación, cuyo de largo y una abertura de malla de 300μm. objetivo fundamental es el conocimiento de Se empleó un flujómetro General Oceanics la distribución y abundancia espacio-temporal para conocer el volumen colectado en cada de larvas de S. gigas, en cuatro localidades del muestra. En cada sitio de muestreo se registró Caribe Mexicano (CM) durante la temporada 0 temperatura (°C), salinidad ( /00) y oxígeno reproductiva de la especie. disuelto (mg L-1) con un medidor YSI 85. Las muestras obtenidas fueron fijadas en formol MATERIALES Y MÉTODOS salino al 4% y llevadas al laboratorio para su posterior análisis e identificación. Las larvas Área de estudio: De mayo a octubre de de gasterópodos fueron separadas del plancton 2008 se realizaron muestreos mensuales en cua- y preservadas en alcohol al 70%. Las larvas de tro sitios del Caribe Mexicano: México (Puerto S. gigas se identificaron y clasificaron en clases Morelos: 20°49’21”-20°51’21”N, y 86°51’50”- de tallas de acuerdo a Davis et al. (1993). Se 86°52’45”W; Sian Ka’an: 19°44’28”- midió la longitud sifonal (µm), empleándose un 20°00’58”N, y 87°27’10”-87°28’10”W; micrómetro ocular instalado en el objetivo 10x Mahahual: 18°42’15”-18°42’57”N, y de un microscopio Carl Zeiss AxioStar Plus. El

22º00’

Yucatán Puerto 21º00’ Morelos

Sian Ka’an 20º00’

EUA Quintana Roo Mahahual 19º00’

México San Pedro 18º00’

Belice

17º00’

89º20’ 88º20’ 87º20’ 86º20’

Fig. 1. Área de estudio. / Fig. 1. Study area.

90 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 número de larvas registradas fue estandarizado diferentes localidades. La mayor abundancia para obtener la densidad larval (larvas 10m-3). media se presentó en Puerto Morelos, segui- do de San Pedro y Sian Ka’an (0.54±1.38, Análisis estadístico: Se calculó media y 0.47±0.88 y 0.30±0.57 larvas 10m-3, respecti- desviación estándar para los parámetros fisi- vamente). El análisis de varianza de las medias coquímicos, densidad larval y tallas. Análisis de la abundancia presentó diferencias signifi- de varianza de una vía (pα0.05) (Sokal y Rohlf cativas (p=0.0439). El Cuadro 2 muestra los 1995) fue empleado para conocer la variación resultados de la prueba de Tukey, observándose espacio-temporal de densidad larval, tallas que Puerto Morelos fue estadísticamente dife- y parámetros fisicoquímicos. Se empleó la rente del resto de las localidades. prueba de Tukey (p≤0.05) para conocer la variación de la abundancia larval entre sitios Abundancia temporal: La Figura 3 mues- y la prueba de Duncan (p≤0.05) para evaluar tra la densidad larval de S. gigas para los meses la variación de las tallas entre localidades. Se analizados. En general, se observó la presen- realizó un análisis de correlación (Spearman) cia de larvas de mayo a octubre, con mayor entre parámetros fisicoquímicos y densidad abundancia de agosto a septiembre (0.82±1.00 larval. Los análisis se realizaron en InfoStat/ y 0.76±1.68 larvas 10m-3, respectivamente). Profesional Versión 1.1. El ANOVA mostró diferencias significativas (p=0.0105). La Figura 4 muestra la densidad RESULTADOS media larval para las diferentes localidades en el tiempo. En Puerto Morelos se observó Parámetros fisicoquímicos: La salini- larvas en tres meses, mientras que las otras dad (n=12) no presentó variación significativa localidades sólo en dos meses. Se observaron en el período de estudio (Media: 34.82±0.82 dos períodos de abundancia larval sólo para ppm, p=0.2870). La densidad larval presentó Puerto Morelos. Septiembre presentó la mayor 60% de asociación con la salinidad (r=0.6063; incidencia de larvas (n=3 larvas), seguido de p=0.0036), mientras que temperatura y oxígeno agosto (n=2 larvas). disuelto se asociaron en 16% y 9%, respectiva- mente (Cuadro 1). Tallas de larvas de S. gigas: La talla media de larvas de S. gigas por localidad se presenta en Abundancia espacial: En la Figura 2 se la Figura 5a, con tallas entre 285.00±58.55µm muestra la densidad larval de S. gigas para las (Sian Ka’an) y 396.67±46.19µm (Mahahual).

CUADRO 1 Medias y valor de probabilidad para salinidad (ppm), temperatura (°C), oxígeno disuelto (mg·l-1) y densidad larval -3 (larvas·10m ); n, número de datos analizados; p(α0.05), valor de probabilidad del anova entre parámetro y localidades; r, coeficiente de correlación de Spearman. P: Valor de significancia entre parámetro fisicoquímico y densidad larval

TABLE 1 Means and probability value for salinity (ppm), temperature (°C), dissolved oxygen (mg·l-1) and larval density -3 (larvae·10m ); n, number of analyzed data; p(α0.05): ANOVA probability value between parameters and localities; r: Spearman correlation coefficient. P: value of significance between physicochemical parameters and larval density

Localidades Media Parámetro p RP Puerto Morelos Sian Ka’an Mahahual San Pedro (n: 12) (α0.05) ppm 35.03±0.085 35.00±0.00 35.00±0.00 34.25±1.6 34.82±0.82 0.2870 0.6063 0.0036 °C 27.5±1.12 27.77±1.29 28.18±1.57 27.89±0.80 27.83±1.17 0.8138 0.1604 0.4416 mg·L-1 5.20±1.48 4.98±1.20 5.60±1.20 5.17±1.49 5.24±1.41 0.9074 0.0920 0.6592 larvas·10m-3 0.54±1.38 0.30±0.57 0.09±0.28 0.47±0.88 0.34±0.87 0.0105 1.0000 1.0000

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 91 2.50 ) -3 1.88

1.25

0.63 Densidad de S. gigas (larvas•10m

0 San Pedro Mahahual Sian Ka’an Puerto Morelos

Fig. 2. Densidad larval (larvas·10m-3) entre localidades. Fig. 2. Larval density (larva·10m-3) between locations.

CUADRO 2

Prueba de Tukey entre abundancia media larval de S. gigas y localidades; n1, número total de muestras. Prueba de Duncan entre talla media larval y localidades; n2, número de larvas; A y B, diferencias significativas (p≤ 0.05)

TABLE 2

Tukey test between mean abundance of larval S. gigas and localities, n1, number of samples. Duncan test between average larval size and locations, n2, number of larvae, A and B, significant differences (p ≤ 0.05)

Prueba de Tukey Prueba de Duncan Localidad Abundancia media larval Talla media -3 Media larvas·10m n1 Grupos Media µm n2 Grupos Puerto Morelos 0.54 ± 1.38 18 A 333.89 ± 32.38 30 A San Pedro 0.47 ± 0.88 18 B 353.75 ± 71.45 12 A Sian Ka’an 0.30 ± 0.57 18 B 285.00 ± 58.55 10 B Mahahual 0.09 ± 0.28 18 B 396.67 ± 46.19 3 A

El análisis de varianza entre tallas y localidades DISCUSIÓN presentó diferencias significativas (p=0.0060). La prueba de Duncan mostró que Sian Ka’an Randall (1964), Weil y Laughlin (1984) difiere de los otros sitios al presentar larvas de y Stoner et al. (1996), señalan que el inicio menor talla (Cuadro 2). En la Figura 5b se pre- de la actividad reproductiva de S. gigas está senta la talla media en el tiempo. No se registró controlado por la temperatura, asimismo de variación significativa entre meses (p=0.6989). Jesús Navarrete (1999) señala que este pará- El 100.00% de las larvas observadas correspon- metro determina la puesta de masas de huevo, den al estadio I (150.00-450.00µm de LS). el tiempo de maduración de los embriones,

92 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 2.50 ) -3 1.88

1.25

0.63 Densidad de S. gigas (larvas•10m

0 Mayo Junio Julio Agosto Septiembre Octubre

Fig. 3. Densidad larval (larvas·10m-3) entre meses. Fig. 3. Larval density (larvae·10m-3) between months.

San Pedro Mahahual 5.00 5.00 ) ) -3 -3

3.75 3.75

2.50 2.50

1.25 1.25 Densidad de S. gigas (larvas•10m Densidad de S. gigas (larvas•10m 0 0 M J J A S O M J J A S O Puerto Morelos 5.00 Sian Ka’an 5.00 ) ) -3 -3

3.75 3.75

2.50 2.50

1.25 1.25 Densidad de S. gigas (larvas•10m Densidad de S. gigas (larvas•10m 0 0 M J J A S O M J J A S O

Fig. 4. Densidad larval (larvas·10m-3) entre meses por localidad de estudio. Fig. 4. Larval density (larvae·10m-3) between months by study site.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 93 500 (Aldana Aranda & Pérez Pérez 2007), seguido A por Bahamas con 1.44±1.80 larvas 10m-3 (Sto- ner & Davis, 1997b). Los registros más bajos 425 están reportados para la Bahía de la Ascensión con 0.02±0.07 larvas 10m-3 (de Jesús Navarre- te & Pérez Flores 2007). En este estudio para 350 el SAM, la abundancia larval media fue de 0.34±0.87 larvas 10m-3 (n=64), valor similar a lo reportado por Pérez Pérez et al. (2003) para

Longitud sifonal (µm) sifonal Longitud 275 la Península de Yucatán (0.34±0.87 larvas 10m- 3). Puerto Morelos fue la localidad con mayor 200 abundancia, presentando valores menores a San Pedro Mahahual Sian Ka’an Puerto 500 Morelos los reportados por Bravo Castro (2009), pero B mayores a los observados por Pérez Pérez et al. (2003) para el norte de Cozumel (1.03±1.16 y -3 425 0.02±0.03 larvas 10m , respectivamente). Respecto a la abundancia larval temporal reportada en la literatura, los autores registran 350 larvas durante todo el año, con mayor inciden- cia de junio a agosto (4.70±7.03-17.80±24.77 larvas 10m-3) (Appeldoorn 1993, Stoner et

Longitud sifonal (µm) sifonal Longitud 275 al. 1997, Stoner & Davis 1997a, b, Aldana Aranda & Pérez Pérez 2007, de Jesús Nava- 200 rrete & Pérez Flores 2007). Mientras febrero y M J J A S O diciembre presentan las más bajas densidades (0.70±0.38 y 0.81±0.31 larvas 10m-3) (Aldana Fig. 5. Tallas medias de longitud sifonal (µm) registradas: Aranda & Pérez Pérez 2007). En este estudio (A) por localidades de estudio; (B) entre meses (M, J, J, A, S y O). se observaron larvas de mayo a octubre, donde Fig. 5. Mean siphonal length (µm) recorded: (A) by la mayor densidad (0.76±1.68 larvas 10m-3) sampling localities; (B) between months (M, J, J, A, S correspondió a septiembre, coincidiendo con and O). los estudios realizados por Pérez Pérez (2004) y Bravo Castro (2009) para esta región. De acuerdo a los estudios realizados en 2005 por las tasas de crecimiento de las velígeras y su Bravo Castro (2009) y los resultados del pre- tiempo de residencia en la columna de agua. sente trabajo, en Puerto Morelos se observa la Stoner et al. (1992) y Barile et al. (1994) presencia de dos ciclos con presencia de larvas señalan que la abundancia larval de S. gigas (mayo y agosto-septiembre), sin embargo, de está asociada a la temperatura y al fotoperiodo. 2005 a 2008 se ha observado que la abundan- Contrariamente, de Jesús Navarrete (1999) no cia larval para esta localidad ha disminuido de registró relación entre la abundancia y la tem- 1.03±1.16 a 0.54±1.38 larvas 10 m-3. peratura, salinidad y el oxígeno disuelto. En el Las tallas de larvas registradas en el pre- presente estudio la prueba de Spearman entre sente estudio oscilaron entre 285.00±58.55 y abundancia larval y temperatura mostró 16% 396.67±46.19µm, donde el 100.00% de las de asociación, observándose mayor correlación larvas correspondió al estadio I, de acuer- con la salinidad (60%). do a la clasificación de Davis et al. (1993). En cuanto a la abundancia larval, los Resultado que es similar a los registrados mayores registros han sido para el Arreci- para Banco Chinchorro (89.10%) por de Jesús fe Alacranes con 3.40±6.73 larvas 10m-3 Navarrete & Aldana Aranda (2000), para el

94 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 Arrecife Alacranes (86.42%) por Aldana Aran- así como dos picos de abundancia para Puerto da & Pérez Pérez (2007) y para el norte de Morelos. La salinidad influyó en la distribución Quintana Roo (96.16%) por Bravo Castro de S. gigas más que la temperatura. Se observó (2009). De acuerdo a la clasificación de Stoner que el 100% de las larvas corresponde a la clase (1997), las localidades del presente trabajo I establecida por los autores Davis et al. (1993) son sitios fuente, con larvas provenientes de y Stoner y Davis (1997a), razón por la cual se reproductores locales. clasifican los sitios como fuente de larvas de S. La distribución de S. gigas en su fase larval gigas, en base a este resultado, se considera que está regida por las corrientes superficiales, de el Caribe Mexicano puede suministrar larvas Jesús Navarrete (1999) señala que existe depen- a las poblaciones de S. gigas de la zona norte dencia del flujo larval en el Caribe, pudiendo la del Caribe, sin embargo, es necesario realizar larva de S. gigas ser transportada desde sitios nuevas investigaciones incluyendo más puntos ubicados en Belice y México hasta Florida al del CM para reafirmar este resultado, así como presentarse corrientes de 0.8 m.s-1. En el Caribe estudiar patrones de corrientes en el área, a fin se ha registrado un patrón de circulación de sur de conocer el grado de dispersión larval a nivel a norte con deriva hacia el oeste (Kinder 1983, espacio-temporal. Carrillo González et al. 2007),presentándose velocidades de 0.70ms-1 a 2.72ms-1 para el AGRADECIMIENTOS CM, así como un incremento de hasta el doble en el Canal de Yucatán (Merino Ibarra 1986), Al Centro de Investigación y de Estudios sin embargo para la zona norte del CM se ha Avanzados del Instituto Politécnico Nacional, determinado mayor efecto de los vientos en las por el apoyo para participar en el congreso. masas de agua (Merino Ibarra 1986) provocán- Al Consejo Nacional de Ciencia y Tecnología dose un fenómeno de contracorriente, así, para (Conacyt) por la beca N° 340911/240157 y Puerto Morelos se ha reportado la presencia de al proyecto “Variación espacio temporal del giros los cuales producen circulación interna en patrón reproductivo del caracol rosado Strom- la laguna arrecifal, así como transporte hacia la bus gigas en diferentes hábitats y su mode- costa y mayor tiempo de residencia del agua lo biofísico de conectividad para el Caribe” (Coronado 2007). (Clave: 50094). A Manuel Sánchez Crespo Con base en los resultados obtenidos en por su colaboración en la colecta de muestras. este trabajo resalta la necesidad de realizar los A Uriel Ordoñez López y a Montserrat Bravo estudios de monitoreo larval con la medición Castro por la asesoría en el análisis e identi- de corrientes que ayudaran a determinar el ficación de larvas. A Ximena Renán por sus grado de dispersión y/o retención entre larvas y valiosos comentarios hacia este trabajo. sitios. Se recomienda proteger el parque Nacio- nal Arrecifes de Puerto Morelos dado que en el presente estudio, así como en los realizados RESUMEN por Pérez Pérez (2004) y Bravo Castro (2009) El caracol rosa (Strombus gigas, Linnaeus, 1758) es se ha observado que las larvas se concentran en una especie de importancia económica en el Mar Caribe, esta región, siendo un potencial sitio de reclu- por lo cual, en la década de 1980 representó la segunda tamiento para S. gigas. pesquería después de la langosta espinosa, razón por la que actualmente se encuentra en estado de sobrepesca. Con el objetivo de determinar la variación en la abundancia de CONCLUSIÓN larvas durante la época reproductiva, cuatro localidades del Caribe Mexicano “CM” (México: Puerto Morelos, Sian Se detectó la presencia de larvas de S. Ka’an, Mahahual; Belice: San Pedro) fueron muestreadas. Mensualmente, de mayo a octubre del 2008, se realizaron gigas en todas las estaciones de estudio, con arrastres de plancton en cada localidad empleando una mayor incidencia en la zona norte, observando red cónica (300μm). Temperatura (°C), salinidad (ppm) mayor abundancia entre julio y septiembre, y oxígeno disuelto (mg L-1) fueron registrados para cada

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 95 sitio. Una densidad media larval de 0.34±0.87 larvas·10m-3 Chaplin, J. & V.J. Sandt. 1992. Vertical migration and dis- fue registrada entre localidades, con un pico de abundancia tribution of queen conch veligers, a progress report. entre agosto y septiembre (0.82±1.00 y 0.76±1.68 larvas Proc. Gulf. Carib. Fish. Inst. 42: 158-160. 10m-3, respectivamente). La densidad larval tuvo una Carrillo González F., J. Ochoa, J. Candela, A. Badan, J. correlación del 60% con la salinidad (r=0.6063, p<0.05). Sheinbaum & J.I. González Navarro. Tidal currents in El ANOVA de una vía mostró significancia estadística the Yucatán Channel. Geofís. Int. 46: 199-209 en tiempo (p<0.05) y espacio (p<0.05), donde Puerto Morelos tuvo los mayores registros durante el estudio Coronado C., J. Candela, R. Iglesias Prieto, J. Sheinbaum, (0.54±1.49 larvas 10m-3). Fue registrada una talla media M. López & F.J. Ocampo-Torres. 2007. On the cir- de 332.44±59.66µm. Las tallas variaron significativamente culation in the Puerto Morelos fringing reef lagoon. entre localidades (p<0.05), pero no entre meses (p>0.05). Coral Reefs 26:149-163 El 100% de las larvas capturadas corresponden al estadio I definido por Davis et al (1993), mostrando actividad Corral, J.L. & J. Ogawa. 1987. Cultivo masivo de Strombus reproductiva local, de esta manera, se considera que los gigas en estanques de concreto. Proc. Gulf. Carib. Fish. Inst. 38: 354-351. sitios muestreados en el CM son fuente de larvas para la especie S. gigas. Davis, M., C.A. Bolton & A.W. Stoner. 1993. A compa- rison of larval development, growth, and shell mor- Palabras clave: Temporada reproductiva, densidad larval, phology in three Caribbean Strombus species. Veliger Strombus gigas. 36: 236-244.

de Jesús Navarrete, A. 1999. Distribución y abundancia de REFERENCIAS larvas velígeras de Strombus gigas en Banco Chin- chorro Quintana Roo, México. Tesis de Ph.D., Centro Aldana Aranda, D. & M. Pérez Pérez. 2007. Abundance de Investigación y de Estudios Avanzados del Insti- and distribution of queen conch (Strombus gigas, tuto Politécnico Nacional, Mérida, Yucatán, México. Linné 1758) veligers of Alacranes Reef, Yucatan, Mexico. J. Shellfish Res. 26: 59-63. de Jesús Navarrete, A. 2001. Distribución y abundancia de larvas velígeras de Strombus gigas en Banco Chin- Aldana Aranda, D. & V. Patiño Suárez. 1998. Overview of chorro Quintana Roo, México. Proc. Gulf. Carib. diets used in larviculture of three Caribbean Conchs: Fish. Inst. 52: 174-183. Queen Conch Strombus gigas, Milk Conch Strombus de Jesús Navarrete, A. & D. Aldana Aranda. 2000. Distri- costatus and Fighting Conch Strombus pugilis. Aqua- bution and abundance of Strombus gigas veligers at culture 167: 163-178. six fishing sites on Banco Chinchorro, Quintana Roo, Mexico. J. Shellfish Res. 19: 891-895. Appeldoorn, R.S. 1993. Reproduction, spawning poten- tial radio and larval abundance of queen conch off de Jesús Navarrete, A. & M. Pérez Flores. 2007. Distribu- La Parguera, Puerto Rico. Rept. Caribbean Fishery tion and abundance of strombid larvae in the Bahia Management Council, Mayaguez, Puerto Rico. de la Ascension, Quintana Roo, Mexico. 2007. Proc. Gulf. Carib. Fish. Inst. 58: 411-416. Barile, P.J., A.W. Stoner & C.M. Young. 1994. Phototaxis and vertical migration of the queen conch (Strombus Delgado, G.A., R.A. Glazer, D. Hawtof, D. Aldana Aranda, gigas, Linné) veliger larvae. J. Exp. Mar. Biol. Ecol. L.A. Rodríguez-Gil & A. de Jesús Navarrete. 2008. 183: 147-162. Do queen conch (Strombus gigas) larvae recruiting to the Florida Keys originate from upstream sources? Berg, C.J. & D.A. Olsen. 1989. Conservation and manage- Evidence from plankton and drifter studies. In R. ment of queen conch (Strombus gigas) fisheries in the Grober-Dunsmore & B.D. Keller (eds.). Caribbean Connectivity: Implications for Marine Protected Area Caribbean. Cap. 18, pp 421-442. In J.F. Caddy (ed.). Management. Proc. Spec. Symp., 9-11 November Marine Invertebrate Fisheries Their Assesment and 2006, 59th Meet. Gulf. Carib. Fish. Inst., Belize Management. John Wiley & Sons, New York, New City, Belize. Marine Sanctuaries Conservation Series York, USA. ONMS-08-07. U.S. Depart. Com., NOAA, Off. Nat. Mar. Sanct., Silver Spring, Maryland, USA. Bravo Castro, M.H. 2009. Abundancia de larvas de Caracol rosa Strombus gigas en Quintana Roo. México. Tesis Kinder, T.H. 1983. Shallow currents in the Caribbean sea de Licenciatura, Instituto Tecnológico de Conkal, and Gulf of Mexico as observed with satellite tracked Conkal, Yucatán, México. drifters. Bull. Mar. Sci. 33: 239-246.

96 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 Merino Ibarra, M. 1986. Aspectos de la circulación costera Sokal, R & F. Rohlf. 1995. Biometry. The principles and superficial del Caribe Mexicano con base en obser- practice of statistics in biological research. Freeman vaciones utilizando tarjetas de deriva. Anales Inst. and Company, New York, USA. Cienc. Mar Limnol., U.N.A.M. 13: 31-46. Stoner, A.W. 1997. The status of queen conch Strombus Oliva Rivera, J.J. & A. de Jesús Navarrete. 2000. Composi- gigas research in the Caribbean. Mar. Fish. Rev. 59: ción, distribución y abundancia de larvas de moluscos 14-22. gastrópodos en el sur de Quintana Roo, México y norte de Belice. Rev. Biol Trop. 48: 77-83. Stoner, A.W. & M. Davis. 1997a. Abundance and distribu- tion of queen conch veligers (Strombus gigas, Linné) Pacheco Archundia, V. 2007. Abundancia de larvas de in the central Bahamas. I. Horizontal patterns in rela- Caracol rosa Strombus gigas en el área de Xcaret y tion to reproductive and nursery grounds. J. Shellfish Xel-Há, Quintana Roo, México. Tesis de Licenciatu- Res. 16: 7-18. ra, Tecnológico de Estudios Superiores de Huixquilu- cán, Huixquilucán, Estado de México, México. Stoner, A.W. & M. Davis. 1997b. Abundance and distri- bution of queen conch veligers (Strombus gigas, Pérez Pérez, M. 2004.Segregación de la población de Linné) in the central Bahamas. II. Vertical patterns in Strombus gigas del Arrecife Alacranes con respecto nearshore and deep-water habitats. J. Shellfish Res. a las poblaciones del Norte de Yucatán y el Caribe 16: 19-29. Mexicano Tesis de Ph.D., Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Stoner, A.W., V.J. Sandt & I.F. Boidron Metairon. 1992. Nacional, Mérida, Yucatán, México. Seasonality in reproductive activity and larval abun- dance of queen conch, Strombus gigas. Fish. Bull. Pérez Pérez, M., D. Aldana Aranda, & V. Patiño Suárez. 90: 161-170. 2003. Abundancia de larvas de Strombus en la costa norte de la Península de Yucatán, México, p. 81-87. Stoner, A.W., R. Glazer & P. Barile. 1996. Larval supply In D. Aldana Aranda (eds.). El caracol Strombus to queen conch nurseries: Relationships with gigas: conocimiento integral para su manejo sustenta- recruitment process and population size in Florida ble en el Caribe. CYTED, Mérida, Yucatán, México. and the Bahamas. J. Shellfish Res. 15: 404-420.

Posada, J.M. 2003. Potencial para el transporte y retención Stoner, A.W., N. Mehta & T.N. Lee. 1997. Recruitment of de larvas de Strombus gigas Linnaeus, 1758 (Gastro- Strombus veligers to the Florida keys reef tract: Rela- poda: Caenogastropoda: Strombidae) en el Parque tion to hydrographic events. J. Shellfish Res. 16: 1-6. Nacional Archipiélago de los Roques, Venezuela, p. 89-97. In D. Aldana Aranda (eds.). El caracol Strom- Theile S. 2005. Status of the Queen Conch Strombus gigas bus gigas: conocimiento integral para su manejo stocks, management and trade in the Caribbean: A sustentable en el Caribe. CYTED, Mérida, Yucatán, CITES Secretariat. TRAFFIC , Brussels. México. Weil, E. & R. Laughlin. 1984. Biology, population dyna- Randall, J.E. 1964. Contributions to the biology of the mics, and reproduction of the Queen Conch Strombus queen conch, Strombus gigas. Bull. Mar. Sci. Gulf gigas Linné in the Archipielago de Los Roques Carib. 14: 246-295. National Park. J. Shellfish Res. 4: 45-62.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 89-97, March 2012 97

Coral recruitment to two vessel grounding sites off southeast Florida, USA

Alison L. Moulding1, Vladimir N. Kosmynin2, David S. Gilliam1 1. National Coral Reef Institute, Nova Southeastern University, Oceanographic Center, 8000 North Ocean Dr., Dania Beach, FL 33161 USA; [email protected], [email protected] 2. Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems, 3900 Commonwealth Boulevard, Mail Station 300, Tallahassee, Florida 32399 USA; [email protected]

Received 12-VII-2011. Corrected 22-XI-2011. Accepted 20-XII-2011.

Abstract: Over the last two decades, more than 10 major vessel groundings have occurred on coral reefs offshore southeast Florida. Lack of any published information on coral settlement, post-settlement survival, and juvenile coral growth in the southeast Florida region inhibits efforts to determine if coral populations will be able to effectively re-establish themselves. The goal of this study was to examine these processes to obtain background data needed to determine the potential for natural recovery. Over a three year period annual coral recruitment, juvenile growth, and mortality rates were measured in 20 permanent quadrats at each of two ship grounding and two control sites. The density of new recruits was generally low, ranging from 0.2±0.1 (SE) to 7.1±1.0 recruits m-2. Although the density of coral recruits was generally higher at the grounding sites, mortality rates were high at all sites during the study period. Growth rates of individual colonies were highly variable, and many of the colonies shrank in size due to partial mortality. Results indicate that corals are able to recruit to the damaged reefs but that slow growth rates and high mortality rates may keep these areas in a perpetual cycle of settlement and mortality with little or extremely slow growth to larger size classes, thus inhibiting recovery. Rev. Biol. Trop. 60 (Suppl. 1): 99-108. Epub 2012 March 01.

Key words: recruitment, reef recovery, vessel groundings, growth rates, post settlement survival.

The southeast Florida reef tract consists a number of anthropogenic stressors, one of of four shore-parallel ridges with a diverse which is physical impact from vessel ground- coral reef community similar to that found in ings and anchor damage. Over the past 17 the Western Atlantic and Caribbean (Moyer et years, at least ten large ship groundings and al. 2003, Banks et al. 2008). Though similar six anchor damage events associated with the in fauna, community structure of this high Port Everglades anchorage area have occurred latitude (26° N) region differs from that found near Ft. Lauderdale, Florida. Impacts include in other areas of the Caribbean and Florida flattening of reef topography, removal of living Keys (Moyer et al. 2003). Montastraea caver- benthic resources, and creation of large rubble nosa Linnaeus, 1767 replaces the Montastraea fields. Restoration of these sites has been annularis (Ellis & Solander, 1786) species generally limited to reattachment of scleractin- complex as the dominant species. Additionally, ian corals. Removal of rubble was initiated at average coral colony size is typically small, and grounding sites occurring in 2004 and later in cover is generally low (Moyer et al. 2003). an effort to reduce further damage due to high Coral reefs in southeast Florida are located mobility of debris that could hinder recovery near a highly developed and heavily populated of benthic communities. In general, there has coastline. As a result, they are subjected to been little attempt to restore topography at

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 99 the damaged sites with the exception of some and Federal Pescadores (26°6’44”N, localized efforts initiated in 2004 that have 80°5’30”W). The M/V Eastwind grounded in accompanied rubble stabilization (e.g., cement- March 2004 and resulted in approximately ing larger sized rubble created by the ground- 11 000 m2 of damage on the inner reef just ing of the M/V Eastwind) (Marine Resources north of Port Everglades (Hudson Marine Man- Inc. 2005). However, efforts have been rela- agement Services 2004a). The M/V Federal tively small scale as compared to the larger Pescadores created approximately 23 400 m2 scale efforts to stabilize reef framework and of damage 0.4 km south of the Eastwind restore reef topography further south in the grounding site when it ran aground in October Florida Keys that have included use of artificial 2004 (Hudson Marine Management Services structures such as prefabricated cement mod- 2004b). Both groundings destroyed the existing ules and placement of limestone boulders (Jaap relief, creating large rubble fields from which et al. 2006). large rubble was subsequently removed or Recovery of damaged sites is generally stabilized during restoration activities (Marine defined as the return of both community struc- Resources Inc. 2005), but smaller sized debris ture and function to a state similar to that which remained on site. existed pre-impact (Edwards & Gomez 2007). Two control sites were chosen for com- Although there are thousands of organisms parison to the grounding sites. Because most of which contribute to this structure and function, the large vessel groundings and anchor damage scleractinian corals are often used as indicators events off Ft. Lauderdale have occurred just of recovery since they are the main builders of west of the Port Everglades anchorage, this area habitat. One of the first steps of recovery after was avoided when control sites were selected damage has occurred is the recruitment of new due to the potential for previous impact. Using colonies to the area. Re-establishment of coral GIS, a grid consisting of 15x15 m plots was populations is highly dependent on settlement overlaid on the inner reef just north of the of coral planulae, post-settlement survival, and anchorage area, and two plots were randomly juvenile coral growth. However, coral recruit- picked for the control sites (control sites one: ment in the Caribbean and western Atlantic is 26°9’37”N, 80°5’18”W and two: 26°10’4”N, typically low (Rogers et al. 1984, Hughes & 80°5’15”W). Jackson 1985, Smith 1997, Miller et al. 2000). Twenty permanently marked 1 m2 quadrats Furthermore, slow growth rates of generally at each of the four sites were surveyed annually less than 1 cm yr-1 for many Caribbean species between May 2006 and June 2009. Quadrats (Bak & Engel 1979, Rogers et al. 1984, van were marked at the corners using a stainless Moorsel 1988, Edmunds 2000) can influence steel pin and galvanized nails. A 1 m2 pvc recovery times. Currently no information on frame subdivided into 100 squares 10x10 cm coral recruitment rates or juvenile survival and in size was placed over the pins to accurately growth rates has been published for southeast locate corals within the quadrat. All juvenile Florida. Therefore, the goal of this study was to corals (≤5 cm in diameter) in each quadrat were examine these processes on a small number of identified, measured, and mapped. Juvenile sites off Ft. Lauderdale, Florida to obtain back- corals appearing in the quadrats that were not ground data needed to determine the potential present in the previous years and were not a for natural recovery from damage due to vessel product of colony fission were considered coral groundings that have occurred in this area. recruits. Any corals that appeared in the quad- rats but were absent in subsequent years were METHODS assumed to be dead. The change in maximum diameter of all corals that appeared in multiple Two ship grounding sites were chosen for years was calculated and used for measures of study: the Eastwind (26°7’2”N, 80°5’32”W) coral growth.

100 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 Differences in density of recruits among (p<0.001). A Tukey pair-wise comparison test sites and among years were tested using a indicated that the two grounding sites each two-way ANOVA on ranks after data trans- had a significantly higher density of recruits formations failed to achieve normality due to than either control site (p<0.001) and that the presence of multiple zero values. Differ- density of recruits was significantly higher at ences in average annual mortality among sites the Eastwind grounding site than at the Federal were tested using ANOVA. Post hoc pair-wise Pescadores grounding site (p<0.001). There comparisons were performed with Tukey tests was no significant difference in recruit density when significant differences were found. between the two control sites. Recruit density To further examine similarity in species was significantly higher in 2008 than in 2007 composition of recruits among sites, a Bray- (Tukey, p<0.001) or 2009 (p<0.01). Curtis similarity index was determined. Species Annual mortality rates of juvenile corals abundance data were pooled for all quadrats ranged from 11% to 58%. Mean annual mor- within a site during a survey year, and the data tality rates were higher at the grounding sites were square-root transformed (PRIMER v6). than the control sites during the study period, The results were also used to construct a non- but the difference was not significant (Fig. 3). metric, multi-dimensional scaling (MDS) plot. Survival of juvenile corals for longer than one year ranged from 0 to 30% of the total corals RESULTS observed at each site in 2008 and 2009 (Fig. 4). A total of 18 species recruited to the study Mean juvenile coral density ranged from sites, but the maximum number of species that a low of 0.5±0.1 (SE) juveniles m-2 at control recruited to any one site was 15 (Table 1). Twice site 1 to a high of 11.6±1.4 juveniles m-2 at the as many species recruited to the grounding sites Eastwind grounding site (Fig. 1). The density compared to the control sites (Table 1). Four of recruits ranged from 0.2±0.1 recruits m-2 at common species, Siderastrea siderea (Ellis & control site 2 to 7.1±1.0 recruits m-2 at the Eas- Solander 1786), Siderastrea radians (Pallas twind grounding site (Fig. 2). The results of a 1766), Porites astreoides Lamarck, 1816, and two-way ANOVA on ranks indicated that there Montastraea cavernosa, recruited to all the was a significant difference in density of new sites. Over half of the recruits at the grounding recruits both among sites (p<0.001) and years sites were S. siderea. Porites astreoides and

14 10 2007 12 2006 2007 8 2008 10 2008 2009 -2 -2 2009 6 8

6 4 Recruits m Juveniles m Juveniles 4 2 2

0 0 EW FP CS1 CS2 EW FP CS1 CS2 Site Site

Fig. 1. Mean (+SE) juvenile coral density in quadrats Fig. 2. Mean density (+SE) of coral recruits in quadrats from 2006 to 2009. EW=Eastwind grounding site, from 2007 to 2009. EW=Eastwind grounding site, FP=Federal Pescadores grounding site, CS1=control site FP=Federal Pescadores grounding site, CS1=control site 1, CS2=control site 2. 1, CS2=control site 2.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 101 60 35 30 2008 50 2009 25 40 20 30 15 % Survival % Mortality 20 10

10 5

0 0 EW FP CS1 CS2 EW FP CS1 CS2 Site Site Fig. 4. Percentage of corals observed in 2008 and 2009 Fig. 3. Mean (+SE) annual mortality of juvenile corals that had survived for more than one year. EW=Eastwind in quadrats 2006-2008. EW=Eastwind grounding site, grounding site, FP=Federal Pescadores grounding site, FP=Federal Pescadores grounding site, CS1=control site 1, CS1=control site 1, CS2=control site 2. CS2=control site 2.

TABLE 1 Percentage of recruits settling in the quadrats from 2007 to 2009

Species EW1 FP2 CS13 CS24 Acropora cervicornis -5 - - 2.9 Agaricia agaricites 1.0 0.8 - - Diploria strigosa 3.8 - - - Diploria spp. 1.0 0.8 - - Dichocoenia stokesi 2.9 4.2 5.9 - Eusmilia fastigiata 1.6 1.7 2.9 - Favia fragum 1.0 - - - Montastraea cavernosa 5.1 7.6 20.6 14.3 Meandrina meandrites 2.2 1.7 5.9 - Mycetophyllia sp. 0.3 - - - diffusa 1.3 - - - Porites astreoides 5.4 4.2 35.3 28.6 Porites porites 1.0 0.8 - 2.9 Phyllangia americana - 0.8 - - Solenastrea bournoni 14.1 5.0 - - Scolymia spp. - 0.8 - - Stephanocoenia intersepta 2.6 1.7 - 2.9 Siderastrea radians 3.2 1.7 2.9 8.6 Siderastrea siderea 52.6 68.1 26.5 40.0 unidentified 1.0 - - - Number of recruits 312 119 34 35 Number of species 15 14 7 7

1. EW=Eastwind. 2. FP=Federal Pescadores. 3. CS1=control site 1. 4. CS2=control site 2. 5. Dashed line indicates no recruits of that species.

102 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 S. siderea comprised a majority of the total was low, so in these cases, rates should be inter- recruits (64% to 67% combined) at the control preted cautiously. sites though M. cavernosa also contributed to a relatively large portion (14% to 21%) com- DISCUSSION pared to the grounding sites (5% to 8%). A non-metric multi-dimensional scaling Coral reef recovery from disturbances such (MDS) plot was used to visualize the Bray- as ship groundings is dependent on coral settle- Curtis similarity of sites based on species abun- ment, survival, and growth to larger size class- dance of recruits (Fig. 5). Two main clusters es. There are many factors that can affect these with 60% similarity were formed, one consist- processes and, thus, affect recovery ability. In ing of all the grounding sites (minus the 2007 the present study, annual coral recruitment rates Federal Pescadores) and the other consisting of were low (0.2 to 7.1 recruits m-2) at all sites as 2008 and 2009 control site1 and 2008 control generally seen in other studies of recruitment to site 2. The 2007 Federal Pescadores data and natural substrate in the Caribbean (Rogers et al. 2009 control site 2 clustered with the above 1984, Hughes & Jackson 1985). Recruitment mentioned data at 40% similarity, and the 2007 rates have been observed to decline at higher data for both control sites clustered with the latitudes (Harriott & Banks 1995, Harriott rest of the sites at 20% similarity. 1999, Hughes et al. 2002), which is consistent Growth rates were highly variable both with the findings of the current study. Rates within and between species and often between observed were similar but slightly lower than sites (Table 2). Most species grew less than 1 those reported for nearby areas to the south cm yr-1 except for Agaricia agaricites (Lin- such as Biscayne National Park (2-13 recruits naeus 1758) which was only observed at the m-2: Miller et al. 2000) and the Florida Keys grounding sites. Many colonies (23%) suffered (<10 m-2: Smith 1997). A possible reason for partial mortality, resulting in smaller colony reduced recruitment rates to our study sites in size in subsequent years, and 6% of the colo- comparison to sites further south is reduced nies did not grow between survey periods. For larval supply. Although larval supply was not some species, the number of corals measured specifically studied here, reduced fecundity

2D Stress: 0.09 Site Similarity EW 20 FP 40 2007 CS1 60 CS2

2009 2008 2009 2007 2008 2009 2007 2008 2007 2009 2008

Fig. 5. Non-metric multi-dimensional scaling (MDS) plot of Bray-Curtis similarity index of recruit species composition.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 103 TABLE 2 Mean (± SE) annual growth rates (mm yr-1) for juvenile corals

Species EW1 FP2 CS13 CS24 All sites pooled Agaricia agaricites 14.9±9.6 (3)5 19.6±2.3 (2) -6 - 16.8±5.4 (5) Diploria spp. 4.7±1.6 (6) 8.2±0 (1) - - 5.2±1.4 (7) Dichocoenia stokesii 1.6±1.2 (3) 3.9±0 (1) 2.8±4.0 (4) -2.9±2.5 (3) 1.0±1.7 (11) Diploria strigosa 5.8±1.6 (8) 1.9±0 (1) - - 5.4±1.5 (9) Eusmilia fastigiata 3.7±0 (1) 7.7±1.4 (3) - - 6.7±1.4 (4) Montastraea cavernosa 6.7±1.6 (9) - 0.9±1.0 (7) 2.2±2.1 (12) 3.3±1.1 (28) Meandrina meandrites 1.0±3.9 (2) 6.1±2.7 (5) 5.1±2.5 (5) - 4.0±1.5 (12) Oculina diffusa -1.0±0 (1) - - - -1.0±0 (1) Porites astreoides 9.1±1.8 (12) 11.1±6.3 (2) 2.7±4.7 (5) 4.7±2.3 (5) 7.0±1.5 (24) Porites porites 5.7±3.8 (4) - - 9.1±2.3 (3) 7.2±2.3 (7) Solenastrea bournoni 1.9±0.6 (54) 0±0.9 (2) - - 1.8±0.6 (56) Stephanocoenia intersepta 9.0±3.3 (5) 8.7±2.1 (3) - 6.7±0 (1) 8.7±1.8 (9) Siderastrea radians 2.8±2.7 (4) - 5.6±0 (1) 8.5±7.5 (2) 4.8±2.4 (7) Siderastrea siderea 2.9±0.4 (147) 2.1±0.7 (46) 3.3±4.4 (3) -2.1±6.6 (14) 2.4±0.4 (210)

1. EW=Eastwind 2. FP=Federal Pescadores 3. CS1=control site 1 4. CS2=control site 2 5. Number in parentheses represents number of colonies measured. 6. Dashed line indicates no growth rates were measured.

has been observed at higher latitudes (Hughes end for most species (Bak & Engel 1979, et al. 2000, St. Gelais 2010), which may con- van Moorsel 1988, Edmunds 2000). The vast tribute to lower recruitment rates. Differential majority of colonies grew less than 1 cm yr-1. recruitment among sites in the current study However, many of the colonies (23%) experi- is probably not impacted by larval supply enced negative growth and shrank in size due since recruitment was significantly higher at to partial mortality. Average colony size in the the grounding sites compared to the controls. region tends to be small (< 50 cm, Moyer et al. Higher recruitment to the grounding sites may 2003) in comparison to other areas, and partial be the result of the greater availability of mortality and slow growth rates observed in the less-colonized substrate. The presence of well- current study likely contribute to these patterns. established communities at the control sites Although mean annual mortality rates may have resulted in lower settlement through were not significantly different among sites, the preemption of space and lower survival total mortality of juvenile corals was about through competitive interactions (Birkeland 1977, Bak & Engel 1979, Maida et al. 2001, 50% at the grounding sites and 40% at the Kuffner et al. 2006, Vermeij 2006, Arnold et control sites during the study period, indicating al. 2010). a slightly higher mortality of juvenile corals at As is the case in other studies (Rylaarsdam the grounding sites over the three year study 1983, Babcock 1985, van Moorsel 1988, Ver- period. Additionally, the percentage of corals meij 2006), growth rates of individual colonies that survived more than one year was gener- in this study were highly variable. Neverthe- ally low (< 30%), indicating low longer-term less, mean growth rates were within the range (> 1 year) survival across both grounding and reported in the literature though on the lower control sites.

104 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 Low survival of corals was likely medi- 5 years after deployment and that scleractinian ated by different processes at the grounding corals on the artificial reefs had similar cover, and control sites due to the differences in though higher abundance of juvenile corals, habitat. Although no physical measurements compared to the natural reef after the same were taken, qualitatively it appeared that sand period. The impoverished benthic community and rubble movement occurred at the ground- at the grounding sites 5 years post-grounding ing sites at an increased rate in comparison to provides a sharp contrast to the moderately undisturbed sites. Some of the quadrats that high similarity in benthic community structure were initially established on hard substrate between the natural reef and artificial reef at the grounding sites were noted to be cov- structures 5 years post deployment that Than- ered with sand and rubble during subsequent ner et al. (2006) reported and indicates that surveys. The movement and accumulation of topographic complexity may be important for sand and rubble was likely facilitated by the the recovery of the grounding sites. flattening and destruction of the relief by the Community structure of newly settled grounded ships. The presence and movement of recruits was distinct at the grounding sites. sand and rubble likely inhibited recruit survival More species recruited to the grounding sites at the grounding sites through both burial and (14-15 species) compared to the reference scour (Bak & Engel 1979). sites (7 species), but settlement was heavily Low survival at the control sites may have dominated (53-68%) by S. siderea. Siderastrea been affected by competitive interactions with spp. are able to live in conditions gener- more established benthic organisms and algae ally considered inimical to coral survival such (Birkeland 1977, Bak & Engel 1979, Maida et as fluctuating salinity, low temperatures, and al. 2001, Kuffner et al. 2006, Vermeij 2006). high sedimentation (Macintyre & Pilkey 1969, Though no quantitative data of percent cover Muthiga & Szmant 1987, Lirman & Manzello were taken within the quadrats, visually the 2007). Their dominance at the grounding sites grounding sites appeared more barren in com- might be a result of their tolerance to the high parison to the control sites (Fig. 6). In contrast, sedimentation observed due to the destruc- Thanner et al. (2006) found that community tion of topography from the ship groundings. structure on artificial reefs in southeast Florida Montastraea cavernosa, the dominant species reached between 45% to 58% similarity to nat- in the region (Moyer et al. 2003), comprised ural reefs in benthic species composition 4 to a much smaller proportion of the recruits at

Fig. 6. Photographs of the Federal Pescadores grounding site (left) and control site 1 (right) showing the visual difference in cover of the substrate.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 105 the grounding sites (<8%) compared to the In conclusion, ship groundings on coral reference sites (14-20%). reefs cause not only serious damage to the reef The concern is that even though corals are builders, but also result in a loss of habitat for recruiting to the grounding sites, they are not other organisms, consequently leading to bar- surviving and growing to larger size classes. ren areas. They often flatten the topography, This phenomenon has been observed in other leaving a source of sand and rubble that may studies where corals have recruited to dam- move over the area and inhibit benthic organ- aged sites but have failed to achieve larger size ism settlement, growth, and survival. This classes even on a decadal time scale (Gittings study has shown that corals are able to recruit et al. 1990, Rogers 1984, Cook et al. 1994, to damaged areas but that slow growth rates Rogers & Garrison 2001). Corals that have low and high mortality rates may keep these areas recruitment and growth rates, as many of the in a perpetual cycle of settlement and mortality broadcast spawning, reef building corals do, with little or extremely slow growth to larger may take even longer to recover as models have size classes, thus inhibiting recovery. While determined that convergence to pre-disturbance the exact processes underlying differences in levels are highly dependent on recruitment recruitment, growth, and mortality, both among rates (Hughes & Tanner 2000, Lirman & Miller sites in this study and in comparison to other 2003). Given the pattern of low recruitment and areas of Florida, are unknown, we believe that slow growth of the broadcast spawning corals the loss of topography at the grounding sites observed in the present study, natural recovery will negatively impact coral recovery. There- is likely to be slow. Additionally, the low sur- fore, methods of restoration compensating for vival of all corals beyond a year observed at increased sediment mobility and flattened relief the study sites will contribute to slow recovery. are recommended to enhance natural recovery Recovery is generally defined as the return potential of grounding sites. of community structure and function of the injured site to conditions similar to those that ACKNOWLEDGMENTS existed pre-disturbance (Edwards & Gomez 2007). However, injured sites have been known We thank Nova Southeastern University to recover to alternate community states distinct graduate students for their assistance with field from those present pre-disturbance (Hatcher work and Brian Walker for GIS assistance. The 1984). Aronson and Swanson (1997) found Hillsboro Inlet District and Florida Department that a decade after the injury occurred, the of Environmental Protection provided funding Wellwood grounding site in the Florida Keys for this project. was more similar to a hard bottom community than to its original spur and groove structure. The grounding sites in the current study were RESUMEN visually distinct from control sites. They were En las dos últimas décadas, más de 10 grandes noticeably flat and devoid of larger coral encallamientos de embarcaciones se han producido en los colonies and other benthic invertebrates such arrecifes de coral mar afuera en el sureste de Florida. La as sponges and gorgonians common at the con- falta de información publicada sobre el asentamiento de corales y sobrevivencia post-asentamiento y de los corales trol sites. Though return of benthic community juveniles que crecen en la región, limita los esfuerzos para structure, if possible, is expected to take on determinar si las poblaciones de coral serán capaces de the order of decades, return of topography is restablecerse por ellas mismas. El objetivo de este estudio expected to take much longer and may never fue examinar estos procesos para obtener la información occur. Thus, it is possible that the grounding necesaria para determinar el potencial de recuperación natural. Se midió el reclutamiento anual de coral joven, el sites may stabilize to some alternate state that crecimiento y las tasas de mortalidad por un período de tres is dissimilar from what was previously present años, mediante 20 cuadrantes permanentes en cada uno de before impact. los dos encallamientos de barcos y dos sitios de control.

106 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 La densidad de nuevos reclutamientos fue generalmente Global Aspects of Coral Reefs: Health, Hazards, and baja, de 0.2±0.1 a 7.1±1.0 reclutamientos m-2. Aunque la History. University of Miami, Miami, Florida, USA. densidad del reclutamiento fue generalmente más alta en los sitios de encallamiento también hubo mayor mortalidad Edmunds, P.J. 2000. Patterns in the distribution of juve- de corales juveniles en esos sitios durante el período de nile corals and coral reef community structure in St. estudio. Las tasas de crecimiento de las colonias individua- John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202: les fueron altamente variables, y muchas de las colonias 113-124. se redujeron en tallas debido a mortalidad parcial. Los resultados indican que los corales presentan una disposi- Edwards, A.J. & E.D. Gomez. 2007. Reef restoration con- ción a reclutarse en arrecifes dañados, pero las lentas tasas cepts and guidelines: making sensible management de crecimiento y la alta mortalidad pueden mantener esas choices in the face of uncertainty. Coral Reef Targe- áreas en un perpetuo ciclo de asentamiento y mortalidad ted Research & Capacity Building for Management con poco o extremadamente lento crecimiento hacia las cla- Programme, St. Lucia, Australia. ses de tallas largas, por lo tanto inhibiendo la recuperación. Gittings, S.R., T.J. Bright & B.S. Holland. 1990. Five Palabras clave: reclutamiento, recuperación de coral, years of coral recovery following a freighter groun- encallamiento de barcos, tasas de crecimiento, sobreviven- ding in the Florida Keys. p. 89-105. In W.A. Jaap cia post-asentamiento (ed). Diving for Science: Proceedings of the Ame- rican Academy of Underwater Sciences 10th Annual Scientific Diving Symposium. American Academy of REFERENCES Underwater Sciences, Costa Mesa, California, USA.

Arnold, S.N., R.S. Steneck & P.J. Mumby. 2010. Running Harriott, V.J. 1999. Coral recruitment at a high latitude the gauntlet: inhibitory effects of algal turfs on the Pacific site: a comparison with Atlantic reefs. Bull. processes of coral recruitment. Mar. Ecol. Prog. Ser. Mar. Sci. 65: 881-891. 414: 91-105. Harriott, V.J. & S.A. Banks. 1995. Recruitment of sclerac- Aronson, R.B. & D.W. Swanson. 1997. Video surveys of tinian corals in the Solitary Islands Marine Reserve, coral reefs: uni- and multivariate applications. Proc. a high latitude coral-dominated community in eastern 8th Int. Coral Reef Symp., Panama 2: 1441-1446. Australia. Mar. Ecol. Prog. Ser. 123: 155-161.

Babcock, R.C. 1985. Growth and mortality in juvenile Hatcher, B.G. 1984. A maritime accident provides evidence corals (Goniastrea, Platygyra, and Acropora): the for alternate stable states in benthic communities on first year. Proc. 5th Int. Coral Reef Congr., Tahiti 4: coral reefs. Coral Reefs 3: 199-204. 355-360. Hudson Marine Management Services. 2004a. M/V Bak, R.P.M. & M.S. Engel. 1979. Distribution, abundance Eastwind Grounding Site Ft. Lauderdale, Florida and survival of juvenile hermatypic corals (Scle- Injury Assessment. Thomas Miller Inc., Miami, ractinia) and the importance of early life history Florida, USA strategies in the parent coral community. Mar. Biol. 54: 341-352. Hudson Marine Management Services. 2004b. M/V Fede- ral Pescadores Site Ft. Lauderdale, Florida Injury Banks, K.W., B.M. Riegl, V.P. Richards, B.K. Walker, Assessment Report. Vandeventer Black LLP, Norfolk, K.P. Helmle, L.K.B. Jordan, J. Phipps, M.S. Shivji, Virginia, USA. R.E. Spieler & R.E. Dodge. 2008. The reef tract of continental southeast Florida (Miami-Dade, Broward Hughes, T.P. & J.B.C. Jackson. 1985. Population dynamics and Palm Beach Counties, USA), p. 175-220. In B.M. and life histories of foliaceous corals. Ecol. Monogr. Riegl and R.E. Dodge (eds). Coral Reefs of the USA. 55: 141-166. Springer, London, England. Hughes, T. P. & J. Tanner. 2000. Recruitment failure, life Birkeland, C. 1977. The importance of rate of biomass histories, and long-term decline of Caribbean corals. accumulation in early successional stages of benthic Ecology 81: 2250-2263. communities to the survival of coral recruits. Proc. 3rd Int. Coral Reef Symp., Miami 1: 15-21. Hughes, T.P, A.H. Baird, E.A. Dinsdale, N.A. Moltscha- niwsky, M.S. Pratchet, J.E. Tanner & B.L. Willis. Cook, C.B., R.E. Dodge, & S.R. Smith. 1994. Fifty years 2000. Supply-side ecology works both ways: the link of impacts on coral reefs in Bermuda. p. 160-166. between benthic adults, fecundity, and larval recruits. In R.N. Ginsburg (compiler). Proc. Colloquium on Ecology 81: 2241-2249.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 107 Hughes, T.P., A.H. Baird, E.A. Dinsdale, V.J. Harriott, high-latitude South Florida (Broward County, USA) N.A. Moltschaniwsky, Pratchet, J.E. Tanner & B.L. reef system. Coral Reefs 22: 447-464. Willis. 2002. Detecting regional variation using meta- analysis and large-scale sampling: latitudinal patterns Muthiga, N.A. & A.M. Szmant. 1987. The effects of in recruitment. Ecology 83: 436-451. salinity stress on the rates of aerobic respiration and photosynthesis in the hermatypic coral Siderastrea Jaap, W.C., J.H. Hudson R.E. Dodge, D. Gilliam & R. siderea. Biol. Bull. 173: 539-551. Shaul. 2006. Coral reef restoration with case studies from Florida. p. 478-514. In I.M. Cote & J.D. Rey- Rogers, C.S, H.C. Fitz III, M. Gilnack, J. Beets & J. Har- nolds (eds). Coral Reef Conservation. Cambridge din. 1984. Scleractinian coral recruitment patterns at University, Cambridge, England. Salt River Submarine Canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3: 69-76. Kuffner, I.B., L.J. Walters, M.A. Becerro, V.J. Paul, R. Ritson-Williams & K.S. Beach. 2006. Inhibition of Rogers, C.S. & V. Garrison. 2001. Ten years after the coral recruitment by macroalgae and cyanobacteria. crime: lasting effects of damage from a cruise ship Mar. Ecol. Prog. Ser. 323: 107-117. anchor on a coral reef in St. John, U.S. Virgin Islands. Bull. Mar. Sci. 69: 793-803. Lirman, D. & M.W. Miller. 2003. Modeling and monitoring tools to assess recovery status and convergence rates Rylaarsdam, K.W. 1983. Life histories and abundance pat- between restored and undisturbed coral reef habitats. terns of colonial corals on Jamaican reefs. Mar. Ecol. Restor. Ecol. 11: 448-456. Prog. Ser. 13: 249-260.

Lirman, D. & D. Manzello. 2007. Patterns of resistance Smith, S.R. 1997. Patterns of coral settlement, recruitment and resilience of the stress-tolerant coral Siderastrea and juvenile mortality with depth at Conch Reef, radians (Pallas) to sub-optimal salinity and sediment Florida. Proc. 8th Int. Coral Reef Symp., Panama 2: burial. J. Exp. Mar. Biol. Ecol. 369: 72-77. 1197-1202.

Macintyre, I.G. & O.H. Pilkey. 1969. Tropical reef corals: St. Gelais, A.T. 2010. Reproductive ecology of Sideras- tolerance of low temperatures on the North Carolina trea siderea: histological analysis of gametogene- continental shelf. Science 166: 374-375. sis, spawning, and latitudinal fecundity variation. Master’s Thesis, Nova Southeastern University, Maida, M., P.W. Sammarco & J.C. Coll. 2001. Effects Dania Beach, Florida, USA. of soft corals on scleractinian coral recruitment. 2: Allelopathy, spat survivorship and reef community Thanner, S.E., T.L. McIntosh & S.M. Blair. 2006. Develo- structure. Mar. Ecol. 22: 397-414. pment of benthic and fish assemblages on artificial reef materials compared to adjacent natural reef Marine Resources Inc. 2005. Proposed Restoration Plan assemblages in Miami-Dade County, Florida. Bull. for Post-Grounding Activities: M/V Eastwind Groun- Mar. Sci. 78: 57-70. ding Site Offshore Broward County, Florida. Houck, Hamilton, & Anderson, P.A., Miami, Florida, USA. Van Moorsel, G.W.N.M. 1988. Early maximum growth of stony corals () after settlement on artifi- Miller, M.W., E. Weil & A.M. Szmant. 2000. Coral cial substrata on a Caribbean reef. Mar. Ecol. Prog. recruitment and juvenile mortality as structuring Ser. 50: 127-135. factors for reef benthic communities in Biscayne National Park, USA. Coral Reefs 19: 115-123. Vermeij, M.J.A. 2006. Early life-history dynamics of Caribbean coral species on artificial substratum: the Moyer, R.P., B. Riegl, K. Banks & R.E. Dodge. 2003. Spa- importance of competition, growth and variation in tial patterns and ecology of benthic communities on a life-history strategy. Coral Reefs 25: 59-71.

108 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 99-108, March 2012 Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

Ian M. Sandeman1 1. Dept. of Biology, Trent University, Peterborough, Ontario, K9J 7B8, ; [email protected] or [email protected]

Received 23-VI-2011. Corrected 14-XII-2011. Accepted 20-XII-2011.

Abstract: Ocean acidification is altering the calcification of corals, but the mechanism is still unclear. To explore what controls calcification, small pieces from the edges of thin plates of Agaricia agaricites were suspended from a torsion microbalance into gently stirred, temperature controlled, seawater. Net calcification rates were monitored while light, temperature and pH were manipulated singly. The living coral pieces were sensitive to changes in conditions, especially light, and calcification was often suspended for one or two hours or overnight. The mean calcification rate increased from 0.06 in the dark to 0.10 mg.h-1.cm-2 (T test, n=8, p<0.01) in low light (15 μmol.s-1.m-2) and showed a positive linear relationship with temperature. With a reduction of mean pH from 8.2 to 7.6 the mean calcification rate in the light (65 μmol.s-1.m-2) increased from 0.19 to 0.28 mg.h-1.cm-2 (T test, n=8, p<0.05) indicating a dependency on carbon dioxide. After waterpiking and exposure of the skeletal surface/organic matrix to seawater, calcification showed an astonishing initial increase of more than an order of magnitude then decreased following a non-linear generalised Michaelis-Menten growth curve and reached a steady rate. Calcification rate of the freshly waterpiked coral was not influenced by light and was positively correlated with temperature. For a mean pH reduction from 8.1 to 7.6 the mean calcification rate increased from 0.18 to 0.32 mg.h-1.cm-2 (T test, n=11, p<0.02) again indicating a dependency on carbon dioxide. Calcification ceased in the presence of the carbonic anhydrase inhibitor azolamide. Staining confirmed the presence of carbonic anhydrase, particularly on the ridges of septae. After immersion of waterpiked corals in seawater for 48 hours weight gain and loss became linear and positively correlated to temperature. When the mean pH was reduced from 8.2 to 7.5 the mean rate of weight gain decreased from 0.25 to 0.13 mg.h-1.cm-2 (T test, n=6, p<0.05) indicating a dependence on carbonate. At a pH of 6.5 the skeleton lost weight at a rate of 1.8 mg.h-1.cm-2. The relationship between net calcification and pH (n=2) indicates that wt gain turns to loss at pH 7.4. These experiments confirm that calcification is a two-step process, involving secretion of a layer of organic matrix incorporating carbonic anhydrase to produce an active calcifying surface which uses carbon dioxide rather than carbonate. It is also unlikely that the calcifying surface is in direct contact with seawater. Inorganic deposition or dissolution of the skeleton in exposed dead areas of coral is a different phenomenon and is carbon- ate related. The wide range in results from this and other studies of calcification rate and carbon dioxide may be explainable in terms of the ratio of “live” to “dead” areas of coral. Rev. Biol. Trop. 60 (Suppl. 1): 109-126. Epub 2012 March 01.

Key words: coral calcification, CO2, pH, temperature, organic matrix, carbonic anhydrase.

- The processes involved in the production acid (H2CO3), bicarbonate (HCO3 ) and car- 2- of an aragonite (CaCO3) skeleton in corals bonate (CO3 ), with the equilibria between are poorly known compared to calcification in them described by their equilibrium constants other animals (Allemand et al. 2011). Seawater and their relationships with pH , alkalinity and contains about 10.3 mmol.kg-1 of calcium ions temperature. What is still not clear is in what (Ca2+), dissolved inorganic carbon is present form dissolved inorganic carbon (DIC) reaches 2+ in seawater as carbon dioxide (CO2), carbonic the site of calcification, how DIC and Ca get

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 109 there and to what extent, if at all, the calcify- rate during the most recent decade was not sig- ing surface is in direct contact with seawater. It nificantly different from those of the preceding seems to have been taken for granted that the 5 decades. Fabricius et al. (2011) found that formation of aragonite crystals would result as pH declined from 8.1 to 7.8 (the expected 2+ 2- from the combination of Ca and CO3 dis- change by the end of the century), found reduc- solved in seawater. However, Lee et al. (2010) tions in coral diversity but not all corals were have reported crystalline aragonite deposition affected. Krief et al. 2010 kept coral fragments from a solution of CaCl2 containing carbonic in controlled aquarium conditions with normal anhydrase using CO2 directly from the atmo- and raised C02 levels equivalent to pH values sphere. The sources of calcium and carbon and of 8.09, 7.49 and 7.19 and the fragments all how they reach the calcification site have been survived and added new skeleton. The Mediter- reviewed by Cohen & McConnaughey (2003), ranean coral Cladocera in low pH level did not Furla et al. (2000) and Allemand et al. (2004) show predicted reduced calcification (Rodolfo- and Allemand et al. (2011). Carbon-dioxide Metalpa et al. 2010, 2011). There is a lot of which can move freely through cell membranes information on the growth and dissolution was proposed by McConnaughey (1989) as kinetics of finely divided aragonite (Gutjahr et a substrate for calcification to account for al., 1996, Cubillas, 2005) but little information 18O and 13C deficiencies in coral skeletons on how dead coral behaves. Rodolfo-Metalpa (McConnaughey, 2000). The response of cor- et al.(2011) found that dead corals did not als to changes in CO2 partial pressure and dissolve at a pH of 7.8 and measured dissolu- temperature was reviewed by Reynaud et al. tion rates at pH 7.4 (0.3-0.6 mg.g-1.d-1) and (2003). While calcification and photosynthe- 6.8 (3.7-4.2 mg.g-1.d-1). Rodolfo-Metalpa et sis may compete for the same DIC pool they al., (2011) suggested that coral tissues protect are sometimes regarded as complementary the skeletons from corrosive (Ω < 1) seawater. (Gattuso et al. 1999) rather than in competi- Villegas-Jiminez et al. (2009) reported large tion (Langdon & Atkinson, 2005). With a consistent proton/Ca2+ exchanges which may focus on ocean acidification as the result of have far reaching implications for the interpre- increased anthropogenic carbon dioxide in the tation of kinetic and equilibrium exchanges. As atmosphere, calcification has been increasingly the growth and dissolution kinetics are similar linked to the calcium-carbonate saturation state for calcite and aragonite (Gutjahr et al., 1996) (Ω) which is the ratio of the ion concentration the same problems of interpretation are likely 2+ 2- product ([Ca ] x [CO3 ]) to the solubility to exist for aragonite. product of the mineral deposited, in this case Active calcification in scleratinian corals aragonite (Allemande et al. 2004). As acidity is a two stage process which involves secre- increases the relative concentration of carbon- tion of a layer of organic matrix (reviewed by ate in seawater is reduced and has been used to Allemand et al.1998 and Allemand et al. 2011) predict decreased calcification at the organism and calcium carbonate, crystallized in the form and community levels (Kleypas et al., 1999; of aragonite, is deposited in the organic matrix Gattuso et al., 1999, Marubini & Thake, 1999, with the involvement of structural proteins with Langdon, 2000, Langdon et al., 2000 Langdon a catalytic role similar to that of carbonic anhy- et al. 2003 and Erez et al. 2011). However drase (Tambutté et al. 2007), calcium binding problems have emerged with the link between compounds (Isa & Okazaki, 1987, Constantz calcification and carbonate concentration or & Wiener 1988 and Puverel et al. 2005) and saturation state (Jury et al 2010, De Putron proteins regulating the biomineralization pro- et al. or with the predictions that have fol- cess along with Mg2+ which inhibits calcite lowed. From the banding of Florida corals formation (Rahman & Oomori, 2009). Arago- from 1937 to 1996 Helmle et al., 2011 found nite deposition takes place from the extracel- that calcification was stable and the average lular calcifying fluid (ECF) or hydrogel-like

110 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 medium (ECM) (Bryan & Hill, 1941 and Cuif this study, a stable torsion microbalance was et al. 2004a) onto the organic matrix frame- developed, following Kesling & Crafts (1962), work on the surface of the skeleton. Charged from which small pieces of coral could be 2+ - 2- ions such as Ca , HCO3 and CO3 cannot continuously suspended in seawater for periods move passively through cell membranes so of several hours or days while the seawater either active transport via a transcellular route, medium was manipulated, a parameter at a passive diffusion of ions or seawater using a time, with minimum disturbance to the coral. paracellular route at the boundaries of cells, Kesling & Crafts (1962) outlined the phys- or some combination of these routes may be ics of the torsion balance. In our version of involved (Allemand et al. 2011, Cohen & the balance the beam and lengths of wire are McConnaughey, 2003). Ca2+, for example, may used are shorter and piano wire was replaced arrive from the calicoblastic layer as the result with thinner wire of stainless steel, tungsten or of the Ca2+ATPase pump such that protons silicon carbide with a central core of tungsten, are moved in the opposite direction enhanc- all of which were found to be less affected by ing the diffusion of CO2 to the ECM (Adkins seawater . Mirrors and laser beams were used et al. 2003, Sandeman, 2008a). Allemand et to achieve magnification of the angular rotation al. 2011 reviewed the possible light enhance- of the torsion wire. Early evaluation indicated ment mechanisms for calcification. The range that wire of 0.05-0.15mm gave a satisfactory of ratios observed for calcification rates in the sensitivity, that tension did not effect the sensi- light versus in the dark is large and the median tivity but the sensitivity decreased with heavier value of enhanced calcification in light (LEC) pieces of coral. Davies (1989) established with is around 3 (Gattuso et al. 1999). his buoyant weighing technique that changes Calcification rates of corals are common- in coral tissue weight over the time span of ly derived by buoyant weighing techniques an experiment were small and could be cor- (Davies, 1989), uptake of the radioactive iso- rected for, and could be ignored altogether for tope 45Ca ( eg Moya et al. 2006, Al-Horani, imperforate corals such as Agaricia. A method 2007), the alkalinity anomaly technique (Smith was developed for calibration of the balance & Key, 1975) or using a sclero-chronological without the need to apply the complex equa- technique (eg by Gischler & Oschmann 2005). tions (Davies, 1989 and Jokiel et al, 1978) used Each of these methods has its advantages and for determining the air weight of coral skeleton disadvantages, with some requiring destruction from its weight in seawater. of the coral. The buoyant weighing technique This study was started initially to test and used by Franzisket (1964) and developed by improve the balance and to evaluate its poten- Davies (1989) for nubbins of Porites porites tial for the measurement of weight change in has been used to measure calcification rates coral calcification. The method clearly has over time periods of less than a day. In physi- major limitations in that the system is open ological studies one disadvantage of this tech- and the seawater medium can exchange CO2 nique is that the coral or a coral ‘nubbins’ has with the air. Also, removal of water for analy- to be transferred to and from a balance for sis changes the water level and interferes weighing. For physiological experiments over with balance function, the only means avail- shorter time periods it is desirable to minimise able of monitoring chemistry of the seawater any physical disturbance and provide stable in situ was with a pH probe. Thus with the conditions while still being able to change system open to the air it can only provide an experimental parameters such as light, tem- approximate indication of the carbonate status perature or pH. Analytical balances are expen- of the seawater. The aims of the study were to sive, sensitive to sea air and because they tend compare net calcification of live coral, of the to drift they may require re-zeroing regularly skeleton after removal of the tissue and of dead which requires disturbing the organism. For coral, and to investigate how net calcification

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 111 2- varies with temperature, irradiance and pH, the (2010). [CO2], [ CO3 ] and Ω were estimated latter with a potential to indicate whether CO2 (Table 1) using the CO@SYS program (Lewis 2- or CO3 are used as the substrate for calcifica- and Wallis 1998) and the NBS Buffer scale. tion. The early results were so unexpected, and For all experiments, single pieces of coral had the potential to contribute to mechanisms were suspended by the monofilament loop and of calcification that in spite of the limitations a 5-6 cm length of 0.05 mm diam. stainless of the methods and the fact that time con- steel (s/s) wire from the beam of the torsion straints meant that some experiments were not balance (Fig. 1) into a vessel with 1 or 2l of sea- repeated, it seemed important to communicate water that had been passed through activated the results more widely. charcoal and millepore filtered (0.45µ). The temperature of the water in the chamber except where otherwise stated was maintained at 28ºC MATERIALS AND METHODS and was regulated to within 0.1ºC by a tem- Small pieces of Agaricia agaricites were perature sensing thermistor, regulator circuit snipped from the edge of thin plates of young colonies growing near the reef crest opposite the Discovery Bay Marine Laboratory. The pieces were immediately transported to the seawater tables where they were trimmed to a suitable size (1-2 cm2) then suspended by loops of thin (0.025 mm diam.) polyester monofilament in gently flowing seawater that had been passed through frequently changed filters of cheesecloth and activated charcoal. The coral pieces were held for two or three days until used, in a regime of dark (6.30pm-6.30am) and light (6.30am- 6.30pm) at about 200µmol photons under a mercury halide floodlight (Philips 25W, 25°). Seawater used in the experimental chambers was Fig. 1. The torsion balance. The ends of a 15cm length of collected from outside the bay on the fore reef, torsion wire (tungsten, diam. 0.05-0.15mm) are embedded passed through activated charcoal and millepore in short pieces of stainless steel tubing (0.5mm OD) with cyanoacrylate. One end is held by friction fit in a filtered (0.45µ). Salinity was measured with a polyethylene cylinder which can be rotated in its mount Pinpoint Salinity Monitor (American Marine (torsion wire adjustment). The other end of the torsion Inc.). Total Alkalinity of the seawater was not wire is inserted into a 1cm cylinder (diam. 0.62cm) of low measured directly but was estimated from salini- density polyethylene with a cylindrical rare earth magnet ty using a formula for northern Caribbean waters (0.31 x 0.31cm diam.) embedded in its other end. The wire et al. is held under tension by a second similar magnet embedded (TA=57.3 x Sal. + 296.4 ± 19.3) from Cai in the end of a threaded 6.35mm diam. polyethylene rod. This rod can be turned to change the separation between TABLE 1 the two magnets. A carbon fibre beam is inserted through Estimated carbon parameters for the seawater a hole drilled through the polyethelyene cylinder at right used in experiments angles to the torsion wire. A second carbon fibre rod inserted into the polyethylene cylinder supports a small piece (2x4mm) of thin cover glass which acts as a mirror. Control pH Treatment pH Parameter On one end of the beam is a small vertical wire hook from (means) (Means) which coral samples can be suspended. The other end of pH (NBS) 8.2 8.1 7.6 7.5 the beam supports a small weight that can be slid along -1 CO2 (µmol kg ) 10.1 13.4 49.7 63.6 the beam and acts as a counterbalance. The beam from a 2- -1 CO3 (µmol kg ) 241.5 202.5 75 60.5 laser pointer is reflected by the mirror on to a scale at a distance of about 3 m and enables rotation of the torsion Ωarag 3.9 3.25 1.2 0.97 wire to be measured.

112 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 and insulated heater coil. A small magnetic 20 cm length of extremely fine monofilament stirrer (1.0x0.7cm) gently and continuously consisting of a single strand from dental floss. circulated the water in the vessel. The pH was Attachment was by dipping the end of the fila- changed by adding hydrochloric acid (adjusted ment into cyanoacrylate and touching it to the to the density of seawater), or by exchanging cube. A cube was used to calibrate the system some of the seawater in the vessel with sea- for each experiment by dropping it, suspended water that had a high dissolved CO2 or NaCO3 by its monofilament, carefully onto the coral’s content. For higher pH levels water in the ves- surface. The position of the laser spot on the sel was exchanged with seawater that had been scale with and without the aragonite cube in bubbled with CO2 free air. A pH meter (IQ200, position was recorded. This was repeated sev- Scientific Instruments), accurate to 2 deci- eral times and the mean displacement for the mal places, and calibrated daily, was used to cube was calculated. From this the equivalent monitor changes of pH. Room lighting was 15 dry wt. of aragonite per scale unit could be μmol.s-1.m-2 and additional light was provided calculated. The aragonite cubes were also used by a metal halide spotlight (Philips 25W, 10°) to verify the linearity of the scale (correspond- above the beaker. Irradiance levels were mea- ing to a total rotation of < 4º of the wire). This sured with a LI-COR Quantum/Radiometer procedure also permitted malfunction of the (LI-250). The room was otherwise darkened balance to be detected. Generally the system and draughts were excluded as far as possible. was very stable and the laser spot returned to The balance was protected from air movement the same place even overnight, but if the laser by cardboard baffles and readings were only spot did not return to its original position it taken when the room air-conditioning unit was was usually because of contamination on the not active. The magnetic stirrer was turned s/s suspension wire at its point of entry into off about three minutes before readings were the seawater. Replacement of the wire usually taken. After suspending a piece of coral in the corrected the problem. Following any change system the position of the balance beam was of temperature, pH or irradiance at least an adjusted by the counter balance weight and/or hour for acclimation was allowed. When an rotating the fixed end of the torsion wire so that experimental temperature was changed and the laser beam was near the appropriate end the controlled to a new level the density of the scale. Changes in weight as aragonite skeleton seawater also changed and a recalibration of was deposited result in movement of the laser the balance was required. Corals were carefully beam/spot on the scale and readings were taken inspected before each experiment and were at intervals of about ten minutes. The course rejected if there were any sign of epiphytes, of an experiment was followed by plotting the encrusting organisms or unhealthy areas on the readings on graph paper. Rates of weight gain upper or lower surfaces, or if mucus was pres- or loss were calculated by regression analysis ent. Once placed in the chamber the live coral of series of 4-6 readings. After a set of control was permitted to acclimate for a period of two reading a single experimental parameter (irra- hours, at which point adjustments were made diance, temperature or pH) was then changed to the balance and placement of the laser so and after an hour for acclimation a new set of that reading could be taken on an appropriate reading could be taken at 10 minute intervals part of the scale. If detectable calcification was to give a new rate. When rates of change were taking place an experiment could commence. very low, longer periods between reading and If calcification was not detected (no movement more readings were taken. in the laser spot for an hour) the coral frag- A series of small solid aragonite cubes, cut ment was left in the equipment until calcifica- from Agaricia skeletons (1-3mg) of which the tion started. Occasionally an overnight period dry weights were accurately known were pre- of acclimation was required before calcifica- pared beforehand. Each cube was attached to a tion started. During experiments corals were

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 113 inspected for oxygen bubbles, which tended to to compare control and post treatment rates. appear in high light conditions and if mucus Readings of weight were taken for 4-6 hours was present. The balance proved to be less to establish the shape of the curve. The experi- sensitive with larger pieces of coral so pieces mental parameter was changed (temperature, of coral used in the study were kept small pH or acetazolamide added) and after accli- (mean area 1.74 cm2, mean wt 0.42 g, n=56). mation readings were taken to obtain the new The vessels used in the study were large (1 or calcification rate. Using the NCSS software, a 2 l beakers), so that changes in the composi- predicted rate was obtained from the shape of tion of the sea water during an experiment the initial shape of the curve to cover the same were minimised. The greatest change affecting time period as the post treatment rate. The two experiments was probably due to evaporation rates were then compared. increasing the density of the seawater and its In order to see if there were any longer level relative to the torsion balance, however term changes in calcification rate pieces of the changes were slow and the rate of change coral skeleton that had been freshly waterpiked constant. During experiments the pH changed were suspended in seawater for at least 48 as skeleton is deposited but because the vessels hours. Weight gain and loss were measured were open and exchange with the surrounding at normal seawater pH and at reduced pH by air could take place and because of slow drift of replacing some medium with seawater with the pH meter during longer experiments, it was dissolved CO2. Dried skeletons taken to Trent felt that the pH could not be used other than University, Canada, were used to determine as an approximation of conditions during an the relationship between weight gain and loss experiment. Unless stated otherwise pH of the across the pH range 8.2 - 6.0. For these experi- seawater was generally (8.1-8.2. The pH was ments “Coralife” artificial seawater was used continuously monitored and the pH recorded (for chemical analysis and chemistry see Atkin- for an experiment was the average of the pH at son and Bingham, 1999). A modified balance the beginning and end of each period of mea- which was closed to the outside air was used. For the lower rates of loss/gain time periods surement. The approximate [CO 2] and [CO3] at the control and treatment pH used can be of 6-12 hours were used. At least two readings seen in Table 1. of pH and weight gain/loss were taken at the To examine the role of the organic matrix beginning and end of each time period. Rates in the calcification process, coral skeletons were calculated using regression analysis. The that had been stripped of their live tissue were pH was measured with an Omega PHB-212 exposed directly to seawater. A commercial Bench pH Meter accurate to three decimal dental waterpik that had been modified with a places and calibrated daily with Omega buffers. narrower jet and to work at higher pressure was Again the average of the readings at the begin- used to blast away the living tissue with a jet of ning and end of each time period was recorded seawater (waterpiking). This exposes organic as the pH. Coral surface areas were estimated matrix and most recently deposited aragonite with aluminium foil (Marsh, 1970). on the surface of the skeleton. Inspection with NCSS statistical software (Number a dissecting microscope established that tissue Crunching Statistical Systems, Dr Jerry Hein- was completely removed even from the deepest tze, Kaysville, Utah) was used for obtaining a polyp cavities best fit for the growth curves. For the higher calcification rates of the waterpiked coral thicker wire was used in the RESULTS balance to reduce its sensitivity so that the laser spot stayed on scale. The calcification Live coral: Pieces of live Agaricia did rates of the freshly waterpiked coral were not not start calcifying until about 24 hours after linear and a different procedure had to be used collection but if newly collected pieces were

114 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 suspended on the torsion balance overnight equation from enzyme kinetics (Lopez et al. in the dark calcification usually started before 2000), with time replacing substrate level: morning. Corals appeared to be very sensitive Wt = (Wmax .t)/(K + t) to any changes in conditions. Changes in light (Note: Wt is the increase of weight at time level or chemistry of the water were often fol- t, Wmax is the asymptotic or maximum potential lowed by the cessation of calcification for an value of W and K is the time for half maximum hour or two or longer and many experiments growth). had to be disbanded because calcification With longer (t > 6 hours) experiments ceased completely, although if left overnight (Fig. 4A, B, C) It became apparant that Wt calcification often restarted. High light levels does not actually reach an asymptote or maxi- (> 300 µmol.s-1.m-2) were not used in the study mum but continues to rise at a constant rate. because of the formation of oxygen bubbles The Michaelis-Menten general formula was which were sometimes formed and interfered with the functioning of the balance. With irradiance of 65 µmol.s-1.m-2 calcification was Skeletal growth (Ag #29) 1.0 positively correlated with temperature (Fig. 2). ) 30.5ºC -2 Temp. Over the range 27-29.5ºC the calcification rate up (0.087) increased by about 15% per 1ºC change (n=1). Temp. The mean calcification rate for Agaricia agar- up 29ºC -1 0.5 MH light icites increased by 60% from 0.063 mg.hr . on (0.065) cm-2 in the dark to 0.101 mg.hr-1.cm-2.in ambi- 27ºC -1 -2 ent laboratory lighting of 15 µmol.s .m (T dark (0.046 mg•hr -1•cm-2) test, n=8, p < 0.01). When the irradiance level (mg•cm increase Weight (0.039) -1 -2 0 was increased to 65 μmol.s .m further calci- 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 fication often ceased for an hour or two then Time (hours) sometimes increased to a higher level but often Fig. 2. Weight increase plotted against time. Calcification -1 -2 to a lower level (mean 0.80 mg.hr .cm , T test, rates expressed in mg.-1.cm-2 calculated from the regression n=10, p > 0.05) than under the laboratory light- lines are given in parentheses. Live Agaricia #29 in the ing. When the mean pH of the seawater was dark, and in the light (65 µmol s-1 m-2) at 27ºC, 29ºC and lowered from 8.2 to 7.6 the mean calcification 30.5ºC. rate increased from 0.19 mg.hr-1.cm-2 to 0.28 mg.hr-1.cm-2 (T test, n=7, p< 0.05). Skeletal growth vs Times (Ag #64 waterpiked) 2.0 Waterpiked coral: Freshly waterpiked ) pieces of coral suspended in seawater on the -2 torsion balance were found to have an astonish- ing initial calcification rate (n=30) more than an order of magnitude higher than the same piece 1.0 of coral when alive. For example Agaricia #20 -1 Wmax = 2.20 had a calcification rate of 0.029-0.063 mg.hr . K = 1.55 cm-2 when alive but after waterpiking the initial Weight increase (mg•cm increase Weight -1 -2 calcification rate was over 1.0 mg.hr .cm . 0 The rate however decreases exponentially with 0 1.0 2.0 3.0 4.0 5.0 6.0 time (Fig. 3). The weight/time data give a good Time (hours) fit (R2 = 0.9952) to the monomolecular growth Fig. 3. Agaricia #64, Weight increase plotted against time equation, W = W (1- ek.t) and a better fit (R2 t max for a freshly waterpiked skeleton. Best fit curve for Wt = = 0.9987) to the generalized Michaelis-Menten (Wmax.t)/(K + t) with p = .05 lines.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 115 modified to: Wt = ((W .t)/(K + t)) + (C . t) A Skeletal growth vs Times max b (Ag #3a) where Cb is the constant rate of increase or 5.0

) slope of the line (Fig. 4B) and an even better -2 4.0 fit to the data is obtained. For coral # 3a (Figs. 4A, B.) the fit to the modified formula (R2 = 3.0 0.9987) is better than that of the unmodified 2 W = 4.77 mg•cm-2 formula (R = 0.9983). 2.0 max K = 4.17 h At 27ºC (Fig. 5A) the predicted calcifica- -1 -2 2 tion rate was 0.48 mg.hr .cm , compared to 1.0 R = 0.9983 the actual calcification rate at 29 ºC of 0.65 Weight increase (mg•cm increase Weight -1 -2 0 mg.hr .cm . This represents a 17.7 % increase 0 5.0 10.0 15.0 per ºC which is fairly close to the 15% change Time (hours) per ºC for calcification obtained for live cor- B Skeletal growth vs Times als. The effect of changes of pH can be seen 5.0 (Ag #3a) W = (W •t)/(K+t) + (C •t) in Fig. 5B for a typical experiment. For a

) t max b -2 4.0 mean change of pH from 8.1 to 7.6 Agaricia responded with mean predicted calcification -1 -2 3.0 rate of 0.18 mg.hr .cm compared to an actual mean calcification rate 0.32 mg.hr-1.cm-2. This Wmax = 3.45 2.0 K = 2.87 represents a 78% increase in calcification rate (T test, n=11, p < .02). Light did not affect 1.0 the calcification rate. The initial (first hour)

Weight increase (mg•cm increase Weight Cb = 0.075 2 calcification rates of freshly waterpicked coral 0 R = 0.9983 0 5.0 10.0 15.0 obtained from the NCSS curve-fitting software Time (hours) (Fig. 7) are shown plotted against the time of Skeletal growth vs Times day at which each coral piece was waterpiked C (Ag #23a) 5.0 (n=20). These results show a steady decrease in activity through the daylight light hours but a ) -2 4.0 massive increase in the late afternoon.

3.0 Carbonic anhydrase: Experiments were undertaken to verify the presence of carbonic Wmax = 1.22mg 2.0 K = 0.67 h anhydrase in the exposed skeletal surface. 2 Cb = 0.14mg/cm /h When the carbonic anhydrase inhibitor, acet- 1.0 azolamide, was added to give a 100µMol solu- Weight increase (mg•cm increase Weight tion calcification ceased completely (Fig. 5C). 0 0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 Pieces of Agaricia skeleton that had been Time (hours) waterpiked and dried were also tested for car- bonic anhydrase with the technique of Ridge- Fig. 4. Waterpiked Agaricia agaricites, Weight increases way & Moffatt (1986). The tips of ridges and plotted against time for longer running experiments. (A) septae showed the quite distinctive blackening

#3a best fit curve plotted with p = 0.05 lines for Wt = that indicates the presence of carbonic anhy- (W .t)/(K + t). (B) #3a best fit curve plotted for W = max t drase (Fig. 6). (Wmax.t)/(K + t) – Cb.t with the contribution of Cb.t plotted separately. (C) #23a best fit curve for W = (W .t)/(K + t max Dead coral (Waterpiked coral after soak- t) + Cb.t showing the steady weight gain (Cb.t) continuing after the varying component (Wmax.t)/(K + t) has reached ing in seawater): A third series of experiments its asymptote. was undertaken to investigate what happens

116 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 Skeletal growth vs Times A (Ag #52 waterpiked) 10.0 actual rate 0.65mg•hr -1•cm-2 ) 9.0 -2 8.0 7.0 predicted rate 0.48mg•hr -1•cm-2 6.0 5.0 Temp. up 2ºC 4.0 3.0 2.0

Weight increase (mg•cm increase Weight 1.0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Time (hours) Fig. 6. Photograph of waterpiked Agaricia skeleton stained B Skeletal growth vs Times (Ag #58 waterpiked) (Ridgeway and Moffett, 1986) for carbonic anhydrase. 2.0 pH 8.08 (incubation for 10 minutes in 1.75 mM CoSO4, rinsing )

-2 HCI and development in 0.5% ammonium sulphide for 3 1.5 pH 8.42 minutes. The tips of ridges and septae show blackening that indicates the presence of carbonic anhydrase. Scale bar 0.05cm. 1.0

0.5 Waterpiked A. agaricites 8.0 Initial calc. rate vs Time of day Weight increase (mg•cm increase Weight 0 7.0 •h )

0 1.0 2.0 3.0 4.0 -2 Time (hours) 6.0 5.0 Skeletal growth vs Times C (Ag #46 waterpiked) 4.0 1.5 acetazolamide 3.0 (100µM) ) 2.0 -2

Initial calc. rate (Mg•cm Initial rate calc. 1.0 1.0 0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time of day (hours) 0.5 Fig. 7. Waterpiked Agaricia agaricites. Initial calcification

Weight increase (mg•cm increase Weight rates plotted against time of day when waterpiked.

0 0 1.0 2.0 3.0 4.0 Time (hours) were linear and the same order of magnitude as those of the live coral. Unlike the situation Fig. 5. Water-piked Agaricia agaricites. (A) #28, temperature raised 2ºC after 2h. (B) #58f, HCl added after with freshly waterpiked corals the rate of depo- 1.5h. (C) acetazolamide added after 1.75h. sition this time was positively correlated with pH. (Figs. 8A, B). When the mean pH of the seawater was reduced from 8.2 to 7.5 the mean after a waterpiked coral has reached its asymp- calcification rate decreased from 0.25 to 0.13 -1 -2 totic maximum Wmax. After waterpiking and mg..h .cm . This 50% reduction is statistically suspension in seawater for 48-72 hours it was significant (T test, n=6, p < 0.05). With a larger found, surprisingly, that rates of deposition change in pH from 8.25 to 6.5 the deposition

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 117 rate (n=1) (Fig. 8C) changed from a gain of A Skeletal growth vs Time -1 -2 -1 -2 Ag #56, Waterpiked and soaked in sw 1.2 mg.hr .cm to a loss of 1.8 mg.hr .cm . 1.0 Interpolation between the two rates indicates ) -2 pH 8.27 pH 7.8 that the point at which the change from deposi- tion to dissolution is at around pH 7.5. Again

(0.11mg•h-1•cm-2) the deposition rate of CaCO3 was very sensitive 0.5 to temperature (n=1), showing a 57% increase per ºC but there was no change in response to changes of light. (n=6). In the first of two more detailed explorations of the relationship Weight increase (mg•cm increase Weight (0.28mg•h-1•cm-2) of calcification/dissolution rate and pH the plot 0 0 1.0 2.0 3.0 4.0 5.0 6.0 of calcification rate against pH (Fig. 9A) had Time (hours) a sigmoidal form similar to a hyperbolic sine function sinh = ½(ex –e-x). The data (20 points) B Skeletal growth vs Time 1.5 Ag #56, Waterpiked and soaked in sw ) -2

pH 8.27 A Calci cation/dissolution rate vs pH 1.0 60.0 x•f -x•b NaCO3 R = (e - e )/K ) pH 8.0 -2 40.0 20.0 •cm 0.5 (0.19mg•h-1•cm-2) -1 0 -20.0 -40.0 Weight increase (mg•cm increase Weight -60.0 (0.16mg•h-1•cm-2) f = 4.94 0 -80.0 b = 2.80 0 1.0 2.0 3.0 4.0 5.0 6.0 -100.0 K = 52.46 Time (hours) -120.0 -140.0

C Skeletal growth vs Ag #52 gain/loss (µg•h Weight After waterpiked and standing in sw -160.0 1.0 -180.0

) sw + CO 6.0 7.0 8.0

-2 2 pH pH 8.25 pH 6.32 B Calci cation/dissolution rate vs pH

) 60.0 x•f -x•b -2 R = (e - e )/K 0.5

•cm 40.0 -1 20.0

0

Weight increase (mg•cm increase Weight (+1.2mg•h-1•cm-2)(-1.8mg•h-1•cm-2) ascending pH -20.0 descending pH 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 -40.0 f = 2.00 Time (hours) b = 2.92 -60.0 K = 0.112 Weight gain/loss (µg•h Weight -80.0 Fig. 8. Agaricia agaricites, skeleton after waterpiking and 7.0 8.0 soaking in seawater, Weight increases plotted against time. pH Calcification rates, expressed in mg-1 cm-2, calculated from the regression lines, are given in parentheses. (A) Fig. 9. Agaricia agaricites, skeleton after waterpiking #56, before and after addition of HCl. (B) #64 before and and soaking in seawater. (A). Best fit curve with p = 0.05

after addition of CaCO3. (C) #52 before and after a large lines. (B) Best fit curve and data points for ascending and reduction in pH. descending pH change and hysteresis effect.

118 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 2 2- give a good fit (R = 0.965) to the formula R = CO3 . The report by Lee et al. (2010) that crys- (ex.f-e-x.b)/K where R is the net wt gain/loss, x talline aragonite is deposited from a solution is pHr - pH0 (pH0 the pH at which R = 0) and of CaCl2 containing carbonic anhydrase using f and b are constants (comparable to reaction CO2 directly from the atmosphere gives further order or dissolution rate constants) for the support for the possibility that CO2 can be the forward (weight gain) and backward (weight substrate for calcification. loss) parameters and K is a constant. Growth/ Light enhanced calcification has been dissolution results are commonly presented shown to be 3x the dark level (Allemand et as a function of Ω, for example r = K(1-Ω)n al. 2011). This study confirms that for liv- (Cubillas et al. 2005) but the treatment used ing Agaricia agaricites the dark calcification here is similar to the approach of Lopez et al. rate is almost doubled in very low light, but (2009) and DePaulo (2011) who regard the net for higher light levels, results were incon- calcification rate R as the sum of the forwards sistent. In this study when light levels were rate (gain) Rf and backwards rate (loss) Rb. The increased calcification usually ceased imme- relationship between growth/dissolution and diately for a period of hours then settled at pH of a second Agaricia skeleton (Fig. 9B) a new level which could be higher or lower showed the same hyperbolic sine shape but the that the original. At higher light levels oxy- data (23 data points) gave a less good fit to the gen bubbles interfered with the experimental formula (R2 = 0.730). However the difference technique and the hyperbolic tangent relation- in position of the data points from the descend- ship between irradiance and calcification rate ing pH changes and the ascending pH series found by Marubini et al. (2004) or Moya et are suggestive of the hysteresis effect, depend- al. (2006) could not be confirmed. Sandeman ing on which way their experiments were run, (2008a) showed that the Ca2+ATPase/proton described by Gutjahr et al. (1996) for finely pump may be light sensitive as suggested by divided aragonite and calcite. In their compari- Cohen & McConnaughey (2003) and proposed son of the growth and dissolution rates of finely (Sandeman, 2008b) that H2O2 produced by divided calcite and aragonite plotted against pH zooxanthellae in high light conditions makes the curves, especially for aragonite, are similar the plasma membrane leaky to Ca2+ with the to those found in this study. The pH at which R result that more Ca2+ could reach the ECM. was zero for both skeletons in this study (Fig. The inconsistent response of calcification to 9A, B) was very close to a pH of 7.4. The same light found in this and other studies is diffi- crossover point found by Gutjahr et al. (1996) cult to explain. However, if CO2 is indeed the was close to a pH of 7.8. One effect noticed in substrate for calcification then the responses this study but not followed up was that when of corals to light (i.e. initially turning off cal- a piece of coral was moved into seawater of cification then adjusting to a new level) found lower pH (eg from 8.1 to 7.5) the pH increased in this study are not inconsistent with what one by about 0.01.h-1. might expect if there is competition for CO2 between calcification and photosynthesis. DISCUSSION The (x25) higher initial calcification rate of the freshly waterpiked coral skeletons com- In the experiments in which the pH of the pared to that of the same surface while alive was experimental medium was reduced from an astonishing. The possibility that it is the result average of 8.2 to 7.6 (estimated [CO2] increas- of air bubble entrapment following waterpik- es from 10.1 µmol kg-1 to 49.7 while estimated ing and the gradual solution of the bubbles 2- -1 [CO3 ] decreases from 241.5 µmol kg to seems unlikely given the imperforate nature 75) calcification in the living corals increased of the skeleton of the thin pieces of Agaricia significantly This provides good evidence that and the response to acetazolamide (Fig. 5C).

CO2 is the substrate for calcification rather than Inspection showed the accumulation of a thin

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 119 layer of white solid, especially on the ridges reduced from an average of 8.1 to 7.6 (esti- -1 of the septa, which when scraped off con- mated [CO2] increases from 13.4 µmol kg to 2- tained needle shaped rather than rounded crys- 49.7, while estimated [CO3 ] decreases from tals, indicating aragonite rather than calcite. 202.5 µmol kg-1 to 75) the actual calcification Another possibility is that that an enzyme or rates showed an increase over the predicted rate catalyst is incorporated in the exposed surface which was significant at p< 0.02 level. This which is responsible for the high initial rate. indicates that, as for living coral, CO2 rather 2- This would be in line with the two-step mecha- than CO3 is the form in which DIC reaches nism proposed by Cuif & Dauphin (2005a,b) the site of calcification as suggested by McCo- in which the biomineralization process starts nnaughey (1989). As reported by Dauphin with secretion of a proteoglycan matrix in et al. (2006) and Tambutte et al. (2007) the which mineralization takes place. The matrix enzyme activity of the organic matrix is stable, has been shown to contain structural proteins it was hardly affected by immersion in boiling which play a catalytic role similar to that of water or ethyl alcohol and skeletons of corals carbonic anhydrase (Tambutté et al. 2007), collected the previous year showed the same has calcium binding properties (Isa & Okazaki ability to deposit skeleton in this non-linear 1987; Constantz & Wiener, 1988 and Puverel manner. A small piece of Montastrea annularis et al. 2005) and acidic proteins regulating the skeleton from the museum collection showed biomineralization process and the mineraliza- some activity. tion process(Rahman & Oomori, 2009) may If the (x25) higher initial calcification involve all of these. Confirmation for the pres- rate of the freshly waterpiked coral skeletons ence of carbonic anhydrase on the surface of compared to that of the same surface while waterpiked corals comes from the experiment alive is indeed the result of an enzyme or involving inhibition of calcification by acet- catalyst incorporation in the exposed surface azolamide (Fig. 5C) and the demonstration it indicates that the calicoblastic layers restrict by staining of carbonic anhydrase in the most calcification and contact between the living rapidly growing areas of the skeleton (Fig. 6). calcifying surface and seawater delivery via The basic shape of the deposition versus time a paracellular route must be small. A model curves for waterpiked corals (Figs. 3, 4A, B) that does not require a paracellular pathway is is probably the result of the exposed carbonic that of McConnaughey (1989) and Adkins et anhydrase or other active ingredients of the al. (2003). It is based on dissolved CO2 as the organic matrix being covered as new aragonite substrate for calcification reaching the ECM 2+ is formed. The asymptote Wmax is reached by diffusion and Ca ions are transported into when the deposition rate is reduced to zero the ECM and protons transported out by the 2+ when all the carbonic anhydrase is obliterated Ca ATPase/proton pump. CO2 which can pass by deposited aragonite. Some confirmation freely through lipid membranes reaches the for this comes from the lowering of the initial ECM directly, with its passage enhanced by calcification rate (Fig. 7) that takes place dur- the pH difference between the ECM and calico- ing the day. The increases seen in corals water- blastic layer created by movement of protons as piked in the late afternoon may indicate that the result of by the Ca2+ATPase/proton pump. new organic matrix may be layed down at that In the presence of calcium binding proteins time. The linear component of the weight gain and carbonic anhydrase in the organic matrix

Cb is of the same order of magnitude as the rate calcium carbonate is deposited as aragonite: 2+ + of weight gain of coral skeleton after soaking in Ca + H2CO3 → CaCO3 + 2H seawater and this abiotic mineralization based After waterpiking and soaking in seawa- on carbonate source appears to start directly ter the pieces of dead coral skeleton showed after the removal of live tissue by waterpiking a quite different response to lower pH. When and takes place simultaneously. When pH was the average pH was reduced from 8.2 to 7.5

120 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 (estimated [CO2] increases from 10.1 µmol This study confirms that there are two -1 2- kg to 49.7, while estimated [CO3 ] decreases distinct processes involved in calcification and from 241.5 µmol kg-1 to 75) calcification rate skeletal growth. First, a “biologically con- decreased, indicating involvement of carbonate trolled mineralization” process (Mann, 1983) rather than carbon dioxide. At a pH of seawater or “organic matrix-mediated mineralization” greater than 7.4 pieces of coral skeleton (Figs. (Allemand et al. 2011). This was seen in living 9A,B) gain weight and below 7.4 lose weight. and and freshly waterpiked coral skeleton and The weight gains found in this study seem to be is based on the enzyme carbonic anhydrase in 2+ problematical. Emerson & Hedges (2009) state the organic matrix, dissolved CO2 and Ca . what appears to be a commonly held belief Second, the deposition and dissolution seen in that when Ω >1 precipitation should occur “but the freshly waterpiked pieces soaked in seawa- this is rare because high concentrations of Mg. ter (dead coral skeleton) with a non-living min- block nucleation sites on the mineral surface”, eralization process which is carbonate-based the results of this study suggest otherwise. and probably linked to the calcium carbonate

The linear component of the weight gain Cb of saturation state ω. freshly waterpiked coral is of the same order of In their survey of the response of cor- magnitude as the rate of weight gain of coral als to elevated CO2 Reynaud et al. (2003) skeleton after soaking in seawater and this abi- found -3% to -79% changes in calcification otic mineralization based on carbonate source rate. Their own experiments indicated that, at appears to start directly after the removal of live normal temperatures, there was no response tissue by waterpiking and appears to be a prop- to elevated pCO2 but when temperature and erty of non-living exposed coral. The slopes pCO2 were both elevated, calcification dropped of the curves (Fig. 9A, B) above and below 0, by 50%. Yii et al. (2009) found an increase in (described by b and f in the equations) are dif- calcification rate for Galaxea fascicularis and ferent. This was also found for finely divided a decrease for Porites cylindrica with increased aragonite by Gutjhar et al. (1996). The hyster- CO 2 levels. Muehllehner & Edmunds (2008) esis-like effect seen in the relationship between reported a small (+5%) increase in calcification growth/deposition rates and pH (Fig. 9B), also rate at 29ºC for Porites rus (n=11) and a larger reported by Gutjhar et al. (1996) may be the (+100%) increase for Pocillopora meandrina 2+ result of the Ca /proton exchange reported by (n=9) with increased pCO2; however at 27ºC Villegas-Jiménez et al. (2009). In this study there were reductions in calcification rate for when coral was moved from seawater of pH both species. All other recent studies have all 8.1 to seawater of pH 7.5 there was an initial found reduced calcification with lower pH -1 2- increase in pH (0.01.h ) indicating uptake and have related calcification to [CO3 ] and of protons from the medium as described by the carbonate-saturation state ω. In this study Villegas-Jiménez et al. (2009). This effect as live corals and freshly waterpiked skeletons pointed out by Villegas-Jiménez et al. (2009) responded to lower pH or (elevated CO2) should be investigated because it could have with increased calcification indicating that the important consequences for the interpretation substrate for calcification is CO2. It is perhaps of data in calcification studies using calcium important to consider why this result is at odds isotopes, buoyant weighing or the alkaline with the majority of studies that have reported anomaly techniques. Further investigation is coral calcification to decrease with increased also needed to better understand the growth/ pCO2. The explanation for the different results dissolution dynamics of dead coral over a range may lie in the fact that in the present study of temperatures and pH. This should probably small pieces from the growing edges of thin be done in a closed flow-through system rather plates of the Agaricia agaricites, were used. than in the open system without flow that was These, except for the thin broken edges, were used in this study. completely covered with living tissue. In other

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 121 studies the coral colonies used in calcification structures. Structures such as the septae need studies may have had dead exposed skeleton or high rates of deposition during formation with a more porous skeleton with internal structural deposition restricted in other areas. Where and spaces, or channels and cavities from boring how much skeleton is deposited is controlled animals and which may present a significant by the organic matrix and pattern with which area of skeleton in direct contact with seawater. the carbonic anhydrase is laid down. Sandeman The rate of non-biotic carbonate based deposi- (2008b) pointed out that vesicles present in the tion is higher and it may outweigh calcification layers in contact with the skeleton are probably by living coral tissue and thus account for the associated with secretion of the organic matrix, results obtained. Using the deposition rates per and the calicoblastic layers had the highest unit area obtained in this study for a coral with concentration in regions of the coral with the a low live calcification rate (comparable to the highest calcification rates. Similarly stained mean dark rate) and for the abiotic deposition carbonic anhydrase seen in Fig. 6 is distrib- on “dead” areas at two pH levels it is possible uted with the highest concentration on the fast to estimate the rates for different combinations growing septal ridges. This adds weight to the of live and dead areas of skeleton (Table 2). views of Wainwright (1963) and Allemand et The difference between calcification rates in al. (1989, 2011) that it is the organic matrix seawater of pH 8.2 and 7.8 range from +30% that determines the patterns of calcification and for coral with no dead areas to -21.5% for coral provides a mechanism for realizing the com- with 30% dead exposed surface. Increased tem- plex architecture of corals. The results obtained perature would increase this range and the dif- in this study are also consistent with the hypo- ference in temperature coefficients of the two thetical mechanism presented by Allemand processes may explain the differing for results et al. (2011) for the assembly of nanograins for different temperatures obtained for example within the dynamic interface (Colfen & Mann, by Muehllehner & Edmunds (2008). 2003) provided by the organic matrix. Cohen & McConnaughey (2003) posed There are implications from this study the question “Why do coral reefs calcify so for understanding what is likely to happen fast?”. One might also ask why corals calcify to corals as the result of acidification and/or so slowly? In this study calcification rates of warming of the world’s oceans. The findings living pieces of Agaricia varied, at normal pH, suggest that lower pH, because [CO2] is higher, from a mean of 0.063 mg.hr-1.cm-2 in the dark and increased temperature, will both enhance to 0.19 mg.hr-1.cm-2 in light while potential active biotic calcification, at least to a point at rates for newly exposed surface is over 1.0 which other processes such as bleaching take mg.hr-1.cm-2. The reason is fairly clear, liv- over. For skeleton directly exposed to seawater ing corals build complex three dimensional (dead areas of the coral), as pCO2 increases and

TABLE 2 Calcification rates (mg h-1 cm -2) at pH 8.2 and 7.8 calculated for 5-30% dead area. Rates for 0% and 100% dead area for a coral with a low calcification rate were measured, other values by interpolation. Calcification Rates, mg h-1 cm-2

% dead area pH 8.2 pH 7.8 Difference % Difference 0 0.092 0.120 0.028 + 30.4 5 0.100 0.119 0.019 +18.6 10 0.108 0.117 0.009 +0.08 15 0.116 0.116 0.000 0.0 20 0.124 0.114 0.100 -0.08 25 0.132 0.113 0.019 -14.4 30 0.141 0.111 0.030 -21.5 100 0.250 0.090 0.160 -64

122 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 ω becomes lower, dissolution will eventually por 48 horas la ganancia y pérdida de peso se volvió lineal take place. Once past this point temperature y relacionada positivamente con la temperatura. Cuando increase will only increase the rate of dissolu- el pH promedio se reducía de 8.2 a 7.5 la tasa media de ganacia de peso decrecía de 0.25 a 0.13 mg h-1 cm-2 (prueba tion. Because of the rates and temperature coef- T, n=6, p<0.05) indicando una dependencia en carbonato. ficients involved, it is unlikely that an increase A un pH de 6.5 la tasa de pérdida de peso esquelético fue in live calcification due to temperature can de 1.8 mg h-1 cm-2. La relación entre calcificaión neta y pH outpace losses due to abiotic weight loss. For (n=2) indican que la gancia de peso se vuele pérdida a pH many corals, even if active live calcification is 7.4. Estos experimentos confirman que la calcificación es taking place dissolution of skeleton at exposed un proceso de dos pasos, involucrando la secreción de la dead areas, as suggested by Rodolfo-Metalpa capa de matriz orgánica que incorpora anhidrasa carbónica et al. (2011) and Ries (2011) will affect sur- para producir una superficie de calcificación activa que usa dióxido de carbono en vez de carbonato. Es también poco vival by seriously weakening the supporting probable que la superficie de calcificación esté en contacto structure. Those species with smaller areas of directo con el agua de mar. La depositación o disolución exposed dead surface and a stronger Calcium/ inorgánica del esqueleto en áreas expuestas de corales proton pump (Ries 2011) may have a better muertos en un fenómeno diferente y está relacionado a los chance of survival as pH levels drop. carbonatos. El gran ámbito de resultados de este y otros estudios sobre tasas de calcificación y dióxido de carbono pueden ser explicados en términos de la razón entre las RESUMEN zonas vivas y muertas de los corales.

La acidificaión de los océanos está alterando la cal- Palabras clave: calcificación de corales, CO2, pH, tempe- cificón de los corales. Sin embargo, el mecanismo no es ratura, matriz orgánica, anhidrasa carbónica todavía claro. Para explorar que controla la calcificación piezas pequeñas del borde de láminas delgadas de Agaricia agaricites fueron suspendidas de una microbalanza de tor- REFERENCES sión en agua de mar ligeramente agitada y con temperatura controlada. La tasa neta de calcificación fue monitoreada Adkins, J.F., E.A. Boyle, W B. Curry & A. Lutringer. 2003. mientras se manipulaba la luz, temperatura y pH. Las Stable isotopes in deep-sea corals and a new mecha- piezas de coral vivo fueron sensibles a cambios en las nism for “vital effects”. Geochim. Cosmochim. Acta condiciones, especialmente de luz, y la calcificación se 67: 1129-1143. suspendía por una o dos horas o de un día para otro. La tasa media de calcificación aumentó de 0.06 en la oscuridad a Al-Horani, F.A., É. Tambutté & D. Allemand 2007. Dark 0.10 mg h-1 cm-2 (prueba T, n=8, p<0.01) en luminosidad calcification and the daily rhythm of calcification in baja (15 μmol s-1 m-2) y mostró una relación lineal positiva the scleratinian coral, Galaxea fascicularis. Coral con la temperatura. Con una reducción en el pH promedio Reefs 26: 531-53. de 8.2 a 7.6 la tasa de calcificación media en la luz (65 μmol.s-1.m-2) aumentó de 0.19 a 0.28 mg h-1 cm-2 (prueba Allemand, D., É. Tambutté, J-P. Girard & J. Jaubert. 1998. T, n=8, p<0.05) indicando una dependencia de dióxido de Organic matrix synthesis in the scleratinian coral carbono. Después de remover el tejido y exponer la superfi- Stylophora pistillata: role in biomineralization and cie de los esqueletos/matriz orgánica a agua de mar, la cal- cificación tiene un marcada aumento inicial de más de un potential target of the organotin tributyltin. J. Exp. orden de magnitud y después decrese siguiendo una curva Biol. 201: 2001-2009. generalizada Michaelis-Menten de crecimiento no-lineal hasta alcanzar una tasa estable. La tasa de calcificación de Allemand, D., C. Ferrier-Pagès, P. Furla, F. Houlbrèque, esqueletos recién limpiados no estaba influenciada por la S. Puverel, S. Reynaud, É Tambutté, S. Tambutté, & luz y estaba positivamente correlacionado con la tempe- D. Zoccola. 2004. Biomineralisation in reef-building ratura. Pra una reducción media de pH de 8.1 a 7.6 la tasa corals: from molecular mechanisms to environmental media de calcificaión aumentó de 0.18 a 0.32 mg h-1 cm-2 control. C. R. Palévol 3: 453-467. (prueba T, n=11, p<0.02) de nuevo indicando la depen- dencia en el dióxido de carbono. La calcificación cesó Allemand, D., É. Tambutté, D. Zoccola & S. Tambutté. en la presencia de azolamida un inhibidor de la anhidrasa 2011. Coral calcification, cells to reefs, p. 119-150. carbónica. Tinciones confirmaron la presencia de anhidrasa In Z, Dubinsky & N. Stambler (Eds). Coral Reefs: An carbónica, particularmente en las crestas de los septos. Ecosystem in Transition. Springer Science+Business Después de sumergir esqueletos sin tejido en agua de mar Media, Berlin.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 123 Atkinson, M.J. & C. Bingham. 1999. Elemental compo- new recruits of two Atlantic corals. Coral Reefs 30: sition of commercial seasalts. J. Aquaricult. Aquat. 321-328. Sci. 8: 39-43. Emerson, S. & J. Hedges. 2008. Chemical Oceanography Bryan, W.H. & D. Hill. 1941. Spherulitic crystallization and the Marine Carbon Cycle. Cambridge Univ., as a mechanism of skeletal growth in the hexacorals. Cambridge, UK. Proc. R. Soc. Queensl. 52: 78-91. Erez, J., S. Reynaud, J. Silverman, K. Schneider & D. Alle- Cai, W.-J., X. Hu, W.-J. Huang, L.-Q. Jiang, Y. Wang, T.-H. mand. 2011. Coral calcification under ocean acidifi- Peng & X. Zhang. 2010. Alkalinity distribution in the cation and global change, p. 151-176. In Z. Dubinsky western North Atlantic Ocean margins, J. Geophys. and N. Stambler (eds). Coral Reefs: An Ecosystem in Res. 115, C08014, doi:10.1029/2009JC005482. Transition, Springer Science+Business Media, berlin. Cohen, A. & T.A. McConnaughey. 2003. Geochemi- Fabricius, K.E., C. Langdon, S. Uthicke, C. Humphrey, cal perspectives on coral mineralization. Rev. Min. S. Noonan, G. De’ath, R. Okaziki, N Muehllehner, Geochem. 54: 151-187. M.S. Glas & J.M. Lough. 2011. Losers and winners Cölfen, H. & S. Mann. 2003. Higher-order organization in coral reefs acclimatized to elevated carbon dioxide by mesoscale self-assembly and transformation of concentrations. Nature Clim. Change 1: 165-169. hybrid nanostructures. Angew. Chem. Int. Ed. 42: 2350–2365. Franzisket, L. 1964. Die Stoffwechselintensität der Riffko- rallen und ihre ökologische phylogenetische und Constantz, B.R. & S. Weiner. 1988. Acidic macromolecules soziologische Bedeutung. Z. Vergleich. Physiol. 49: associated with the mineral phase of scleratinian coral 91-113. skeletons. J. Exp. Zool. 248: 253-258. Furla, P., I. Galgani, I. Durand & D. Allemand. 2000. Sour- Cubillas, P., S. Köhler, M. Prieto, C Chaïrat and E.H. ces and mechanisms of inorganic carbon transport for Oelkers. 2005. Experimental determination of the coral calcification and photosynthesis. J. Exp. Biol. dissolution rates of calcite, aragonite, and bivalves. 203: 3445-3457. Chem. Geol. 216: 59-77. Gattuso, J-P., D. Allemand & M. Frankignoulle. 1999. Cuif, J-P. & Y. Dauphin. 2005a The environment recording Photosynthesis and calcification at cellular, organis- unit in corals skeletons – a synthesis of structural mal and community levels in coral reefs: a review and chemical evidences for a biochemically driven, on interactions and control by carbonate chemistry. stepping-growth process in fibres. Biogeosciences Amer. Zool. 39: 160-183. 2: 61–73. Gischler, E. & W. Oschmann. 2005. Historical climate Cuif, J.-P. & Y. Dauphin. 2005b. The two-step mode of variation in Belize (Central America) as recorded in growth in the scleractinian coral skeletons from the scleratinian corals. Palaios 20: 159-174. micrometre to the overall scale. J. Struct. Biol. 150: 319–331. Gutjahr, A., H. Dabringhaus and R Lacmann. 1996. Studies on growth and dissolution kinetics of the CaCO Dauphin, Y., J-P. Cuif & P. Massard. 2006. Persistent 3 polymorphs calcite and aragonite. I. Growth and organic components in heated coral aragonitic ske- dissolution in water. J. Crystal Growth 158: 246-309. letons-Implications for palaeoenvironmental recons- tructions. Chem. Geol. 231: 26-37. Helmle, K.P., R.E. Dodge, P.K. Swart, D.K. Gledhill & Davies, P. S. 1989. Short-term growth measurements of C.M. Eakin. 2011. Growth rates of Florida corals corals using an accurate buoyant weighing technique. from 1937 to 1996 and their responses to clima- Mar. Biol.101: 389-395. te change. Nature Comm. 2: 215 doi: 10.1038/ ncomms1222. DePaolo, D.J., 2011 Surface kinetic model for isotopic and trace element fractionation during precipitation Isa, Y. & M. Okazaki. 1987. Some observations on the of calcite from aqueous solutions. Geochim. Cosmo- Ca2+-binding phospholipids from scleratinian coral chim. Acta 75: 1039-1056. skeletons. Comp. Biochem. Physiol. 87B: 507-512. de Putron, S.J., D.C. McCorkle, A.L. Cohen & A.B. Dillon. Jokiel, R.L., J.E. Maragos & L. Franzisket. 1978. Coral 2011. The impact of seawater saturation state and Growth: buoyant weight technique. Monogr. Oceano- bicarbonate ion concentration on calcification by gr. Methodol. (UNESCO) 5: 529-542.

124 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 Jury, C.P., R.F. Whitehead & A. Szmant. 2010. Effects of Mann, S. 1983. Mineralization in biological systems. variations in carbonate chemistry on the calcification Struct. Bond 54: 125-174. rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best Marsh, J.A. 1970. Primary productivity of reef-building predict calcification rates. Glob. Change Biol.16: calcareous red algae. Ecology 51: 255-263. 1632-1644. Marubini, F. & B. Thake. 1999. Bicarbonate addition pro- Kesling, R.V. & F.C. Crafts. 1962. Ontogenetic increase motes coral growth. Limnol. Oceanogr. 44: 716-720. in archimedian weight of the ostracod Clamidotheca unispinosa (Baird). Am. Midl. Nat. 68: 149-153. Marubini F., H. Barnett, C. Langdon & M.J. Atkinson. 2004. Dependence of calcification on light and carbo- Krief, S., E. J. Hendy, M. Fine, R. Yam, A.Meibom, G. L. nate ion concentration for the hermatypic coral Pori- Foster & A. Shemesh . 2010. Physiological and isoto- tes compressa. Mar. Ecol. Prog. Ser. 220: 153-162. pic responses of scleractinian corals to ocean acidifi- cation. Geochim. Cosmochim. Acta. 74 : 4988-5001. McConnaughey, T.A. 1989. 13C and 18O isotopic disequili- brium in biological carbonates. II. In vitro simulation Kleypas, J.A., R.R. Buddemeier, D. Archer, J.P. Gattuso, C. of kinetic isotope effects. Geochim. Cosmochim. Langdon, and B.N. Opdike. 1999. Geochemical con- Acta 53: 163-171. sequences of increased atmospheric carbon dioxide on coral reefs. Science 284: 118-20. McConnaughey, T.A. 2000. Community and environmental influences on reef coral calcification. Limnol. Ocea- Langdon, C. 2000. Review of experimental evidence for nogr. 45: 1667-1671. effects of CO2 on calcification of reef builders. Proc. 9th Int. Coral Reef Symp., Bali 2: 1091-1098. Moya, A., S. Tambutté, E. Tambutté, D. Zoccola, N. Cama- niti & D. Allemand. 2006. Study of calcification Langdon, C. and M.J. Atkinson. 2005. Effect of elevated during a daily cycle of the coral Stylophora pistillata: pCO on photosynthesis and calcification of corals 2 implications for ‘light enhanced calcification’. J. Exp. and interactions with seasonal change in temperature/ Biol. 209: 3413-3419. irradiance and nutrient enrichment. J. Geophys. Res. 110, CO9S07. Muehllehner, N. & P.J. Edmunds. 2008. Effects of ocean acidification and increased temperature on skele- Langdon, C., T. Takahashi, C. Sweeney, D. Chapman, tal growth of two scleratinian corals, Pocillopora J. Goddard, F. Marubini, H. Aceves, H. Barnett & meandrina and Porites rus. Proc. 11th Int. Coral Reef M. J. Atkinson. 2000. Effect of calcium carbonate Symp. ,Ft. Lauderdale 3: 57-61. saturation state on the rate of calcification of an experimental coral reef. Glob. Biogeochem. Cycles. Puverel, S., E. Tambutté, L. Pereira-Mouriès, D. Zoccola, 14: 639-654. D. Allemand & S. Tambutté. 2005. Soluble organic matrix of two scleratinian corals: Partial and com- Langdon, C., W.S. Broecker & D.E. Hammond. 2003. parative analysis. Comp. Biochem. Physiol. 141B: Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob. Biogeochem. 480-487. Cycles 17: 1101-1114. Rahman, M.A. & T. Oomori. 2009. In vitro regulation of

Lee, S., J-H. Park, D. Kwak & K. Cho. 2010. Coral mine- CaCO3 crystal growth by the highly acidic proteins of calcitic sclerites in soft coral, Sinularia polydacta. ralization CaCO3 deposition via CO2 sequestration from the atmosphere. Cryst. Grow. Des. 10: 851-855. Connect. Tiss. Res. 50: 285-293.

Lopez, O., P. Zuddas & D. Faivre. 2009. The influence Reynaud, S., N. Leclercq, S. Romaine-Lioud, C. Ferrier- of temperature and seawater composition on calcite Pages, J. Jaubert & J.-P. Gattuso. 2003. Interacting crystal growth mechanisms and kinetics: Implications effects of CO2 partial pressure and temperature on for Mg incorporation in calcite lattice. Geochim. Cos- photosynthesis and calcification in a scleractinian mochim. Acta 73: 337–347. coral. Glob. Change Biol. 9: 1660-1668.

Lopez, S., J. France, W.J. Gerrits, M.S. Dhanoa, D.J. Hum- Ridgway, R. L. & D. F. Moffett, 1986. Regional differences phries & J. Dijkstra. 2000. A generalized Michaelis- in the histochemical localization of carbonic anhy- Menten equation for the analysis of growth. J. Anim. drase in the midgut of tobacco hornworm (Manduca Sci. 78: 1816-1828. sexta). J. Exp. Zool. 237: 407-412.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 125 Ries, J. 2011. Acid ocean cover up. Nature Clim. Change. Smith, S.V. & G.S. Key. 1975. Carbon dioxide and meta- 1: 294-295. bolism in marine environments. Limnol. Oceanogr. 20: 493-495. Rodolfo-Metalpa, R., S. Martin, C. Ferrier-Pagés & J-P. Gattuso. 2010. Response of the temperate coral Cla- Tambutté, S., É. Tambutté, D. Zoccola, N. Camaniti, S. docera caespitosa to mid- and long term exposure to Lotto, A. Moya, D. Allemand & J. Adkins. 2007.

pCO2 and temperature levels projected for the year Characterization and role of carbonic anhydrase in 2100. Biogeosciences 7:289-300. the calcification process of the azooxanthellate coral Tubastrea aurea. Mar. Biol. 151: 71-83. Rodolfo-Metalpa, R., F. Houlbréque, É. Tambutte, F. Boisson, C. Baggini, F.P. Patti, R. Jeffree, M. Fine, Villegas-Jiménez, A. Mucci & J. Paquette. 2009. Proton/ A. Foggo, J.P. Gattuso & J.M. Hall-Spencer. 2011. calcium ion exchange behavior of calcite. Phys. Coral and mollusc resistance to ocean acidification Chem. Chem. Phys. 11: 8895-8912. adversely affected by warming. Nature Clim. Change 1: 308-312. Wainwright, S.A. 1963. Skeletal organization in the coral Pocillopora damicornis. Quart. J. Micros. Sci. 104: Sandeman, I.M. 2008a. Fine banding in the septa of corals. 164-183. Proc. 11th. Int. Coral Reef Symp., Ft. Lauderdale 3: 57-61. Yii, S.-H., A. Munafi, A. Bolong, T.-T. Yang & H.-C. Liew. 2009. Effect of elevated carbon dioxide on two scle- Sandeman, I.M. 2008b. Light driven lipid peroxidation of ractinian corals: Porites cylindrica (Dana, 1846) and coral membranes and a suggested role in calcifica- Galaxea fascicularis (Linnaeus, 1767). J. Mar. Biol. tion. Rev. Biol. Trop. 56 (Suppl. 1): 1-9. 2009: doi:10.1155/2009/215196.

126 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 109-126, March 2012 Growth and population assessment of the queen conch Strombus gigas (Mesogastropoda: Strombidae) by capture mark-recapture sampling in a natural protected area of the Mexican Caribbean

Joanne Rebecca Peel & Dalila Aldana Aranda Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6 Antigua Carretera a Progreso, Mérida, Yucatán, México; [email protected]

Received 14-VI-2011. Corrected 02-XII-2011. Accepted 20-XII-2011.

Abstract: The Inlet of Xel-Ha is used as a park for ecotourism, representing a sanctuary for the conservation of Pink Queen Conch. Increasing fishing pressure has led to the inclusion of the species in CITES. Most knowledge about the growth of the queen conch was generated through aquaculture, ocean enclosures or obtained using estimates derived from population dynamics. In this study we estimated the growth rate of juvenile S. gigas in a natural protected area by direct methods, during the period of April 2009 to January 2011. Data was obtained by capture-mark-recapture sampling. 1418 individuals were tagged and growth of 714 conchs was analyzed. Population size and density was estimated using Schnabel’s method. The average density was estimated at 0.1694 ± 0.0996ind. m-2, while the highest density was estimated for September 2010 (0.3074ind. m-2). The highest growth rate (0.27 ± 0.10mm day-1) was detected in juveniles with an initial size between 100-149mm, followed by conch <100mm, with an increase of 0.24 ± 0.05mm day-1. The growth rate decreased for indi- viduals with an initial size between 150-199mm (0.18 ± 0.09mm day-1) and for organisms > 200mm (0.08 ± 0.07mm day-1). Variability in growth rate was high in conch 100-149mm and showed seasonal differences, with the highest growth rate in May 2010. Recruitment of juveniles was highest in October 2009 and February 2010. The population of Xel-Ha has grown in size and more large and juvenile conch could be found than in previous studies, indicating that Xel-ha park is working as a sanctuary for the conservation of the queen conch in Mexico’s Riviera Maya. The growth rate of juvenile conch in Xel-Ha is high and exhibits large variations in individuals, reflecting the natural conditions of foraging and aggregation. Seasonal differences in growth rate may be associ- ated with water quality and availability of nutrients for primary production. We conclude that the direct method is useful for the assessment of growth in juvenile S. gigas and that growth in natural conditions may be higher than in aquaculture systems. This information may be applied to fishery management as well as rehabilitation programs and aquaculture. Rev. Biol. Trop. 60 (Suppl. 1): 127-137. Epub 2012 March 01.

Keywords: Population size, Population density, Growth, Mark-Recapture, Recruitment, Nursery, Xel-Ha.

The queen conch (Strombus gigas Linnae- and the list of commercially threatened spe- us, 1758) is a large gastropod which represents cies. In Mexico, on the Peninsula of Yucatan, an important food and economic resource in the conch fisheries reached a peak in 1983, the Caribbean, being the second largest fishery with landings of 1 250 tons. In the late 1980’s after the spiny lobster (Appeldorn 1994) with the majority of the stocks were reported to be landings of 6 000 metric tons, worth $60 mil- overexploited, especially in the state of Yucatan lion Dollars (Chakalall & Cochrane 1997). The where a permanent fishing ban was imple- increasing fishing pressure caused populations mented in 1988 (Baquiero-Cárdenas 1997). In to decline in the 1980’s and led to the inclusion Quintana Roo captures reached their maximum of this mollusk in the Convention on Interna- in the early eighties and by the end of the tional Trade of Endangered Species (CITES) decade catch volumes started to show signs

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 127 of overexploitation (Carta Pesquera Nacional Bocana, North Arm and South Arm. Depth 2006). This has led on one hand to the imple- ranges from 1.75-4.0m (Organismo de Cuenca mentation of different management programs Península de Yucatán Dirección Técnica 2008). to protect the conch (INP-SAGARPA 2008) The climate in the region is warm and sub- and on the other hand, to the development of humid, with rains during summer and winter. its aquaculture (Berg 1976, Brownell 1977, The average annual temperature is 26°C. Aver- Brownell & Stevely 1981, Rathier 1987, Glazer age annual rainfall is 1 079mm (Organismo de et al. 1997, Davis 2000, Moreno de la Torre Cuenca Península de Yucatán Dirección Técnica & Aldana-Aranda 2007). The inlet of Xel-Ha 2008). The sampling site “Cueva” is located in is a natural marine protected area, which has the south-arm of the Inlet and includes a small been used since 1995 as a park for ecotour- bay surrounded by mangroves (Rhizophora ism. The main attraction is the observation of mangle). Persistent upwelling of cold freshwa- marine fauna in its natural environment; hence ter from underground caves, maintains a per- the removal of any flora or fauna is prohibited. manent thermo-and halocline (1.25m). The site Xel-Ha is considered a sanctuary for the con- has a depth 1.5-3.5m. The bottom is composed servation of the queen conch in the Mexican of fine mud and sand formed of fragments Riviera Maya, hosting an important number of of calcareous algae, mixed with rocks and juvenile conch (Peel et al. 2010). dense isolated patches of macroalgae (Padina Sound management of a resource such sp., Halimeda sp. Penicillus sp. Amphiroa sp. as S. gigas, as well as its rehabilitation, pro- Acanthophora sp., Caulerpa sp., Dictyota sp.), tection and the development of aquaculture decaying mangrove leaves and inverted jelly- require biological and ecological knowledge fish (Cassiopea sp.) may be found. of the species, including growth rate, den- sity and population structure. In this study we Population Parameters: Between April determined the rate of growth of juvenile S. 2009 and January 2011, nine surveys were gigas by direct methods in a natural protected conducted at the site of Cueva in the Inlet of area. Data was obtained through capture-mark- Xel-Ha sampling a total area 6 000m². Three recapture methods, allowing the natural forag- samplings were conducted during 2009, five ing behavior, resource selection and dispersal in 2010 and one in January 2011. All organ- of the animals. isms were collected in free-dive, by three div- ers during 3 hours. We used mark-recapture MATERIAL AND METHODS method, marking all individuals with a plastic Dymo® tag, bearing a consecutive number, Study Site: Xel-Ha is located on the east which was fixed to the spire of the conch with coast of the Yucatan Peninsula (20°19’15’’- a plastic cable binder. In order to evaluate the 20°18’50’’N and 87°21’41’’-87°21’15’’W). size distribution and growth rate, shell length The main oceanic current is the Caribbean (SL) was determined for each individual, as Current (Organismo de Cuenca Península de well as lip thickness, using a precision ver- Yucatán Dirección Técnica 2008). The area nier caliper (1mm). With the abundance data of is characterized by medium wave energy and recaptured and unmarked individuals we esti- input of fresh water by underground rivers due mated population size using Schnabel’s method to karstic conditions in the Peninsula (Organis- (Schnabel 1938): mo de Cuenca Península de Yucatán Dirección

Técnica 2008). Xel-Ha is a creek that consists Nt = Σ (Ct Mt)/ Σ Rt of a mix of fresh groundwater with seawater. The Inlet is connected to the Caribbean Sea by Relative density of conch in Cueva was a 100 m wide channel and has a total surface of derived from population size. To determine 14 Ha with a center area and three appendices: the growth rate of conch per day, we only used

128 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 the measurements of individuals which were (Saville 1990). Population structure was deter- recaptured for the first time after being marked mined using histograms, with 10mm intervals in the previous sample (n=706). for size classes from 45-245mm. We calculated the percentage of individuals with flaring lip Environmental parameters: Parameters per size class. A correlation analysis using for dissolved oxygen (O2), water temperature Pearson coefficient (Pearson 1896) between (°C), salinity, total nitrogen (N total), total average growth rates from each sample and - phosphates (P total), nitrate (NO3 ) and nitrite corresponding density was executed. - (NO2 ), measured at the study site between February 2009 and September 2010 were pro- RESULTS vided as a courtesy of Xel-Ha Park and were used to aid interpretation of growth rates over An average of 52.83%, of a total of 1418 time. Data was obtained through the labora- individuals tagged, was recaptured in each tory LAB-ACAMA (Laboratorio de Análisis sample. The recapture success was lowest de Calidad de Agua y Medio Ambiente S.A. de in October 2009 with 19.93% and highest in C.V) applying the procedures specified by the November 2010 with 74.74% (Table 1). Using Mexican Normative for Water quality NMX- the method of Schnabel, population size was AA-26-SCFI-2001 for sampling and analysis. estimated for each month as well as the rela- tive density of conch in the Cueva. The rela- Statistical Analysis: Using the program tive average density was estimated at 0.1694 Infostat/S, we calculated the mean daily growth ± 0.0996ind. m-2, while the highest density and standard deviation per size class (<100mm, was estimated for September 2010 with 0.3074 100-149mm, 150-199mm and ≥200mm) and the conches per square meter (Table 1). average growth per day in each class over time. Conches with SL less than 100mm were Growth data was subjected to analysis of vari- the scarcest in Cueva representing less than ance (ANOVA) to detect significant differences 5%, except in October 2009 and February in growth rate over time and between classes, 2010, when 11.32% and 42.81% were cap- with a confidence level of 95%, followed by tured, respectively. Relative abundance was Tuckey’s honestly significant difference test highest for the class of conch between 150

TABLE 1 Abundance, estimated abundance using Schnabel Method and density of S. gigas in Xel-há (Cueva)

Sample Ct Rt %Rt Ut Mt Nt Density (ind. m-2) Apr. 09 127 0 127 0 Jun. 09 106 68 64.15 38 127 198 0.0330 Oct. 09 306 61 19.93 245 165 496 0.0826 Feb. 10 406 193 47.54 213 410 716 0.1193 May. 10 382 195 51.05 187 623 906 0.1510 Jul. 10 566 305 53.89 261 810 1128 0.1879 Sep. 10 545 319 58.89 226 1071 1844 0.3074 Nov. 10 479 358 74.74 121 1297 1422 0.2370 Jan. 11 265 265 0 1418 1422 0.2369

1. Ct= Number of S. gigas caught in each sampling. 2. Rt= Number of recaptures in each sample. 3. % Rt= Percentage of recapture per sample. 4. Ut= Number of untagged conch in each sample. 5. Mt= Total of marked animals at time. 6. Nt= Estimated population size using the Schnabel method.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 129 100 48.01% ± 12.90% of the organisms ≥200mm 90 showed a formed lip (Fig. 1). 80 70 In April 2009, 94% of the conchs were 60 ≥200 mm lip ≥145mm (Fig. 2). The size classes with high- % 50 ≥200 mm no lip 40 150 to 199 mm est frequency of abundance in that month 30 100 to 149 mm were the animals with SL between 215mm 20 <100 mm 10 and 225mm, and the animals between 185mm 0 and 195mm, making up 26% of the popula- Jul. 10 Jul. Jan. 10 Apr. 09 Apr.

Jun. 09 tion. In June 2009 a significant increase in Oct. 09 Feb. 10 Feb. Sep. 10 Sep. Nov. 10 Nov. May. 10 May. organisms <145mm was observed, representing Fig. 1. Distribution of relative size class frequencies 24% of the organisms sampled. Throughout of queen conch S. gigas, sampled at Xel-ha, Mexico, October 2009 and February 2010 abundance showing the relative abundance (%) of animals which were of individuals <145mm increased dramati- <100mm, between 100mm and 149mm, between 150 and 199mm, ≥200mm without lip and ≥200mm with lip. cally, recording 63.42% and 67.73%. Modal class in October was 85-95mm (16.34%) and 125-135mm (17.24%) in February. In May the number of conch <145mm captured decreased and 199mm, which made up an average of again, with 22.5% and the modal class were 51.18% ± 19.57% of the population. Conch juveniles between 145mm and 155mm, which between 100 and 149mm represented on aver- represented 25.65% of the population. Modal age 22.13% ± 18.69% of the population. Their class shifted in July to the class of 155-165mm (22.79%) and the abundance of conch <145mm abundance was highest in February 2010 with continued to decline, reaching 9.35%. In Sep- 66.50%. Organisms with length ≥ 200mm con- tember of the same year, we could detect the tributed on average 19.73% ± 11.80% to the emergence of new recruits, with 21.65% of population. This class had the least variation conch <145mm and modal class was 185- in abundance compared with other classes. 195mm (16.88%). Recruits kept emerging

0.30 Apr. 09 Feb. 10 Sep. 10 0.25 n=127 n=406 n=545 0.20 0.15 0.10 0.05

Relative frequency Relative 0 0.30 Jun. 09 May. 10 Nov. 10 0.25 n=106 n=387 n=479 0.20 0.15 0.10 0.05

Relative frequency Relative 0 0.30 Oct. 09 Jul. 10 Jan. 11 0.25 n=306 n=586 n=265 0.20 0.15 0.10 0.05

Relative frequency Relative 0 45 55 65 75 85 95 45 55 65 75 85 95 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 105 115 125 135 145 155 165 175 185 195 205 215 225 235 245 Shell length (mm) Shell length (mm) Shell length (mm)

Fig. 2. Histograms showing relative frequency of abundance per size class, modal progression and recruitment patterns of queen conch S.gigas sampled at Xel-Ha, Mexico, between April 2004 and January 2011.

130 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 throughout November, with 20.05% of the ani- p <0.0001), 100mm to 149mm (F 7, 305 = 36.98, mals <145mm and modal class shifted to 195- p <0.0001) and 150mm to 199mm (F 7, 267 = 205mm (16.7%). In January 2011 no conchs 9.14; p <0.0001). There were no significant smaller than 115mm were found and 97.37% differences in the class of animals ≥ 200mm of the sampled population had a size ≥145mm (F 6, 35 = 1.46; p = 0.2262). The highest growth and the class with highest frequency was 195- rate was observed in May 2010, while the low- 205mm (17.74%). est growth was observed in October 2009 and For the growth rate analysis the population November 2010 (Fig. 4 and Table 2). was divided into 4 size classes (Fig. 3). Growth No significant association was detected was highest in animals of 100-149mm (n=306) between growth rate and the relative density of with an average growth of 0.27 ± 0.1mm day-1. conch (R=0.17; p = 0.69). The animals of this size class showed at the Xel-Ha Park occasionally carries out sur- same time the greatest variation in growth veys to monitor water quality. The results rates, with values between 0.01 and 0.63mm corresponding to the area of Cueva are shown day-1. The growth rate had normal distribu- in Figure 5. tion (Shapiro-Wilks p=0.0856) and the median coincided with the mean. In juvenile conch 0.40 )

smaller than 100mm (n=96) we calculated a -1 growth rate of 0.24 ± 0.05mm day-1. Growth 0.30 rate decreased to 0.18 ± 0.08mm day-1 in the 0.20 class of 150 - 199mm (n=268) and was low- -1 est with 0.08 ± 0.07mm day in conch with a 0.10 size ≥ 200mm (n=36) (Fig. 3). The growth rate (mm day Growth 0 showed significant differences between size <100 mm 100-149 mm 150-199 mm >200 mm classes (ANOVA F 3, 705 = 80.08, p <0.0001), Size Class but was similar between the classes <100mm Fig. 3. Mean growth rate (mm day-1) and its standard and 100-149mm (Tuckey, p< 0.05). deviation (Bars) of queen conch S.gigas with Shell length The growth showed significant differences <100mm, between 100mm and 149mm, between 150 and over time in classes of <100mm (F 5, 95 = 8.01, 199mm, and ≥200mm, sampled at Xel-Ha, Mexico.

0.40 0.36 0.32 ) -1 0.28 0.24 0.20 0.16

Growth (mm day (mm day Growth 0.12 0.08 0.04 0 Jun. 09 Oct. 09 Feb. 10 May. 10 Jul. 10 Sep. 10 Nov. 10 Jan. 11 <100 mm >200 mm 100 to 149 mm 150 to 199 mm

Fig. 4. Average growth rate (mm day-1) over time in pink queen conch S.gigas with a shell length of <100mm, 100mm to 149mm, 150mm to 199mm and ≥ 200mm, at Cueva (Xel-Ha, Mexico).

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 131 TABLE 2 Average growth (mm day-¹) of queen conch S.gigas with a shell length of <100mm, 100mm to 149mm, 150mm to 199mm and ≥ 200mm, over time, at Xel-Ha, Mexico

Size Class / Growth Jun. 09 Oct. 09 Feb. 10 May 10 Jul. 10 Sep. 10 Nov. 10 Jan. 11 <100(mm) 0.21 0.26 0.23 0.35 – 0.17 0.2 – 100 to 149(mm) 0.18 0.12 0.23 0.35 0.24 0.24 0.28 0.33 150 to 199(mm) 0.2 0.13 0.16 0.35 0.19 0.15 0.18 0.25 ≥200mm 0.06 – 0.1 0.07 0.02 0.09 0.1 0.15

6 28.5 28 5 27.5 4 27 -1 26.5 3 mg l

2 26 O 2 25.5 Temperature ºC Temperature 25 1 24 0 23.5 0.8 2.5 0.7 2

-1 0.6 -1 0.5 1.5 0.4 0.3 1 P total mg l P total N total mg l N total 0.2 0.5 0.1

0 0 0.025 1.6 1.4 0.02 -1 1.2 -1 1

mg l 0.015 - mg l 2 - 3 0.8 NO 0.01 NO 0.6 0.4 0.005 0.2 0 0 Feb. 09 Apr. 09 Dec. 09 Mar. 10 Jul. 10 Sep. 10 Feb. 09 Apr. 09 Dec. 09 Mar. 10 Jul. 10 Sep. 10

Fig. 5. Water quality parameters, showing surface temperature, dissolved oxygen at the surface, total nitrogen (N total), Nitrate (NO), Nitrite (NO) and total phosphate (total P) at Xel-Ha’s Cueva. Data was provided by courtesy of the administration of Xel-Ha Park.

DISCUSSION larger than 210mm at Cueva in the major- ity of the samples taken in a study conducted In the present work conch larger than between 2001 and 2002. Xel-Ha initiated the 210mm were present in all samples and a total Monitoring Program, as well as the actions for of 268 observations could be made, represent- conservation and rehabilitation of the queen ing 8.42% of the population. Aldana-Aranda conch in October 2001. The conch population et al. (2005) reported the absence of animals of Xel-Ha has grown in size and more large and

132 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 juvenile conch could be found than in previous individuals, indicating the population is in an studies, suggesting that the park of Xel-Ha is equilibrium state. providing effective protection for the species. In the present study, the population was Apparent recruitment was detected small initially; however, we observed sub- throughout most of the year, but was highest stantial recruitment of juveniles from October from June 2009 to May 2010 and September 2009 onwards, reaching a maximum density of 2010 to November 2010. Aldana-Aranda et 0.3074 conches per square meter in September al. (2003) documented recruitment through- 2010. Aldana-Aranda et al. (2005) estimated a out most of the year and high recruitment population size of 632.15 ± 49.40 individuals during October 2001. In a subsequent study in the period from 2001 to 2003, using Sch- Aldana-Aranda et al. (2005) documented nabel’s method. Peel et al. (2010) reported higher recruitment in October 2002, Febru- average catches of 82.09 conches per sample ary 2002 and February 2003, consistent with in the period from January 2004 to January recruitment peaks observed in this study, in 2008 at the sampling site Cueva. The observed February and October. population growth was attributed to increased In the present study population structure recruitment of juveniles. was: <100mm = 7.0%; 100-149mm = 22.1%; The Density at Xel-Ha’s Cueva is high, 150-199mm = 51.2%; ≥200mm = 19.7%. compared to other areas in the Caribbean Aldana-Aranda et al. (2005) reported 4.2% of (Table 3). The densities documented at Cueva the population <100mm, 23.8% in the class of were higher than densities reported for Ala- 100-150mm, 51.2% conch 150-200mm and cranes Reef, where conch fishery was banned 23.4% of the population >200mm in the period in 1988 (Pérez-Pérez & Aldana-Aranda 1998, from November 2001 to August 2003, apply- Ríos-Lara et al. 1998, Pérez-Pérez & Aldana- ing the same methodology. It can be noted that Aranda 2000, Pérez-Pérez & Aldana-Aranda relative proportion of adults and juveniles has 2003), ranging from 0.0047 to 0.018 conch m-2. remained similar in comparison with previous They were also higher than the densities report- studies, despite the increase in numbers of ed for the two most important commercial

TABLE 3 Average densities of S. gigas in the Caribbean

Author, Year Location Density (ind. m-2) Ríos-Lara et al. 1998 Alacranes Reef, Yucatán, México 0.0047 Pérez-Pérez & Aldana-Aranda 1998 Alacranes Reef, Yucatán, México 0.0072 Pérez-Pérez & Aldana-Aranda 2000 Alacranes Reef, Yucatán, México 0.0084 Pérez-Pérez & Aldana-Aranda 2003 Alacranes Reef, Yucatán, México 0.018 De Jesús-Navarrete et al. 1992 Punta Gavilán, Quintana Roo, México 0.003 De Jesús-Navarrete & Oliva-Riviera 1997 Punta Gavilán, Quintana Roo, México 0.0052 ± 0.0023 INP-SAGARPA 2008 Banco Chinchorro, Quintana Roo, México 0.0211 ± 0.035 INP-SAGARPA 2008 Banco Cozumel, Quintana Roo, México 0.0079 ± 0.01653 Berg & Glazer 1991 Florida Keys, Florida, USA 0.000109-0.000298 Friedlander et al. 1994 Virgin Islands, USA 0.00171 Stoner & Ray 1993 Exuma Cays, Bahamas 0.2 Stoner & Schwarte 1994 Lee Stocking Island, Bahamas 0.0018-0.0088 Stoner 1996 Exuma Cays (unfished zones), Bahamas 0.0034-0.0147 Stoner 1996 Exuma Cays (fished zones), Bahamas 0.00022-0.0088 Stoner & Ray 1996 Exuma Park,Exuma Cays, Bahamas 0.027 Posada et al. 1999 Jaragua National Park, Dominian Republic 0.0004-0.01142

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 133 queen conch fishery grounds in Quintana Roo, (1983) determined a rate of 7.2mm month-1 Banco Chinchorro (0.0211 ± 0.035ind m-2) and (~0.236mm day-1) in Belize, while in Venezuela Banco Cozumel (0.0079 ± 0.01653ind m-2). an increase of 15mm month-1 (~0.492mm day-1) In Punta Gavilán, a coastal area without com- was measured (Weil & Laughlin 1984) and in mercial fishing, densities range from 0.003 to Punta Gavilán, juveniles grew an average of 0.0052ind. m-2 (De Jesús-Navarrete et al. 1992, 10mm month-1 (~0,327mm day-1) (De Jesús- De Jesús-Navarrete & Oliva-Riviera 1997). Navarrete & Oliva-Rivera 1997). The growth Berg & Glazer (1994) reported in the Florida rate of juvenile queen conch at Xel-Ha’s Cueva Keys, USA, densities between 0.000109ind. m-2 was comparable to the growth measured by and 0.000298ind. m-2, where a permanent fish- Moreno de la Torre & Aldana-Aranda (2007) ing ban has been implemented since 1985 and under experimental conditions, using artifi- sanctuaries with surveillance have been created cial diets, who obtained an increase of 0.16- due to the rapid depletion of stocks of Queen 0.23mm day-1. However, the conch used in Conch. The density at Xel-Ha’s Cueva is simi- their study had an initial size inferior to 40mm lar to the relatively natural populations in the and were smaller than the organisms in the Exuma Cays (Table 4) (Stoner & Ray 1993, present study. Stoner 1996) and can be compared to the high- Growth rates declined in the 150-199mm density aggregation nursery grounds (Stoner size class and tended towards null in conch & Ray 1993, Stoner & Lally 1994) in terms of ≥200mm (Fig. 3). Conches grow in shell length population structure and density. only until maturation. At this time the flared The growth rate of juvenile conch in Cueva shell-lip is formed. Subsequent shell growth was high in comparison with those mentioned occurs as a progressive thickening of the shell- by other studies (Table 4). De Jesús-Navarrete lip (Appeldoorn 1988). Most conch reach sex- (2001) obtained an average increase of 3.21mm ual maturation when the shell lip is thicker month-1 (~0.1052mm day-1) in Punta Gavilán than 5mm (Appeldorn 1988, Aldana-Aranda & and 2.30mm month-1 (~0.075mm day-1) in Frenkiel 2007). Shell morphology and maxi- Banco Chinchorro, maintaining conch in enclo- mum size can vary considerably (Alcolado sures at density of 0.4ind. m-2. In other areas of 1976, Appeldoorn 1994) and may not represent the Caribbean similar increases were observed a good indicator for maturity (Aldana-Aranda (Randall 1964, Alcolado 1976, Brownell 1977, & Frenkiel 2007). The maximum SL observed Ray & Stoner 1994). Growth rates measured at Xel-Ha in our study was 239mm and less during this study were comparable to other than the half of the organisms in the ≥200mm studies conducted under natural conditions class had developed a flaring lip. It may be using mark-recapture methods. Gibson et al. deduced that more than half of the conch

TABLE 4 Comparative Table of mean growth rates of S. gigas

Growth rate Growth rate Author, Year Location Method (mm month-1) (mm day -1) Randall 1964 Virgin Islands, USA Enclosure 4.16 ~0.136 Alcolado1976 Cuba Enclosure, different environments 3.3 ~0.108 Brownell 1977 Florida Keys, USA Enclosure 4.5 ~0,147 Gibson et al. 1983 Belize Mark-Recapture 7.2 ~0.236 Weil & Laughlin 1984 Venezuela Mark-Recapture 15 ~0.492 Ray & Stoner 1994 Exuma Cays, Bahamas Enclosure – 0.058-0.139 De Jesús-Navarrete & Oliva-Rivera 1997 Punta Gavilán, México Mark-Recapture 10 ~0,327 De Jesús-Navarrete 2001 Banco Chinchorro, México Enclosure, different environments 3.21 ~0.1052 De Jesús-Navarrete 2002 Punta Gavilán, México Enclosure, different environments 2.30 ~0.075 Moreno de la Torre & Aldana-Aranda 2005 México Laboratory conditions, artificial diet – 0.16-0.23

134 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 ≥200mm are still immature and may represent RESUMEN some considerable growth. Growth rate of the queen conch showed La Ensenada de Xel-Ha es usada como parque para ecoturismo y representa un santuario para la conservación large individual variations, especially in ani- del caracol rosado. El incremento en la presión de la pesca mals of the class of 100-149mm. Alcolado ha llevado a la inclusión de esta especie en CITES. Mucho (1976) showed that growth may vary accord- del conocimiento acerca del crecimiento del caracol rosado ing to environmental variability between sites; ha sido generado a través de la acuicultura, encierros oceá- however, the study area of the Cueva is a nicos o usando estimaciones derivadas de las dinámicas poblacionales. En este estudio estimamos la tasa de creci- relatively small area, making it more likely that miento de Strombus gigas juvenil en un área natural prote- all organisms have been exposed to the same gida, por métodos directos durante el período de abril 2009 conditions. Ray & Stoner (1994) suggested that a enero 2011. Los datos fueron obtenidos por muestras juvenile conch are vulnerable to predation and de captura-marca-recaptura. Un total de 1 418 individuos may choose lower quality habitat in terms of fueron marcados y el crecimiento de 714 caracoles fue resources, compromising maximum ingestion analizado. La talla de la población y la densidad relativa fue estimada usando el método de Schnabel. La densidad and growth, by aggregating or sheltering in promedio relativa fue estimada en 0.1694±0.0996ind. m-2, dense vegetation, to reduce the risk of predation mientras que la densidad más alta fue estimada para sep- and increase survival probabilities. The high tiembre 2010 con 0.3074ind. m-2 . La tasa de crecimiento growth rate of juvenile conch in Xel-Ha and the más alta (0.27±0.10mm día-1) fue detectada en juveniles large variations in individuals likely reflects the con una talla inicial entre 100-149mm, seguida por juve- -1 natural conditions of foraging and aggregation. niles <100mm, con un incremento de 0.24±0.05mm día . La tasa de crecimiento disminuyó para individuos con una We could detect significant variation in the talla inicial entre 150-199mm (0.18±0.09mm día-1) y para rate of growth over time (Fig. 4). There was organismos >200mm (0.08 ± 0.07mm día-1). La variabili- an increase in nutrients important for produc- dad en la tasas de crecimiento fue alta en individuos entre tion of biomass (P, N and NO) in the sample 100-149mm y mostró diferencias estacionales; con la tasa of March 2010, for which it is likely that the de crecimiento más alta en mayo 2010. El reclutamiento de juveniles más alto se dio en octubre 2009 y en febrero increase in growth rate during May 2010 might 2010. La población de Xel-Ha ha crecido en tamaño y se be the result of higher primary productivity. pudo encontrar más adultos y juveniles que en estudios We conclude that the direct method is use- anteriores, lo que demuestra que el Parque de Xel-Há está ful for the assessment of growth in juvenile funcionando como un santuario para la conservación del S. gigas and that growth in natural conditions caracol rosado del Caribe en la Riviera Maya de México. is higher than in enclosures and aquaculture La tasa de crecimiento de juveniles en Xel-Ha es alta y presenta grandes variaciones en los individuos, lo cual systems. This information may be applied to refleja las condiciones naturales de la alimentación y la fishery management as well as to rehabilitation agregación. Las diferencias estacionales en las tasas de programs and aquaculture. crecimiento pueden estar asociadas con la calidad del agua y la disponibilidad de nutrimentos para la producción primaria. Concluimos que el método directo es útil parar ACKNOWLEDGMENTS monitorear el crecimiento en juveniles de S. gigas y que el crecimiento en condiciones naturales es mayor que en sis- We gratefully acknowledge financial temas de acuicultura. Esta información puede ser aplicada support by CONACYT through Grant Cona- al manejo de pesquerías así como también en programas de cyt SEP 24210 Connectivity of the Conch in rehabilitación y acuicultura. the Caribbean, CONACYT student scholar- Palabras clave: Strombus gigas, Área Marina Protegi- ship (374674/243375) and CINVESTAV-IPN. da, densidad poblacional, crecimiento, marcaje-recaptura, Also we thank Xel-Ha Park’s administration, reclutamiento Elizabeth Lugo Monjarras and Ricardo Saenz Morales for providing unlimited access and REFERENCES logistic support during our field work. We thank Xel-Ha staff Enrique May, Teresa Rivas, Angel Alcolado, P.M. 1976. Crecimiento, variaciones morfoló- Chavarria and Mario Hoil for their field support. gicas de la concha y algunos datos biológicos del

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 135 cobo Strombus gigas L. (, Mesogastrópoda). Chakalall, B. & K.L. Cochrane. 1997. The queen conch Acad. Cien. Cuba Ser. Oceanol. 34: 36. fishery in the Caribbean – An approach to responsible fisheries management. Proc. Gulf Carib. Fish. Inst. Aldana-Aranda, D. & L. Frenkiel. 2007. Lip thickness of 49:531-554. Strombus gigas (Mollusca:) versus matu- rity: A management measure. Proc. Gulf Carib. Fish. Davis, M. 2000. Queen conch (Strombus gigas) cultu- Inst.58: 431-442. re techniques for research stock enhancement and growout markets, p 127-159. In Fingerman, M. & R. Aldana-Aranda, D., M. Sánchez-Crespo, V. Patiño-Suárez, Nagabhushanam (eds.). Recent advances in marine A. George-Zamora, A.E. Carillo & S. Pérez. 2003. biotechnology Vol.4: Aquaculture Part A Seaweeds Abundancia, frecuencia de tallas y distribución espa- and Invertebrates. Science Publishers, Inc., New cial del caracol rosa Strombus gigas en el parque Xel- Hampshire, USA. Ha, México. P 33-37. In D. Aldana-Aranda. (ed.). El caracol Strombus gigas: Conocimiento Integral para De Jesús-Navarrete, A., E. González, J. Oliva, A. Pelayo su Manejo Sustentable en el Caribe. CYTED, Merida, & G. Medina. 1992. Advances over some ecological Yucatán, México. aspects of queen conch Strombus gigas, L. in the Aldana-Aranda, D., M. Sánchez-Crespo, P. Reynaga- southern Quintana Roo, Mexico. Proc. Gulf Carib. Alvarez, V. Patiño-Suárez, A. George-Zamora & E.R. Fish. Inst.45: 18-24. Baqueiro-Cárdenas. 2005. Crecimiento y temporada reproductiva del caracol rosa Strombus gigas en De Jesús-Navarrete, A. & J.J.Oliva-Riviera. 1997. Density, el parque Xel-Há, México. Proc. Gulf Carib. Fish. growth, and recruitment of the queen conch Strombus Inst.56: 741-754. gigas L. (Gastropoda: Strombidae) in Quintana Roo, Mexico. Rev. Biol. Trop. 45: 797-801. Appeldoorn, R.S. 1988. Age determination, growth, mor- tality and age of first reproduction in adult queen De Jesús-Navarrete, A. 2001. Crecimiento del caracol conch, Strombus gigas L., off Puerto Rico. Fish. Res. Strombus gigas (Gastropoda: Strombidae) en cuatro 6: 363-378. ambientes de Quintana Roo, México. Rev. Biol. Trop., 49: 85-91. Appeldorn, R.S. 1994. Queen conch management and research: status, needs and priorities. p. 301-319. In Friedlander, A., R.S. Appeldoorn & J. Beets. 1994. Spa- Appeldorn, R. S. & B. Rodriguez, (eds.). Strombus tial and temporal variations in stock abundance of gigas Queen Conch Biology, Fisheries and Mari- queen conch, Strombus gigas, in the U.S. Virgin culture. Fundación Científica Los Roques, Caracas, Islands, p. 51-60 In R.S. Appeldoorn & B. Rodriguez Venezuela. (eds.). Queen Conch Biology, Fisheries and Mari- culture, Fundacion Cientifica Los Roques, Caracas, Baquiero-Cardenas, E.R. 1997. The molluscan fisheries Venezuela. of Mexico, p. 39-49. In MacKenzie, C.L Jr., V.G. Burrell, A. Rosenfield & W.L. Hobart (eds.) NOAA Gibson, J, S. Strasdine & K. Gonzales. 1983. The status of Tech. Rep. NMFS 129: The History, Present Condi- the conch industry of Belize. Proc. Gulf Carib. Fish. tion and Future of the Molluscan Fisheries of North Inst. 35: 99-107. and Central America and Europe. U.S. Dept. of Commerce. Glazer, R.A. & R. Jones. 1997. Temporal factors influen- cing survival of queen conch outplants. Final Report. Berg, C.J. 1976. Growth of queen conch, Strombus gigas, U.S. Fish and Wildlife Service Project: 1-58 with a discussion of the particularity of its maricultu- re. Mar. Biol. 34: 1-36. INP-SAGARPA. 2008. Dictamen Técnico: Estimación de biomasa explotable de Strombus gigas en los bancos Berg, C.J. & R.A.Glazer. 1994. Current research on queen abiertos a la pesca en Quintana Roo, México: Banco conch (Strombus gigas) in Florida Waters. Proc. Gulf Carib. Fish. Inst.40: 303-306. Chinchorro y Banco de Cozumel. Temporada de Captura 2008-2009. Brownell, W.N., C.J. Berg, Jr., & K.C. Haines. 1977. Fis- heries and aquaculture of the queen conch, Strombus Moreno de la Torre, R. & D. Aldana-Aranda. 2007. Cre- gigas, in the Caribbean. FAO Fish. Rep. 200: 59-69. cimiento y eficiencia alimenticia del caracol rosado Strombus gigas (Linnaeus, 1758) juvenil alimentado Brownell, W.N. & J.M. Stevely. 1981. The biology, fishe- con nueve alimentos balanceados conteniendo dife- ries, and management of the queen conch, Strombus rentes niveles de proteína y energía. Proc. Gulf Carib. gigas. Mar. Fish. Rev., U.S. Dept. Comm. 43:1- 12. Fish. Inst.58: 463-467

136 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 Pearson, K. 1986. Mathematical Contributions to the Ray, M. & A.W. Stoner. 1994. Experimental analysis of Theory of Evolution.--On a Form of Spurious Corre- growth and survivorship in a marine gastropod aggre- lation Which May Arise When Indices Are Used in gation: Balancing growth with safety in numbers. the Measurement of Organs . Proc. R. Soc. Lond. Mar. Ecol. Prog. Ser 105: 47-59. 60:489-498. Ríos-Lara, G.V., K. Cervera-Cervera, J.C. Espinoza-Mén- Peel, J.R., R. Saenz, E. May, J. Montero & D. Aldana- dez, M. Pérez-Pérez, C. Zetina-Moguel, & F. Chable Aranda. 2010. Importance of a Marine Protected Area Ek. 1998. Estimación de las Densidades de langosta in the Mexican Caribbean on the Conservation of espinosa (Panulirus argus) y caracol rosa (Strombus gigas) en el área central del Arrecife Alacranes, Yuca- the Endangered Species of Queen Conch, Strombus tán, México. Proc. Gulf Carib. Fish. Inst.50:104-127. gigas. GCFI Book of Abstract 63: 39. Saville, D.J. 1990. Multiple Comparison Procedures: The Pérez-Pérez, M. & D. Aldana Aranda. 1998. Análisis pre- Practical Solution. Am. Stat. 44:174-180. liminar de la densidad del caracol rosado (Strombus gigas) en el arrecife Alacranes Yucatán, México. Schnabel, Z. E. 1938. The estimation of the total fish popu- Proc. Gulf Carib. Fish. Inst.50: 49- 65. lation of a lake. Amer. Math. Month. 45:348-352.

Pérez-Pérez, M. & D. Aldana-Aranda. 2000. Distribución, Stoner, A.W. & K.C. Schwarte. 1994. Queen conch, Strom- abundancia, densidad y morfometría de Strombus bus gigas, reproductive stocks in the central Baha- gigas (Mesogastropoda:Strombidae) en el Arrecife mas: distribution and probable sources. Fish. Bull., Alacranes Yucatán, México. Rev. Biol. Trop. 48: U.S. 92:171-179. 51-57. Stoner, A.W. 1996. Status of queen conch research in the Pérez-Pérez, M. & D. Aldana-Aranda. 2003. Actividad de Caribbean. Proceedings International Queen Conch Strombus gigas (Mesogastropoda: Strombidae) en Conference Strombus gigas: 23-39. diferentes hábitats del arrecife Alacranes, Yucatán. Stoner, A.W. & M. Ray. 1993. Aggregation dynamics in Rev.Biol. Trop. 51: 119-126. juvenile queen conch (Strombus gigas): population Posada, J.M., R.I. Mateo & M. Nemth. 1999. Occurrence, structure, mortality, growth and migration. Mar Biol. 116:571-582. abundance and length frequency distribution of queen conch, Strombus gigas (Gasteropoda) in shallow Stoner, A.W. & M. Ray. 1996. Queen conch (Strombus waters of the Jaragua National Park, Dominican gigas) in fished and unfished Republic. Carib. J.of Sci. 35: 70-82. locations of the Bahamas: effects of a marine fishery reser- Randall, J.E. 1964. Contribution to the biology of the queen ve on adults, juveniles, and larval production. Fish. conch Strombus gigas. Bull. Mar. Sci. Gulf Carib. Bull. 94:551-565. 14:246-295. Weil, M. & G. Laughlin. 1984. Biology, population dyna- Rathier, I. 1987. Etat d’avancement des recherches sur mics, and reproduction of the queen conch, Strombus l’élevage du lambi Strombus gigas in Martinique. gigas Linné., in the Archipielago de los Roques Proc. Gulf Carib. Fish. Inst 38: 336-344 National Park. J. Shellfish Res. 4:45-62.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 127-137, March 2012 137

Comparison of three quick methods to estimate crab size in the land crabs Cardisoma guanhumi Latreille, 1825 and Ucides cordatus (Crustacea: Brachyura: Gecarcinidae and Ucididae)

Carlos Alberto Carmona-Suárez1 & Edlin Guerra-Castro1,2 1. Centro de Ecología, Instituto Venezolano de Investigaciones Científicas. Carretera Panamericana, km 11, Altos de Pipe. Miranda. Venezuela; [email protected] 2. Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente, Núcleo Nueva Esparta, Boca de Río, Isla de Margarita, Venezuela; [email protected]

Received 15-VII-2011. Corrected 30-XI-2011. Accepted 20-XII-2011.

Abstract: Quick, reliable and non destructive methods are necessary to estimate size structure on commercial land crabs, in order to acquire relevant information concerning the health of their populations. Cardisoma guan- humi and Ucides cordatus are two land crabs that are exploited at a high scale and also in an artisan way in the Caribbean area and in the coasts of Brazil, which populations are endangered due to uncontrolled exploitation. The purpose of this work is to provide various methods to estimate indirectly crab body size. Sampling was carried out in Carenero (C. guanhumi) and Cumaná (U. cordatus) (Venezuela). For each species, three methods were used to measure burrow diameter (Vernier, internal spring caliper and photograph), and these were corre- lated with real body size of the crabs. Model II linear regression analyzes, i.e. Ordinary Least Squares and Mayor Axis, were used to build and test the performance of forecasting models. Cardisoma guanhumi showed a high bivariate data dispersion using Vernier and photo measuring methods, increasing these towards larger animals. Less dispersion was achieved with the spring caliper method; this resulted in the most accurate measurements of indirectly estimated body size in C. guanhumi (r2= 0.61), whereas Vernier measurements were the least pre- cise. On the other hand, all three methods gave reliable estimates for U. cordatus, being the Vernier method the most accurate (r2= 0.71). However, in both species, all forecasting equations overestimated the size of smaller crabs (those below the mean) but underestimated the size of larger crabs. Nevertheless, all three methods were statistically significant for each of the species, and looking at the above mentioned under- and overestimations, they can serve as reliable and fast non-destructive tools to be used by resource managers and field biologists to acquire size structure information concerning these two species. Vernier and internal spring caliper methods are recommended for relative small sampling areas, while photo method is suggested to be used in very extensive sampling regions. Rev. Biol. Trop. 60 (Suppl. 1): 139-149. Epub 2012 March 01.

Key words: Indirect body size measuring methods, Cardisoma guanhumi, Ucides cordatus, Vernier measure- ment, internal spring caliper measurement, photographic measurement.

Population structure and density estimates in Cuba, there was a 75% drop and more in the of commercial land crabs are a need of con- fisheries of this land crab between the decades siderable importance, in order to establish of 1980 and 1990 (Baisre 2000). Furthermore, their population status and define management in Brazil, C. guanhumi has also been under politics. The land crab Cardisoma guanhumi strong fishery pressure, also being endangered Latreille 1825 has been the target of com- and overexploited (Amaral & Jablonski 2005). mercial exploitation and in an artisan way in Specifically in Venezuela, C. guanhumi has several Caribbean countries and in Brazil. In been commercially captured and exported since Puerto Rico, there has been a decline of C. the seventies (Taissoun 1974) without official guanhumi since 1960 (Matos 1997). Moreover, harvesting statistics. The second largest land

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 139 crab in the Caribbean and in Brazil, Ucides estimate body size. Moreover, it is intended to cordatus, has also been extensively exploited in prove that these methods can serve as reliable this country (which exhibits the highest popula- measurements to assess crab body size structure tions of this species in the American continent) in a fast, cheap and non-destructive manner. (Nóbrega Alves & Nishida 2003, Jankowsky et al. 2006, Pimentel Rocha et al. 2008) and MATERIALS AND METHODS in the Orinoco Delta-Venezuela (Novoa 2000). In the latter, C. guanhumi and U. cordatus are Field Measurements: Sampling and mea- illegally extracted and exported to Trinidad surement of crabs and its associate burrows without any regulations (Novoa 2000). were performed on two Venezuelan localities: Although there are several studies deal- Carenero (Miranda state) (10° 32’ 5.97”-N, 66° ing with the population biology of these land 7’ 45.78”-W) for Cardisoma guanhumi, and crabs, population estimations have been mainly Cumaná (Sucre state) (10°27’ 43.11”-N, 64° done through the extraction of the animals and 6’ 07.99” -W) for Ucides cordatus. Both sites destruction of their habitats (Warner 1969, are characterized by a predominant vegeta- Oliviera Botelho et al. 2001). Only in few cases tion of Avicennia germinans. With the help of population structure was determined using local fishermen, two different capture methods indirect methods to estimate the body size of were applied. For C. guanhumi, wooden baited C. guanhumi (Govender & Rodríguez-Fourquet traps were used between May and October 2000) and as well as of U. cordatus (Schmidt 2010; for U. cordatus, fishing net pieces were et al. 2008). Indirect crab size estimation has placed over the burrow entrances, between been recently applied with a higher frequency February and April 2011. Normally, burrows to several burrowing species, such as in the from C. guanhumi are mainly occupied by fiddler crabs Uca spinicarpa Rathbun, 1900 only one crab (Taissoun, 1974, Moreno, 1980). and U. longisignalis Salmon and Atsaides, Similarly, burrows from U. cordatus are also 1968 (Mouton & Felder 1996), U. tangeri occupied by solely one specimen (personal Leach, 1814 (Lourenço et al. 2000), and U. observations). After confirming that only one annulipes H. Milne Edwards, 1937 (Skov & crab was captured from each burrow, these Hartnoll 2001), in the ocypodid crabs Dotilla were sexed and their carapace length measured myctiroides Stimpson, 1858 (Lee & Lim 2004) with a 0.05-mm-precision Vernier caliper. Nev- and the soldier crab Heloecius cordiformis ertheless, due to the fact that the purpose of this H. Milne-Edwards, 1837 (Macfarlane 2002). work was to compare crab size with estimated In all the works mentioned above, Vernier burrow size through three different measuring caliper was used to measure the diameter of the methods, we considered unnecessary to sepa- burrow entrance. rate male and female carapace measurements. Direct capturing of animals and visual cen- Corresponding burrows of captured animals sus methods for assessing population structure were measured using three different methods: are difficult to perform, because it involves 1.- Superficial crab burrow diameter (in mm) personnel and equipment costs, destruction of was mensurated with a 0.05-mm-precision burrows and long observation times. On the Vernier caliper (from now on defined as “Ver- other hand, methods for indirect estimation of nier”), taking into account that crabs (C. gua- body size are more efficient to achieve this goal nhumi, as well as U. cordatus) entered and got and avoid the destruction of crab habitats. For out their burrows sideways and that their cara- these reasons, the purpose of this research is to pace length was well lined up with the diameter test and compare three types of burrow mea- of the burrow; 2.- The internal diameter of the surements that can estimate carapace length (in burrow was estimated with an inside spring mm) of the land crabs C. guanhumi and U. cor- caliper (from now on defined as “caliper”) datus, and determine which is more suitable to (Fig. 1), taking the same considerations when

140 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 118 C. guanhumi (73 males and 45 females) were trapped and their carapace length mea- sured (in mm), showing a mean body size of 58.79±18.03 (max= 140.7; min= 32.8); fur- thermore, 118 vernier measurements, 89 spring caliper measurements and 112 photographs were taken, but only paired data (81) were con- sidered for the analyzes. For Ucides cordatus, 105 crabs were captured (mean body size= 35.99±7.34; max= 54.2; min= 18.6) (52 males and 53 females), with the same numbers of Vernier measurements, spring caliper measure- ments and photographs taken.

Statistical Analyzes: Model II Linear regressions analyzes were calculated using a subset of random measurements and Ordinary Least Squares (OLS) in order to generate pre- dictive models for size estimation for each crab species, in accordance to the suggestions given by Laws & Archie (1981) and Quinn & Keough (2002) to analyze bivariate data subjected both to sampling error. To validate the best forecasting model, Model II via Mayor Axis Fig. 1. Photograph and drawing detailing the internal (MA) regression analyzes was applied using spring caliper used to measure the diameter of the burrows the remaining data. Before theses analyzes, of the crabs Cardisoma guanhumi and Ucides cordatus. data was first checked for normality with the Shapiro-Wilks test, and the homogeneity in the bivariate dispersion was approached with scat- burrows were measured with the Vernier and terplots (Quinn & Keough 2002). In both spe- being very cautious that the tips of the spring cies, individuals and burrows with standardized caliper touched the walls of the burrow with- residuals larger than 3.0 were considered outli- out penetrating these. The length between the ers and excluded from the analyzes in order to tips was measured with the Vernier; 3.- Each generate more robust models (Sokal & Rohlf burrow was photographed with a measuring 1995, Quinn & Keough 2002). In the case of scale placed on its side, and photographs were C. guanhumi, from 81 samples (individuals analyzed with tpsDig v.2 software (Rohlf 2004) and their respective burrow sizes), 50 were (a computer program for statistical analysis of randomly chosen to build the linear models. To morphometric data) to calculate burrow diam- evaluate the predictive capacity of the resulting eter. This software has been used successfully models, the estimated crab body size of the to quantify size and shape of spermathecae in remaining 31 samples was plotted and analyzed the beetle Onthophagus taurus Schreber 1759 against the real size using MA analyzes. For U. (Simons & Kotiaho 2007), as well as study- cordatus, 29 samples were randomly chosen ing the geometric morphometry of two species from a set of 58 to construct the linear model. of the beetle Erodiontes spp. (Taravati et al. Crab body size from the remaining 29 samples 2009) and to determine body size preferences was estimated and compared with the real ones, in the seahorse Hippocampus abdominalis Les- using the MA linear regression. For both spe- son 1827 (Mattle & Wilson 2009). A total of cies, if the predictive models are good, then

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 141 the regression lines with MA analyzes should 180 show slopes= 1, intercepts= 0 and angle of 45º A 160 (Legendre 2001). 140 120 RESULTS 100 Vernier Statistical results for C. guanhumi: 80 Graphs with all data included for each of 60 the burrow measuring methods and carapace 40 length of crabs are shown in Fig. 2. Both bivari- 180 ate data between carapace length and mea- B sured burrows with the Vernier (Fig. 2A), and 160 carapace length and measured burrows with the 140 photo-method (Fig. 2C) showed a noticeable 120 increase in the dispersion towards larger sizes. 100 Callper Bivariate data of carapace length and burrow 80 measure with the spring caliper showed less 60 dispersion (Fig. 2B).

Burrow diameter (mm) diameter Burrow 40 For the construction of the predictive model, none of the sampled data (body size and 180 C burrow measurements with the different meth- 160 ods) adjusted to normality. Thus, tests based on 140 permutations were applied (Legendre 2001). 120 Estimation variability increased as body size Photo 100 increased, particularly data coming from the 80 Vernier and photo measurements (Fig. 2A and 60 2C, respectively). After excluding the outliers and using the 50 random selected sample pairs 40 for each of the measuring methods, carapace 40 60 80 100 120 140 160 length adjusted to normality (Shapiro-Wilks Carapace length in mm test, p>0.05), but burrow size with different methods did not (Shapiro-Wilks test, p<0.05). Fig. 2. Bivariate scatterplots of carapace length (mm) Nevertheless, homogeneity was achieved in and burrow diameter (mm) of Cardisoma guanhumi. A: Burrow diameter measured with Vernier; B: Burrow the bivariate distribution in the three data sets diameter measured with spring caliper; C: Burrow diameter from each of the measuring methods (i.e. points measured from digital photograph. around the line are equally distributed). Ver- nier method as well as photo method showed a reduced dispersion of the data (Fig. 3A are shown in Table 2A. All regressions pres- and 3C, respectively), but the spring caliper ent intercepts that are significantly higher method still evidences the smallest disper- than 0 and slopes significantly lower than 1 sion of all (Fig. 3B). The results of the linear (Table 2A). This indicates that all methods regression analyzes are shown in Table 1A. overestimate smaller crab body size compared The three models are statistically significant. to the real body size mean and underestimate The spring caliper measuring method is the larger size. The imprecision can be observed in best adjusted model (r2= 0.61) and with the less Fig. 4, in which the MA linear regression lines unexplained variability. show angles above the referential line of 45%. Results of the evaluation of the predic- Nevertheless it apparently seems to be that the tive capacity of the regression models (MA) caliper method revealed a better performance,

142 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 140 A 80 A 120

60 100 CL = 26.8807 + 0.3904 x BD 80 r2 = 0.49 40 With Vernier With 60

20 40

40 60 80 100 120 140 20 40 60 80 Vernier 160 80 B B 140 60 120

100 CL = 25.7587 + 0.3931 x BD 40 2 80 r = 0.61

60 spring caliper With 20 Carapace length (mm) Carapace 40 Estimated carapace length (mm) carapace Estimated

40 60 80 100 120 140 160 20 40 60 80 80 Spring caliper C 120 C

60 100

CL = 28.0866 + 0.4306 x BD 80 r2 = 0.55 40

60 image digital With 20

40

20 40 60 80 Real measure of carapace length (mm) 40 60 80 100 120 Digital image Burrow diameter (mm) Fig. 4. Model II MA linear regression for the validation of the three measuring methods in Cardisoma guanhumi. Fig. 3. Model II OLS linear regression method for carapace Estimated carapace length (mm) vs. real carapace length length (mm) and burrow diameter (mm) in Cardisoma (mm). A: Vernier method; B: Spring caliper method; C: guanhumi. A: Burrow diameter measured with Vernier; B: Digital photograph method. Burrow diameter measured with spring caliper; C: Burrow diameter measured from digital photograph.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 143 TABLE 1 on permutations. Similarly, homogeneity was Linear regression analysis between carapace length of maintained in the bivariate distribution in all Cardisoma guanhumi (A; n= 50) and Ucides cordatus the Vernier and caliper measuring methods, but (B; n= 29), and the three burrow measuring methods, using Model II (OLS). Significance of slope was tested variation increases with increasing body size using t-test and 4999 permutations in the photo method (Fig. 5). After excluding outliers and randomly choosing 29 measure- A ments, body size as well as burrow measures Method Intercept Slope t-test r2 from all estimating methods were still adjusted Vernier 26.88 0.39 p<0.05 0.49 to normality (Shapiro-Wilks tests, p>0.05). Spring caliper 25.76 0.39 p<0.05 0.61 Similarly, homogeneity was maintained in Photo 28.08 0.43 p<0.05 0.55 the bivariate distribution in the three methods (Fig. 6). All linear regressions built with Model B II OLS method are statistically significant 2 Method Intercept Slope t-test r (Table 1B). The Vernier measuring method Vernier 2.38 0.71 p<0.05 0.71 showed the best adjustment and the less unex- Spring caliper 8.14 0.57 p<0.05 0.61 plained variation (r2= 0.71, Table 1B). MA Photo 7.40 0.68 p<0.05 0.53 linear regressions analyzes are shown in Table 2B. The three methods have an intercept sig- since the confidence intervals include the refer- nificantly above zero and slopes that include 1 ential line along almost all the measures. or approach it significantly. All three methods slightly overestimate smaller crab body size Statistical results for U. cordatus: Graphs and underestimate the average sizes greater with all data included for each of the burrow than the population average. Such imprecision measuring methods and carapace length of can be seen in Figure 7, where the regression crabs are shown in Fig. 5. In each of the graphs, lines presented MA angles below the baseline no strong dispersion was observed. Crab body of 45°. Estimates presented by the photo meth- size, as well as burrow measurements with od show the greatest portion of the referential the three methods adjusted to normality (all line outside the IC 95%, followed by the caliper Shapiro-Wilks tests, p>0.05). This satisfies and finally by the Vernier methods, the latter the assumption of distribution for the con- having apparently the lowest degree of impreci- ventional tests, but tests were applied based sion in estimating sizes.

TABLE 2 Validation model between real and estimated carapace length for Cardisoma guanhumi (n= 31) and Ucides cordatus (n= 31), using Model II and MA method

A Method Intercept I.C. 95 % Intercept Slope I.C. 95 % slope Line angle Vernier 20.89 12.06 28.60 0.65 0.51 0.81 33.20 Spring caliper 15.47 5.95 23.64 0.73 0.58 0.90 35.96 Photo 17.97 8.20 26.30 0.72 0.57 0.90 35.84

B Method Intercept I.C. 95 % Intercept Slope I.C. 95 % Slope Line angle Vernier 6.26 -1.62 12.70 0.82 0.63 1.04 39.22 Spring caliper 9.35 0.37 16.54 0.73 0.51 0.99 35.98 Photo 11.84 2.42 19.37 0.65 0.43 0.93 33.14

144 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 80 70 A A 70 60 60 50 50 CL = 2.3754 + 0.717 x BD Vernier 40 r2 = 0.71 40 30 20 30

80 20 B 70 20 30 40 50 60 70 60 Vernier 70 50 B Callper 40 60 30 50

Burrow diameter (mm) diameter Burrow 20 CL = 8.1385 + 0.5705 x BD r2 = 0.61 80 40 C 70 30 60 Carapace length (mm) Carapace 50 20 Photo 40 30 20 30 40 50 60 70 20 Spring caliper 60 C 20 30 40 50 60 Carapace length in mm 50

Fig. 5. Bivariate scatterplots of carapace length (mm) and CL = 7.4027 + 0.6769 x BD 2 burrow diameter (mm) of Ucides cordatus. A: Burrow 40 r = 0.53 diameter measured with Vernier; B: Burrow diameter measured with spring caliper; C: Burrow diameter measured from digital photograph. 30

20

DISCUSSION 20 30 40 50 60 Although OLS linear regressions for each Digital image of the applied measuring methods in each spe- Burrow diameter (mm) cies resulted statistically significant (see Tables 1A and 1B), the MA analyzes reflect the same Fig. 6. Model II OLS linear regression method for carapace bias in the estimations: these methods overesti- length (mm) and burrow diameter (mm) in Ucides cordatus. A: Burrow diameter measured with Vernier; B: Burrow mate sizes of smaller crabs and underestimate diameter measured with spring caliper; C: Burrow diameter larger ones. The spring caliper method proved measured from digital photograph.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 145 60 to be the most accurate and with the lowest A degree of bias to be applied in Cardisoma gua- 50 nhumi, and the Vernier method in Ucides cor- datus. In C. guanhumi, Vernier method showed 2 40 a correlation r = 0.49, apparently being lower than Govender & Rodríguez-Fourquet (2008) 30 results using the same measuring methodology, where they obtained a high correlation between With Vernier With 20 carapace width and burrow diameter (r2= 0.89). Moreover, body size of several burrowing crab 10 species have also been estimated using values obtained with a Vernier, achieving high cor- 0 10 20 30 40 50 60 relations, such as in Heloecius cordiformis (ln 60 carapace length r2= 0.83, MacFarlane 2002) B and Dotilla myctiroides (carapaces length r2= 50 0.89). Although we used carapace length as the reference size, and not carapace width, 40 as used by Govender & Rodríguez-Fourquet (2008), we consider that this is not relevant 30 to the discrepancy between the two correla- tions, but rather has to do with two aspects: 20

With spring caliper With the nature of the substrate and the statistical methodology employed. First, smaller crabs 10 probably using previously abandoned burrows

Estimated carapace length (mm) carapace Estimated from larger animals, induce a size overestima- 0 10 20 30 40 50 60 tion and dispersion increase; furthermore, the 60 C burrow entrances of C. guanhumi individuals that were sampled in Carenero-Venezuela can 50 vary greatly in their shape and form (round, elongated, amorphous), as well as in their 40 consistency (very hard to very soft mud at the entrance of the burrows), causing measuring 30 errors (e.g. tips of the Vernier and the spring caliper penetrating in the very soft mud) that 20 With digital image digital With could have produced the lower correlation in the samples taken with the Vernier in the 10 present work. But these measuring problems were not encountered with U. cordatus, where 0 10 20 30 40 50 60 burrows were easier to measure. There was Real measure of carapace length (mm) less dispersion in data from U. cordatus than in C. guanhumi and the regression analyzes Fig. 7. Model II MA linear regression for the validation of were much more accurate. On the other hand, the three measuring methods in Ucides cordatus. Estimated carapace length (mm) vs. real carapace length (mm). A: from the statistically perspective, the difference Vernier method; B: Spring caliper method; C: Digital could be produced by the statistical methodol- photograph method. ogy employed in the analyzes. Most studies in

146 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 marine biology typically use Model I regres- in these forests. Finally, due to the ecological sion, but this is inappropriate (Laws & Archie and economical importance to estimate body 1981). It is strongly recommended that Model size structure in both land crabs, it is justified II regression analyzes should be the methodol- the application of the measuring methods that ogy to relate two set of variables when both were analyzed in the present work, even when are subjected to sampling error (Sokal & Rohlf the bias in estimations is a subject to be taken 1995, Legendre 2001, Quinn & Keough 2002). into account in the interpretation of data. In this study, two methods of Model II regres- sions analyzes were applied following the rec- ommendations of Legendre (2001). The above ACKNOWLEDGMENTS cited references do not make neither mention We are very thankful to the fishermen, about the diversity of burrows nor on the Model especially to Nicolás Suárez, and as well of regression analyzes used. as to Arianny Camejo and Patricia Medina, Considering the significance of the mea- who helped us trapping and measuring the suring technique that was analyzed in the pres- crabs. We also express our sincere thanks to ent work, at the moment of deciding which one should be utilized, it will depend on how large Hermes Piñango, who showed us the internal is the area to be surveyed and the amount of spring caliper methodology and gave us criti- persons that will accomplish the task. If the cal reviews on the manuscript, as well as direct area is not very large and more than one person help in the field. is taking the measurements, we strongly sug- gest using the spring caliper technique in C. RESUMEN guanhumi and the Vernier method in U. corda- tus, for fine estimation when an accurate body Para la estimación de la estructura de tamaños en size population structure is required; but if the cangrejos terrestres comerciales y la obtención de infor- area is substantially large and few persons are mación relevante para su manejo, es necesario utilizar métodos rápidos, confiables y no destructivos. Cardisoma measuring, then the photo technique should be guanhumi y Ucides cordatus son dos cangrejos terrestres regarded as the most efficient method (although que son explotados comercialmente en el Caribe y en less accurate r2= 0.55 for C. guanhumi and Brasil. El propósito de este trabajo es suministrar métodos 0.53 for U. cordatus). The latter is less time indirectos para la estimación del tamaño del caparazón consuming in the field, and saves sampling de los cangrejos y por consiguiente, de la estructura de time. This should be taken in mind, especially tallas. Los muestreos se llevaron a cabo en Carenero (C. guanhumi) y en Cumaná (U. cordatus) (Venezuela). Se in areas where they occupy large geographical utilizaron tres métodos para estimar el diámetro de sus extensions. In Venezuela, for instance, there madrigueras: Vernier, compás y fotografía. Estos se corre- are mainly three regions were C. guanhumi is lacionaron con el tamaño real del cangrejo. Se aplicó el reported to inhabit wide land extensions: from análisis de regresión Ordinary Least Squares Model II y San Juan de Los Cayos to Boca de Yaracuy (8 la capacidad de predicción se probó utilizando el modelo 340 ha, Taissoun 1974), from Higuerote to Boca II Mayor Axis para las regresiones. Cardisoma guanhumi mostró una fuerte dispersión de sus datos en los métodos de Unare (more than 8 340 ha, Taissoun 1974), de Vernier y fotografía. Menos dispersión se obtuvo con el and the region of the Orinoco Delta (98 802 método del compás y fue el más preciso (r2= 0.61). Para U. to 455 298 ha, Conde & Alarcón 1993). Also cordatus las medidas con Vernier fueron la más adecuadas in the latter geographical area, U. cordatus is (r2= 0.71). Sin embargo los tres métodos fueron confiables. also reported occupying vast mangrove regions Los diferentes métodos mostraron ventajas y desventajas y (Novoa 2000 and personal observations). But dependerá del que aplique los métodos, decidir cuál será el likewise in Brazil, where mangrove extensions más adecuado para sus propósitos. are considerably large (1 012 376 ha; Lacerda Palabras clave: Métodos indirectos para medir tamaño et al. 1993), both land crabs are being commer- corporal, Cardisoma guanhumi, Ucides cordatus, medidas cial exploited due to their substantial presence con Vernier, medidas con compás, medidas con fotografía.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 147 REFERENCES Matos, D. 1997. Puerto Rico/MNFS Cooperative Fisheries Statistics Program 1994-1997 Final Report to NMFS. Amaral, A.C.Z & S. Jablonski. 2005. Conservação da Department of Natural and Environmental Resources. biodiversidade marinha e costeira no Brasil. Megadi- versidade 1: 43- 51. Mattle, B. & A.B. Wilson 2009. Body size preferences in the pot-bellied seahorse Hippocampus abdominalis: Baisre, J.A. 2000. Crónica de la pesca marítima en Cuba choosy males and indiscriminate females. Behav. (1935- 1995). Análisis de tendencias y potencial pes- Ecol. Sociobiol. 63:1403–1410 quero. FAO Doc. Téc. Pesca No. 394. Roma. Mouton Jr., E.C. & D.L. Felder. 1996. Burrow distribution Conde, J.E. & C. Alarcón. 1993. Mangroves of Venezuela. and population estimates for the fiddler crabs Uca p. 211-243. In L.D. Lacerda (Ed.). Conservation and spinicarpa and U. longisignalis in a Gulf of Mexico sustainable utilization of mangrove forests in Latin salt marsh. Estuaries 19: 51-61. America and African regions. Part 1. Latin America. Serie mangrove Ecosystems Technical Reports. Vol. Nóbrega Alves, R.R. & A. K. Nishida. 2003. Aspectos 2. ISME & Int. Trop. Timb. Org. Okinawa. socioeconômicos e percepção ambiental dos cata- dores de caranguejo-Uçá (Decapoda, Brachyura) do Govender, Y & C. Rodríguez-Fourquet. 2008. Techniques estuário do rio Mamanguape, nordeste do Brasil. for assessment of population density and body size of Interciencia 28: 36-43. the land crab Cardisoma guanhumi (Latreille, 1825) in Puerto Rico. Trop. Est. 1: 9- 15. Novoa, D. 2000. La pesca en el golfo de Paria y delta del Orinoco costero. Editorial Arte, Caracas. Jankowsky, M., J.S. Pires & N. Nordi. 2006. Contribução ao manejo participativo do caranguejo-Uçá, Ucides Oliveira Botelho, E.R., M.C. Ferrão Santos & J.R. Bote- cordatus (L. 1763), em Cananéia-SP. B. Inst. Pesca, lho de Souza. 2001. Aspectos populacionais do São Paulo 32: 221-228. guaiamum, Cardisoma guanhumi Latreille, 1825, do estuario do Rio Una (Pernambuco- Brasil). Bol. Técn. Lacerda, L.D., J.E. Conde, C. Alarcón, R. Álvarez-León, Cient. CEPENE, Tamandaré 9: 123-146. P.R. Bacon, L. D´Croz, B. Kjerve, J. Polaina & M Vannucci. 1993. Mangrove ecosystems of Latin Pimentel Rocha, M.S., J.S. Morão, W.M. Silva Souto, R.R. America and the Caribbean: A Summary. p. 1-42. Duarte Barboza & R.R. Nóbrega Alves. 2008. Use of In L.D. Lacerda (ed.). Conservation and sustainable fishing resources in the Mamanguape river estuary, utilization of mangrove forests in Latin America and Paraiba state, Brazil. Interciencia 33: 904-909. African regions. Part 1. Latin America. Serie mangro- ve Ecosystems Technical Reports. Vol. 2. ISME & Quinn, G. P. & M. J. Keough, 2002. Experimental Design Int. Trop. Timb. Org. Okinawa. and Data Analysis for Biologists. Cambridge Univer- sity Press, New York Laws, E.A. & J.W. Archie. 1981. Appropriate use of regres- sion analysis in marine biology. Mar. Biol. 65: 13-16. Rohlf, F.J. 2004. tpsDIG, Version 2.05. Department of Eco- logy and Evolution, Stony Brook University, Stony Lee, S. & S.S.L. Lim 2004. Do diameter of burrows and Brook, NY http://life.bio.sunysb.edu/morph. food pellets provide estimates of the size structure of a population of Dotylla myctiroides at the sand-flats Skov, M. W. & R. G. Hartnoll, 2001. Comparative suita- of Ao Tungkhen, Phuket? Phuket mar. biol. Cent. bility of binocular observation, burrow counting and Res. Bull. 65: 55-60. excavation for the quantification of the mangrove fiddler crab Uca annulipes (H. Milne Edwards). Legendre, P. (2001) Model II regression - User’s guide. Hydrobiologia 449: 201- 212. Département de Sciences Biologiques, Université de Montréal, Montréal. Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice of Statistics in Biological Research. W. Lourenço, R., J. Paula & M. Henriques. 2000. Estimating H. Freeman and Company, New York the size of Uca tangeri (Crustacea: Ocypodidae) without massive crab capture. Sci. Mar. 64: 437-439. Schmidt, A.J., M.A. de Oliveira, E.P. de Souza, M. May & S. M. Brito. 2008. Relaçâo entre abertura de galeria e Macfarlane, G.R. 2002. Non-destructive sampling tech- comprimento de cefalotórax do caranguejo-Uçá, Uci- niques for the rapid assessment of population para- des cordatus (Linneus, 1763) (Crustacea-Decapoda- meters in estuarine shore crabs. Wetlands (Australia) Brachyura). Bol. Téc. Cient. CEPENE, Tamandaré 20: 49-54. 16: 51-58.

148 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 Simmons, L.W. & J.S. Kotiaho. 2007. Quantitative genetic Taravati, S., J. Darvishi, & O. Mirshamsi. 2009. Geometric correlation between trait and preference supports a morphometric study of two species of the psammo- sexually selected sperm process. Proc. Nat. Acad. Sci. philous genus Erodiontes (Coleoptera: Tenebrioni- 104: 16604-16608. dae) from the Lute desert, Central Iran. Iran. J. An. Biosyst. 5: 81-89. Taissoun, E. 1974. El cnagrejo de tierra Cardisoma guan- humi (Latreille) en Venezuela. Bol. Cent. Invest. Biol. Warner G. F. 1969. The Occurrence and Distribution of 10: 1-36. Crabs in a Jamaican Mangrove Swamp. J. Anim. Ecol. 38: 379-389.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 139-149, March 2012 149

Crecimiento somático y relación ARN/ADN en estadios juveniles de Eucinostomus argenteus (Pisces: Gerreidae) en dos localidades del Caribe de Venezuela

Ana Teresa Herrera-Reveles1,3, Mairin Lemus2 & Baumar Marín3 1. Postgrado en Ecología, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela. Apartado 47058, Caracas 1041-A Venezuela. (0058-212) 6051300; [email protected] 2. Laboratorio de Ecofisiología, Instituto Oceanográfico de Venezuela, Universidad de Oriente Núcleo Cumaná. Apartado 245, Cumaná, Venezuela. (0058-293) 4002249; [email protected] / [email protected] 3. Laboratorio de Zooplancton, Instituto Oceanográfico de Venezuela, Universidad de Oriente Núcleo Cumaná. Apartado 245, Cumaná, Venezuela. (0058-293) 4002169; [email protected] / [email protected]

Recibido 15-VII-2011. Corregido 14-XI-2011. Aceptado 20-XII-2011.

Abstract: Somatic growth and RNA/DNA rate of Eucinostomus argenteus (Pisces: Gerreidae) juveniles stages at two localities of the Venezuelan Caribbean. In order to evaluate the association among growth indi- ces of marine fishes at early life stages, the somatic growth rate and physiological conditions of Eucinostomus argenteus were estimated at two Venezuelan North-East zones: Mochima Bay and Cariaco Gulf. The age and somatic growth rate were estimated based on daily growth increments in sagitta otoliths. The physiological con- ditions were evaluated with proteins concentrations and RNA/DNA rate, which were estimated by spectrofluo- rometric and fluorometric techniques, respectively, on muscle tissue. Juvenile standard length ranged from 9.80 to 39.20mm from 21 to 73 days of age. At all the study localities there were significant and positive correlations between age, otolith diameter and body size, and fitted to a linear regression model. The values of recent growth rate ranged from 0.178 to 0.418mm day-1, backcalculated growth rate oscillated between 0.295 - 0.393mm day-1, and RNA/DNA rate ranged from 1.65 to 6.97. Differences were not found between study zones, but there were differences between localities. Despite the fact that there was no correlation between juvenile´s somatic growth and RNA/DNA rates, the reported values suggesting a E. argenteus juvenile’s positive growth in their natural habitat at localities studied. Nevertheless, in some localities values that indicate poor nutritional conditions were registered, which could affect other future demographic rates as survivor and fecundity. Rev. Biol. Trop. 60 (Suppl. 1): 151-163. Epub 2012 March 01.

Key words: Gerreidae, growth rate, nutritional condition, otoliths, RNA/DNA.

Estudios sobre la edad y tasa de creci- El empleo de diversas metodologías para la miento de las especies de peces en sus estadios estimación del crecimiento de los peces puede tempranos permiten entender procesos vitales generar el historial completo de crecimiento en la persistencia de las poblaciones, entre de los individuos e incluso relacionarlo con las los que se pueden mencionar la mortalidad e condiciones ambientales (Stevenson & Campa- identificación de cohortes. Al mismo tiempo, na 1992, Clemmesen & Doan 1996, Gilliers et las tasas de crecimiento de los individuos se al. 2006). Actualmente dos de las herramientas encuentran directamente relacionadas a la diná- que han sido ampliamente empleadas para la mica poblacional a través de su influencia a las evaluación la condición y crecimiento de los tasas de supervivencia, madurez y fecundidad peces es el estudio de la micro-estructura de los (Jones 2002). otolitos y los índices bioquímicos.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 151 La interpretación de la relación entre la oriental de Venezuela (Martín 1995, Milosla- longitud del cuerpo de los peces y del tamaño vich et al. 2003), se seleccionaron dos zonas de su otolito, así como también el análisis de de estudio: la Bahía de Mochima, Parque los incrementos diarios y/o anuales de creci- Nacional Mochima (10º 24’ 30” N, 64º 19’ 30” miento en los otolitos, se ha empleado desde W) y el Golfo de Cariaco (10°31’00” N, 64° los años 70 para estimar tallas y edades, así 02’96” W). La Bahía de Mochima se considera como para revelar diversos procesos ecológicos una zona de alta productividad relativamente y oceanográficos (Panella 1971, Stevenson & cerrada a corrientes externas, mientras que el Campana 1992, Sponaugle 2010). Específica- Golfo de Cariaco es una zona más extensa, mente, a través de análisis de retrocálculo se con mayor circulación y entrada de corriente puede reconstruir la historia de crecimientos externas, aunque con menores valores de pro- de un pez (Secor & Dean 1992, Stevenson & ductividad (Okuda et al. 1968, 1978, Expósito Campana 1992) 1997, Marín et al. 2004, Quintero et al. 2004). Por su parte, la relación ARN/ADN genera Dentro de la Bahía de Mochima, los un índice del metabolismo celular y ha sido ejemplares de estudio fueron recolectados en empleado como una medida de la tasa de cre- dos ensenadas internas: Ensenada de Reyes cimiento y condición nutricional de los indivi- (10°20’22,473” N, y 64°21’42,99” W) y duos (Buckley 1984). Esto se debe a que las Ensenada Mochimita (10°20’33,42” N, y 64° concentraciones de ARN varían ampliamente 21’04,99” W). En el caso del Golfo de Caria- dependiendo de la tasa metabólica del tejido co, la recolecta de ejemplares se realizó en y de la condición fisiológica del organismo, la Ensenada de Turpialito (10°26’56” N, y mientras que las concentraciones de ADN tien- 64°02’00” W). Estas localidades se carac- den a ser constantes (Leslie 1955). terizan por litorales de arena fina (250mm), Con la finalidad de evaluar la asociación con bajas concentraciones de materia orgánica de índices de crecimiento en estadios tem- (datos aún no publicados suministrados por el pranos de peces marinos a las condiciones Laboratorio de Ecofisiología, IOV-UDO), con ambientales en las que se encuentran, se estimó presencia de raíces sumergidas de mangle y la tasa de crecimiento somático y las condicio- praderas de fanerógamas. nes fisiológicas de una especie común en las Las capturas fueron realizadas en noviem- costas del oriente venezolano (Eucinostomus bre 2009 y para ello se empleó un chinchorro de argenteus) en dos zonas con diferentes con- arrastre con abertura de malla de 500mm. Los diciones ambientales en cuanto a extensión, ejemplares fueron colocados en hielo y trans- exposición de corrientes y productividad. portados al laboratorio donde se mantuvieron congelados hasta el momento de la disección. MATERIALES Y MÉTODOS Edad y tasa de crecimiento somático: Recolección de peces: la mojarra E. argen- estas estimaciones fueron realizadas por medio teus fue empleada como organismo modelo de del análisis de los otolitos de los ejemplares estudio, ya que son individuos comunes en capturados y su relación con su morfometría. los litorales arenosos y frecuentemente es una Para ello, a cada ejemplar se le calculó su peso especie dominante (Cervigón 1993). Aunque no (P) y se les realizaron mediciones de: longitud es una especie de importancia comercial, juega total (L.T.) y longitud estándar (L.E.). Pos- un papel fundamental en la cadena trófica en teriormente, se realizó una incisión sobre la las costas venezolanas, siendo un enlace impor- cápsula ótica de cada ejemplar, con la finalidad tante entre el bentos y grandes depredadores de extraer los otolitos sagitta del lado derecho pelágicos (Randall 1967, Rivas et al. 1999). del individuo, siguiendo los pasos de ruptura, Considerando la importancia ecológica de arrastre y aislamiento sobre una placa portaob- los ecosistemas marino-costeros de la región jeto (Secor et al. 1992).

152 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 Los otolitos fueron colocados sobre una tasa pretérita media de crecimiento para cada placa de resina sintética termoplástica transpa- día de la vida del ejemplar. rente (Crystalbond™) previamente calentada (>100 ºC) en un portaobjeto, y posteriormente Condición nutricional: a cada ejemplar se siguió la metodología de raspado propuesta se le retiró la cabeza, abdomen y aletas, para por Secor et al. (1992) para realizar conteo, utilizar el tejido restante en los análisis de con- medición y visualización de los anillos desde el centraciones de proteínas, ADN y ARN. Cada núcleo hasta el borde del otolito. Seguidamen- tejido fue colocado en 100μl de solución de te, a través de un programa de procesamiento sarcosina (N-lauroy-sarcosina) 1% preparada de imágenes (Sigma Scan Pro 5.0.0), se midió con buffer TRIS-EDTA (5.0mmol TRIS-HCl; el diámetro del otolito (Ot), se realizó el conteo 0.5mmol EDTA; pH 7.5) y se homogeneizó, del número de anillos del otolito y la medición al momento de colocarle la sarcosina, a los del grosor de cada uno estos anillos, así como 30 minutos y a los 60 minutos posteriores. también del núcleo del otolito. Seguidamente, se agregaron 900μl de buffer y A pesar de que en este estudio no se realizó se centrifugó a 2 500rpm por 15 minutos, obte- la validación de la formación de los incremen- niéndose así para cada individuo una solución tos diarios en los otolitos, se trabajó bajo la de 1ml. Todo lo mencionado anteriormente se hipótesis de que cada banda o anillo representa preparó manteniendo el tejido frío. Del sobre- un día de vida del individuo, considerando que nadante se tomaron muestras por duplicado la mayoría de las especies de peces marinos para la cuantificación de ARN y ADN utilizan- do la metodología de Clemmesen (1993). Las presentan una frecuencia de formación diaria proteínas totales fueron determinadas mediante (Campana 1992). De esta forma, la edad de los la metodología descrita por Bradford (1976). individuos se estableció según el número de bandas contadas en los otolitos. Por otra parte, Análisis Estadísticos: se realizaron análi- el análisis de las variaciones de los anchos de sis de correlación y regresión (Sokal & Rohlf cada anillo permitió discernir las bandas per- 1995), para establecer relaciones entre las tenecientes a los períodos de larva e inicio del variables medidas en cada juvenil para cada estadio juvenil, y por ende hacer una estimación localidad: L.T., L.E., P, Ot, E, proteínas, ADN, aproximada de los períodos de tiempo larvarios ARN y ARN/ADN. Igualmente, se realizaron de la especie en estudio (Brothers et al. 1983) correlaciones y regresiones entre C. Retro y La tasa de crecimiento reciente de los el índice ARN/ADN por localidad. Todo esto -1 individuos, C. Rec (mm día ), fue estimada al revisando previamente la normalidad y homo- relacionar la L.E. de los individuos con la edad geneidad de varianza. (E) en días. De esta forma el valor de la tasa Las distintas tasas de crecimiento se com- de crecimiento de los individuos correspon- pararon a través de un análisis de covarianza de a la pendiente del modelo de crecimiento (Sokal & Rohlf 1995). Comparaciones entre que mejor ajuste (Thorrold & Williams 1989, localidades fueron realizadas a través de un Neuman et al. 2001). La tasa de crecimiento ANOVA de una vía, para detectar diferencias retrocalculada (C. Retro) se obtuvo utilizan- entre las concentraciones de proteínas, índice do las tallas pretéritas (Thorrold & Williams ARN/ADN y la tasa de crecimiento retrocal- 1989), considerando que el tamaño del otolito culada, revisando previamente la normalidad es proporcional al tamaño del individuo. Para el y homogeneidad de varianza. Posteriormente, cálculo de dichas tallas pretéritas se empleó el se realizó un test de Tukey para discernir las ajuste al relacionar el diámetro del otolito con localidades que mostraban diferencias con un el tamaño del pez. Así, se empleó la ecuación nivel de significancia de 0.05. En el caso de la resultante para determinar las longitudes preté- evaluación del cambio de ancho de las bandas ritas a cada edad, cuya pendiente representó la diarias, debido a la naturaleza de los datos,

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 153 se realizó la comparación del promedio del Tasa de crecimiento reciente ancho de estos incrementos diarios por loca- lidad a través de una prueba Kruskal-Wallis. La edad fue un parámetro relacionado Estos análisis fueron realizados a través del con la longitud estándar en las tres localidades programa SPSS 16.0. (Cuadro 2). De esta forma, con esta relación Para una mejor visualización de las posi- se determinó la tasa de crecimiento reciente bles diferencias entre localidades se realizó de las tallas en los estadios tempranos de E. una ordenación no métrico de escalas multidi- argenteus (mm día-1), la cual es diferente entre mensionales (MDS, PRIMER 5), basado en el localidades (ANCOVA, F= 20.16, p< 0.0001) índice de distancia euclideana (Clarke 1993). encontrándose los valores mayores dentro de la Seguidamente, para establecer la significancia Bahía de Mochima (Cuadro 3). del MDS se realizó un análisis de similitud Igualmente, en las tres localidades se (ANOSIM, PRIMER 5), el cual es un método observó correlación entre la edad y el peso de permutación aleatoria en la matriz de distan- de los individuos (Cuadro 2), y por ende se cias. El intervalo de similitud global R es una estimó la tasa de crecimiento en peso para los medida comparativa del grado de separación estadios tempranos de la especie. Los valo- entre grupo (0 ≤ R ≤ 1), de forma tal que cuando res de crecimiento se registraron entre 0.003 R se aproxima a cero no existe separación entre y 0,013g día-1, sin encontrarse diferencias entre grupos (Clarke 1993). localidades (ANCOVA, F= 1.53, p= 0.2214).

RESULTADOS Tasa de crecimiento retrocalculado

Los caracteres morfométricos para los Debido a la proporcionalidad encontrada juveniles de E. argenteus presentan intervalos entre la longitud estándar de los ejemplares y similares en las tres localidades de estudio, el diámetro del otolito, así como la correlación así como también la edad y el peso de los existente entre la edad y la longitud estándar, individuos (Cuadro 1). En cada una de las se pudo modelar el crecimiento retrocalcula- localidades de estudio, los análisis de regresión do en cada una de las localidades evaluadas y correlación de las variables morfométricas (Cuadro 3). De esta forma, se estimó el valor con el tamaño del otolito, el peso y la edad de menor dentro de la Ensenada de Reyes, una de los juveniles se ajustaron a un modelo lineal las localidades dentro de la Bahía de Mochima y fueron significativos (p< 0.001) (Cuadro 2). (ANOVA, F= 8.415, p= 0.001).

CUADRO 1 Variables morfométricas, peso y edad de E. argenteus

TABLE 1 Morophometrics variables, weight and age of E. argenteus

Variable E. Reyes (Bahía Mochima) E. Mochimita (Bahía Mochima) Turpialito (Golfo Cariaco) L.T. 20.520 ± 7.910 (n= 33) 22.05 ± 7.122 (n= 47) 21.573 ± 8.638 (n= 46) L.E. 16.045 ± 6.073 (n= 33) 18.757 ± 5.947 (n= 47) 17.708 ± 6.909 (n= 46) Ot 0.883 ± 0.498 (n= 26) 0.875 ± 0.270 (n= 31) 0.999 ± 0.341 (n= 41) P 0.174 ± 0.296 (n= 32) 0.172 ± 0.155 (n= 47) 0.165 ± 0.167 (n= 46) E 30.250 ± 9.261 (n=25) 32.650 ± 6.235 (n=20) 43.520 ± 13.135 (n=23)

L.T.: Longitud total (mm), L.E.: Longitud estándar (mm), Ot: diámetro del otolito (mm), P: Peso (g), E: Edad (Días), D.E.: Desviación estándar; n: número de mediciones.

154 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 CUADRO 2 Relaciones entre la longitud estándar, el diámetro del otolito, la edad y el peso en juveniles de E. argenteus en las localidades de estudio

TABLE 2 Relationships among standard lenght, otoliths diameter, age and weight of E. argenteus juveniles at study localities

Localidad Relación Ecuación r2 r n E. Reyes L.E. vs Ot L.E.=11.856Ot + 6.472 0.817** 0.684** 26 (Bahía Mochima) L.E. vs E L.E.=0.4186E + 2.9363 0.568** 0.754** 24 P vs Ot P=1.6773Ot + 0.6333 0.862** 0.705** 26 P vs E P=0.0133E – 0.319 0.589** 0.428** 24 E. Mochimita L.E. vs Ot L.E.=14.145Ot + 5.8778 0.473** 0.643** 32 (Bahía Mochima) L.E. vs E L.E.=0.3446E + 4.8002 0.496** 0.647** 18 P vs Ot P=1.277Ot + 0.666 0.456** 0.639** 32 P vs E P=0.0063E – 0.0996 0.302** 0.584** 20 Turpialito L.E. vs Ot L.E.=18.207Ot - 0.0011 0.812** 0.798** 41 (Golfo Cariaco) L.E. vs E L.E.=0.178E + 6.734 0.677** 0.620** 23 P vs Ot P=1.277Ot + 0.666 0.823** 0.811** 41 P vs E P=0.0038E - 0.0817 0.660** 0.684** 23

L.E.: Longitud estándar, Ot: diámetro del otolito, E: Edad, P: Peso. r2: coeficiente de determinación, r: índice de correlación, n: número de individuos ** p< 0.001; ns: no significativo.

CUADRO 3 Valores de crecimiento reciente (C. Rec) obtenidos del modelo lineal ajustado a los datos de longitud estándar –edad y peso– edad, y valores promedio y desviación estándar de la tasa de crecimiento retrocalculada (C. Retro), relación ARN/ADN, concentraciones de proteínas de E. argenteus en las tres localidades de estudio

TABLE 3 Values of recent growth (C. Rec) from the lineal model fitted to the data of standard length –age and weight– age, and mean values with their standard deviation of backcalculated growth rate (C. Retro), RNA/DNA rate, proteins concentrations of E. argenteus at three study locations

C. Rec C. Rec C. Retro Proteínas Localidad ARN/ADN (g día-1) (mm día-1) (mm día-1) (mg g-1 tejido húmedo) E. Reyes 0.013 0.418 0.295 ± 0.050 2.46 ± 1.36 25.75 ± 17.33 (Bahía Mochima) (n= 24) (n= 24) (n= 24)** A (n=17) X (n=28) 1 E. Mochimita 0.006 0.334 0.352 ± 0.080 6.97 ± 5.68 12.56 ± 5.68 (Bahía Mochima) (n= 20) (n= 18) (n= 18) B (n=11) **Y (n=29) **2 Turpialito 0.003 0.178 0.393 ± 0.083 1.65 ± 2.59 21.01 ± 2.59 (Golfo Cariaco) (n= 23) (n= 23) (n= 16) B (n=16) X (n=29) 1

n: número de individuos. Se utilizaron pruebas estadísticas para observar diferencias entre localidades para la tasa de crecimiento retrocalculada (C. Retro), ARN/ADN y concentraciones de proteínas y éstas son marcadas por ** y representadas por diferencias en letras o números (usando A, B; X, Y; 1,2)

Cambios en la microestructura del otolito localidades, en donde el ancho de las primeras 8-12 bandas presentaron los menores valores Los otolitos sagitta de los ejemplares eva- (<5mm), posteriormente se registró un aumento luados presentaron un núcleo redondeado de gradual en las siguientes 5-10 bandas y finalmen- 10 micras de diámetro, aproximadamente. Se te se puede observar pequeñas oscilaciones en observó un patrón de bandas similar en las tres los valores del resto de las bandas de crecimiento

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 155 (entre 4 y 8mm, aproximadamente) (Fig. 1 y diferencias entre localidades (ANOVA; F= 2). El ancho de las bandas en los otolitos de 48.73 p = 0.0000; F= 8.99 P= 0.0007; respec- los estadios iniciales de E. argenteus mostraron tivamente). Los mayores valores del índice diferencias entre las localidades de estudio, espe- ARN/ADN se encontraron en una de las loca- cíficamente a partir de la banda 15, en donde los lidades de la Bahía de Mochima (Ensenada mayores valores fueron reportados para Turpiali- Mochimita) (Tukey Test; P= 0.0000), mientras to (Kruskal-Wallis, H= 651.69, p< 0.0001) que los mayores valores de concentración de Condición Nutricional proteínas estuvieron presenten en la localidad del Golfo de Cariaco (Turpialito) y Ensenada El índice de relación ARN y ADN, y de Reyes (Bahía de Mochima) (Tukey Test; P= las concentraciones de proteínas, presentaron 0.0000) (Cuadro 3).

Fig. 1. Otolito sagitta de un ejemplar E. argenteus de 11mm de longitud estándar, mostrando el núcleo y 53 líneas de crecimiento. Fig. 1. Sagitta otolith of a 11mm standard length E. argenteus showing the core and 53 growth increments.

10 Reyes 9 Mochimita 8 Turpialito 7 6 5 4 3 Ancho de banda (µm) Ancho 2 1 0 0 5 10 15 20 25 30 35 40 45 50 Número de banda

Fig. 2. Variación del ancho promedio de las bandas registradas en los otolitos sagitta de estadios iniciales de E. argenteus. Fig. 2. Variation of the mean increments widths in sagitta otoliths of E. argenteus at early stages.

156 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 Al relacionar las proteínas, ácidos nucléi- cos y el índice ARN/ADN con ciertas variables morfométricas de los individuos, se observó que en Ensenada de Reyes y Turpialito existen correlaciones significativas entre la concentra- ción de proteínas y peso corporal, así como también entre la concentración de proteínas y longitud estándar, lo cual no se evidencia para Ensenada Mochimita (Cuadro 4). Igualmente, se buscó una relación entre las tasas de cre- cimiento somático retrocalculado y el índice ARN/ADN; sin embargo, a pesar de parecer Fig 3. Ordenación multivariada (MDS) de los ejemplares adaptarse a un modelo lineal esto no fue signi- evaluados en las localidades de E. Reyes (1), E. Mochimita ficativo para ninguna de las tres localidades de (2) y Turpialito (3), empleando los valores de tasa de estudio (Cuadro 4). crecimiento retrocalculado (C. Retro), concentración de Un análisis de ordenación, considerando proteínas y relación ARN/ADN. Fig. 3. Metric dimensional scaling (MDS) ordinations los valores obtenidos de las concentraciones of juveniles evaluated from E. Reyes (1), E. Mochimita de proteínas, el índice ARN/ADN y la tasa de (2) and Turpialito (3), using the values of backcalculated crecimiento somático retrocalculado, presenta growth rate (C. Retro), proteins concentrations and RNA/ separación de los individuos entre localidades, DNA rates. con un valor de stress de 0.04 (Fig. 3). Esta separación es significativa, ya que la prueba de análisis de similaridades arrojó un R global indican que la Ensenada Mochimita es alta- igual a 0.467, con un nivel de significancia mente diferente a las otras localidades, mien- igual a 0.01. Específicamente, los resultados tras que Ensenada de Reyes y Turpialito son

CUADRO 4 Relaciones entre las concentraciones de proteínas, ácidos nucléicos y el índice ARN/ADN con variables morfométricas y la tasa de crecimiento somático retrocalculada en juveniles de E. argenteus en las localidades de estudio

TABLE 4 Relationships among proteins concetrations, nucleics acids, RNA/DNA rates and morphometrics variables, somatic backcalculated growth rate of E. argenteus at study localities

Localidad Relación Ecuación r2 r n E. Reyes P vs Pr ◊ P= 1.9379Pr-1.217 0.773** -0.879** 29 (Bahía Mochima) L.E vs Pr ◊ L.E.= 34.203Pr-0.246 0.636** -0.590** 29 E vs Pr ◊ E= 51.037Pr-0.16 0.342 ns -0.392 ns 20 Gr vs ARN:ADN ◊◊ Gr=-0.0731(ARN:ADN)+ 1.079 0.457 ns 0.473 ns 11 E. Mochimita P vs Pr ◊◊◊ P=0.1148e-0.029Pr 0.218 ns -0.426** 29 (Bahía Mochima) L.SE. vs Pr ◊◊◊ L.SE.=17.773e-0.01Pr 0.151 ns -0.449** 29 E vs Pr ◊◊◊ E=4.525e-0.004Pr 0.036 ns -0.363 ns 20 Gr vs ARN:ADN◊◊ Gr= 1.10-5(ARN/ADN) + 0.038 0.422 ns 0.700 ns 5 Turpialito P vs Pr ◊◊◊ P=0.1005e-0.032Pr 0.511** 0.747** 29 (Golfo Cariaco) L.SE. vs Pr ◊◊ L.SE.= -0.1502Pr + 18.167 0.334** -0.665** 29 E vs Pr ◊◊ E= -0.0027Pr + 33.36 0.000 ns -0.328** 22 Gr vs ARN:ADN ◊◊ Gr= 0.01(ARN:ADN) + 0.122 0.431 ns 0.467 ns 10

L.E.: Longitud Estándar, E: Edad, P: Peso, Pr: Proteínas, Gr: tasa de crecimiento retrocalculado, r2: coeficiente de determinación, r: índice de correlación, n: número de individuos ** p< 0.001; ns: no significativo. ◊ Relación ajustada a un modelo potencial. ◊◊ Relación ajustada a un modelo lineal ◊◊◊ Relación ajustada a un modelo polinómico.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 157 bastante similares entre si, con respecto a las g día-1) y Diapterus peruvians (0.31- 0.45 g variables evaluadas (Cuadro 5). día-1) para el Pacífico (Tucker & Jory 1991, Rubio et al. 2004). Por otra parte, en el caso del crecimiento de tallas, diversos estudios en CUADRO 5 adultos de la dinámica espacio-temporal de Análisis de similitud (ANOSIM). Prueba entre localidades ciertas especies de gerreidos, los han identifica- de estudio. El R global de similitud fue de 0.467 con nivel do como peces de rápido crecimiento. En estos de significancia estadística p= 0.01 estudios se han evaluado los parámetros de la ecuación de crecimiento de von Bertalanffy, en TABLE 5 Analysis of similarities (ANOSIM). Test among study donde los valores reportados del coeficiente de localities. The similitude global R was 0.467 with crecimiento (k) de dicha ecuación se encuentra statistic significance level p= 0.01 alrededor de 1, tal es el caso de E. plumieri (k= 1.27 año-1) (Venezuela), Gerres longirostris (k= Localidades R P 1.1 año-1) (Golfo de Arabia), Pentaprion longi- E. Reyes - E. Mochimita 0.889 0.001 manus (k= 1.8 año-1) (Mar Java) (Sadhotomo E. Reyes – Turpialito 0.127 0.410 1983, Grandcourt et al. 2006, Montaño 2009). E. Mochimita – Turpialito 0.700 0.001 Al querer realizar comparaciones con otras especies de la zona de estudio, se tiene que para el área sólo se han hecho estudios similares DISCUSIÓN para el clupeido Sardinella aurita, reportándose valores mayores a E. argenteus dentro del Par- En esta evaluación, se estableció para E. que Nacional Mochima (0.66 y 1.10mm día-1), argenteus una relación lineal entre la longi- mientras que en Turpialito las tasas de creci- tud estándar de los individuos capturados y miento son similares (0.32mm día-1) (Balza el tamaño de su otolito, lo cual coincide con & Marín 2000, Balza et al. 2006, Ramírez & varias evaluaciones realizadas a otras especies Marín 2006). de peces dentro y fuera del Caribe, en donde En cuanto al crecimiento de los otolitos, las esto se observa claramente en los primeros variaciones diarias encontradas en el ancho de estadios de vida (Jones 2002). La existencia las bandas refleja los cambios en el crecimiento de una relación entre la longitud corporal y somático de los individuos de E. argenteus. En el tamaño del otolito, aunado a reportes de la general, las variaciones en el ancho de las ban- validación sobre la relación entre el crecimien- das presentes tienden generalmente a aumentar to somático y los incrementos diarios en los con la edad (Thorrold & Williams, 1989), y por otolitos, soportan el uso del ancho o amplitud lo tanto se puede estimar los períodos de las de los incrementos como una medida de la tasa diferentes fases o estadios de los individuos. De de crecimiento somático (Secor & Dean 1989, esta forma, del patrón de ancho de las bandas Campana & Thorrold 2001). De esta forma, se de E. argenteus en las localidades de estudio, pudo estimar la tasa de crecimiento promedio y siguiendo el patrón propuesto por Brothers de E. argenteus en las localidades de estudio, & McFarland (1981), se puede distinguir que para la cual hasta la fecha no se había evaluado. por el pequeño grosor de las primeras bandas Las tasas de crecimiento en peso de E. el período larvario de la especie se encuentra argenteus son relativamente bajos a los valo- entre 12 y 15 días. Por su parte, a partir de la res estimados para otras especies de mojarras. banda número 16 no se evidencia un patrón Estudios en laboratorio han estimado que la que permita estimar cambios de post-larva a tasa de crecimiento de la masa corporal de pre-juvenil y de pre-juvenil a juvenil, lo cual los gerreidos es lento durante sus primeros puede estar asociado a cambios de factores estadios, tales como Eugerres plumieri para el internos o externos del individuo (Wilson & Caribe (0.06 g día-1), E. currani (0.26 – 0.36 McCormick 1999).

158 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 Los períodos de las fases mencionadas estudio, hay otros reportes en donde no se anteriormente, coinciden con diversas espe- ha encontrado correlaciones entre los ácidos cies marinas, y han sido considerados como nucléicos y el crecimiento de los individuos, períodos relativamente cortos (Swearer et al. sugiriendo que el índice ARN/ADN se encuen- 1999, Claro & Lindeman 2003, Balza & Marín tra más relacionado a la condición nutricional 2000; Raventós & Macpherson 2001, Marín de los individuos que a su crecimiento (Ber- 2009). Estos se ajustan a las hipótesis de geron 1997, Gilliers et al. 2006, Frommel & que crecimientos rápidos y mayores presentan Clemmesen 2009). Esto pudiera ser explicado ventajas en la sobrevivencia de los individuos por medio de evidencias de transiciones de (Houde 2009). la composición bioquímica de los individuos En el caso de los mayores tamaños de las durante sus cambios ontogénicos y su reorga- bandas de crecimiento de los otolitos de los nización celular. individuos de Turpialito con respecto a los de El contenido proteico de los peces tiende la Bahía de Mochima, pueden deberse a fac- a cambiar durante su crecimiento, en donde tores exógenos o endógenos particulares que las larvas requieren grandes cantidades de se encuentran afectando el crecimiento de las proteínas para un rápido crecimiento, y estos bandas sin que aparentemente se afecte drás- tienden a decrecer a medida que llegan a la ticamente el crecimiento somático, tal cual ha madurez, pudiendo llegar a ser la concentración sido observado para otras especies de la región de lípidos y no las proteínas los responsables (Ramírez & Marín 2006). del incremento en masa y de tallas de los Igualmente, al considerar los valores de individuos (Caldarone et al. 2006, Frommel & la relación ARN/ADN obtenidos, se puede Clemmesen 2009). De esta forma, las relacio- inferir que los individuos de E. argenteus, de nes entre el crecimiento somático y el índice las localidades evaluadas, se encuentran en ARN/ADN puede cambiar dependiendo del crecimiento, ya que se ha estimado que el valor estadio que se esté evaluando (Peck et al. 2003, límite inferior de ARN/ADN necesario para Caldarone 2005). Al mismo tiempo, la explica- sobrevivir es 1.0, debido a que individuos que ción mencionada anteriormente, se ve fortale- se encuentren en períodos de inanición prolon- cida con las relaciones negativas encontradas gados presentan decrecimiento en la síntesis de entre las concentraciones de proteínas de los ribosomas e incluso procesos de degradación individuos y los pesos, longitudes estándares y de los mismos, lo cual indica pérdida de ARN edades de los mismos. (Alfaro et al. 2002). No obstante, se encuentran Al considerar que las zonas estudiadas pre- diferencias entre localidades en cuanto a su sentan masas de aguas, patrones hidrodinámi- condición nutricional, en donde los individuos cos y productividad primaria diferente (Okuda de Turpialito y Ensenada de Reyes presentan et al. 1968, 1978, Expósito 1997, Marín et valores que han sido considerados bajos en al. 2004, Quintero et al. 2004, Márquez et al. otras especies, e incluso en evaluaciones expe- 2007), los parámetros biológicos evaluados rimentales se ha llegado a concluir que para sobre E. argenteus sugieren poco efecto de ciertas especies valores por debajo de 3 indi- estas diferencias sobre la tasa de crecimiento y can condiciones nutricionales pobres (Bulow la condición nutricional en dicha especie. 1987, Richard et al. 1991, Cunha et al. 2003, Por otra parte, las diferencias expuestas Caldarone 2005). entre las localidades estudiadas dentro de la Varios estudios de individuos silvestres Bahía de Mochima, reflejan la posible inter- han encontrados correlación positiva entre el ferencia de factores locales sobre la tasa de crecimiento de los últimos incrementos de los crecimiento y la condición nutricional de los otolitos y la proporción de ARN/ADN (Clem- estadios iniciales de E. argenteus. Entre los mesen & Doan 1996, Balza et al. 2006, Balza factores particulares del hábitat que pudieran et al. 2007). Sin embargo, al igual que en este explicar las diferencias encontradas entre las

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 159 localidades de la Bahía de Mochima, pudieran AGRADECIMIENTOS destacarse la presión de depredadores, tempe- ratura, concentración y composición de presas, Al Instituto Oceanográfico de Venezuela turbidez, efecto antropogénico, tal como han de la Universidad de Oriente por el apoyo pres- sido propuestos para otras regiones (Gibson tado para la realización de esta investigación. 1994, Meekan et al. 2003, Gilliers et al. 2006, A María Elena Amaro, Luis Ariza, Adriana Sponaugle et al. 2009, Sponaugle et al. 2010). López, Marlin Medina, Lisette Molins y José Específicamente al sur de la Bahía de Mochi- L. Prin por la colaboración prestada durante el ma, y muy cercana a la Ensenada Mochimita, trabajo de campo y laboratorio. Igualmente, los se encuentra un sistema de tratamiento de autores desean agradecer a evaluadores anóni- aguas residuales que descarga directamente al mos que realizaron aportes interesantes en la mar, de forma tal que a esta área junto a sus elaboración del artículo. adyacencias se le ha caracterizado como un ambiente mesotrófico - eutrófico por las altas RESUMEN concentraciones de nutrimentos y un eleva- do crecimiento del plancton (Expósito 1997, Con la finalidad de evaluar la asociación de índices Narváez 2011). de crecimiento en estadios tempranos de peces marinos, se estimó la tasa de crecimiento somático y las condicio- Al mismo tiempo, en zonas muy cercanas nes fisiológicas de Eucinostomus argenteus en dos zonas a la laguna de oxidación se han encontrado del nor-oriente venezolano: Bahía de Mochima y Golfo diversas concentraciones de ciertos metales de Cariaco. La edad y el crecimiento fueron estimados (datos aún no publicados, suministrados por basados en análisis de otolitos sagitta. Las condiciones el Laboratorio de Ecofisiología, IOV-UDO), fisiológicas fueron evaluadas por medio de las concentra- ciones de proteínas y la relación ARN/ADN, empleando lo cual pudiera explicar los valores elevados técnicas espectofotométricas y fluorométricas sobre tejido de la relación ARN/ADN en los individuos de muscular. Las relaciones entre tallas con la edad y el diá- la Ensenada Mochimita, puesto que en caso de metro de los otolitos resultaron positivas, significativas exposición de contaminantes, un incremento y ajustadas a un modelo de regresión lineal. Los valores en las concentraciones de ARN pudiera rela- de la tasa de crecimiento reciente oscilaron entre 0.178 y 0.418mm día-1, la tasa de crecimiento retrocalculado varió cionarse a la inducción del sistema de desin- entre 0.295 y 0.393mm día-1, y la tasa ARN/ADN osciló toxicación proteico, tal y como lo reportaron entre 1.65 y 6.97. No se registraron diferencias entre las Fonseca et al. (2009) en evaluaciones experi- zonas de estudio, sin embargo se reportaron diferencias mentales sobre juveniles de Solea senegalensis entre localidades. A pesar de no encontrarse correlación a diferentes concentraciones de cobre. De esta entre la tasa de crecimiento y la relación ARN/ADN, los valores reportados sugieren crecimiento positivo de los forma los juveniles de E. argenteus pudieran individuos silvestres en las localidades evaluadas. No estar presentando una movilización de pro- obstante, ciertas localidades mostraron valores que indican teínas musculares destinada a compensar el pobres condiciones nutricionales, pudiendo afectarse a efecto de factores estresantes que posiblemente futuro otras tasas vitales. estén causando las descargas de la laguna de Palabras claves: Gerreidae, tasa de crecimiento, condición oxidación cercana. nutricional, otolitos, ARN/ADN. Evaluaciones futuras deberían incrementar el número de localidades dentro de las zonas de estudio, así como también realizar experi- REFERENCIAS mentos de crecimiento y condición nutricional Alfaro, R., C. González & L. Martínez. 2002. Ácidos en condiciones controladas que permitan dilu- nucléicos para evaluar la condición de larvas de cidar los patrones de crecimientos somáticos y peces. Ciencia UANL. 2: 211-217. del otolito, así como también las condiciones Balza, M.A & B. Marín 2000. Verificación de la marca de nutricionales de los individuos, bajo diferentes eclosión en los otolitos sagitales de larvas de Sardi- condiciones de temperatura, alimento, contami- nella aurita (Pisces: Clupeidae). Rev. Biol. Trop. 48: nantes e incluso por presión de depredadores. 183-186.

160 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 Balza, M.A., M. Lemus & B. Marín. 2006. Crecimiento Cervigón, F. 1993. Los peces marinos de Venezuela. Volu- somático y relación ARN/ADN en juveniles de la men II. Fundación Científica Los Roques, Venezuela, sardina Sardinella aurita Valenciennes, 1847 (Pisces: 498 p. Clupeidae) del Golfo de Santa Fe, Venezuela. Bol. Inst. Oceanogr. Venezuela, Univ. Oriente. 45: 41-49. Claro, R. & K. Lindeman. 2003. Spawning aggregation sites of snapper and grouper species (Lutjanidae and Balza, M.A., M. Lemus & B. Marín. 2007. Tasa de creci- Serranidae)on the insular shelfof Cuba. Proc. Gulf. miento en larvas de Sardinella aurita Valenciennes, Carib. Fish Ins. 14: 91-106. 1847 (Pisces: Clupeidae) del Morro de Puerto Santo, Venezuela. Interciencia. 32: 333-338. Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. Bergeron, J.P. 1997. Nucleic acids in ichthyoplancton eco- 18: 117-143. logy: a review, with emphasis on recent advances for new perspectives. J. Fish. Biol. 51: 284-302. Clemmesen, C. 1993. Improvements in the fluorometric determination of the RNA and DNA content of indi- Bradford, M. 1976. A rapid and sensitive method for vidual marine fish larvae. Mar. Ecol. Prog. Ser. 100: the quantization of microgram quantities of protein 177-183. utilizing the principle of protein-dye binding. Anal. Biochem.72: 248-254. Clemmesen, C. & T. Doan. 1996. Does otolith structure Brothers, E.D. & W.N. McFarland. 1981. Correlations bet- reflect the nutritional condition of a fish larvae? Com- ween otolith microstructure, growth, and life history parison of otolith structure and biochemical index transitions in newly recruited french grunts (Haemu- (RNA/DNA ratio) determined on cod larvae. Mar. lon flavolineatum (Desmarest), Haemulidae). Rapp. Ecol. Prog. Ser. 138: 33-39. P.-v. Réun. Cons. Int. Explor. Mer. 178: 369-374. Cunha, I., F. Saborido-Rey & M. Planas. 2003. Use of Brothers, E., D. Williams & P. Sale. 1983. Length of larval multivariate analysis to asses the nutritional condition life in twelve families of fishes at One Tree Lagoon, of fish larvae from nucleic acids and protein content. Great Barrier Reef, Australia. Mar. Biol. 76: 319-324. Biol. Bull. 204: 339-349.

Buckley, L. 1984. RNA – DNA ratio: an index of larval fish Expósito, N. 1997. Estudio de los efectos de las descargas growth in the sea. Mar. Biol. 80: 291-298. de una Laguna de oxidación sobre las comunidades planctónicas en la Bahía de Mochima (Edo. Sucre). Bulow, F. 1987. RNA-DNA ratios as indicators of growth Trabajo Especial de Grado, Escuela de Biología. in fish: A review, p. 45-64. In R.C. Summerfelt & Universidad Central de Venezuela, Caracas, Vene- G.E. Hall (eds.). The age and growth of fish. Iowa zuela. 154 pp. State University, Iowa. Fonseca, V., A. Serafim, R. Company, M. Bebianno & H. Caldarone, E. 2005. Estimating growth in haddock larvae Cabral. 2009. Effect of Cooper exposure on growth, Melanogrammus aeglefinus from RNA:DNA ratios condition índices and biomarker response in juveniles and water temperature. Mar. Ecol. Prog. Ser. 293: ole Solea senegalensis. Sci. Mar. 73: 51-58. 241-252. Frommel, A. & C. Clemmesen. 2009.Use of biochemical Caldarone, E., C. Clemmesen, E. Berdalet, T. Miller, A. indices for analysis of growth in juvenile two-spotted Folkvord, G. Holt, M. Olivar & I. Suthers. 2006. gobies (Gobiusculus flavescens) of the Baltic Sea. Intercalibration of four spectrofluorometric protocols Sci. Mar. 73S1: 159-170. for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods. 4: 153-163. Gibson, R. 1994. Impact ofhabitat quality and quantity on Campana, S. 1992. Measurement and interpretation of the recruitment of juvenile flatfishes. Neth. J. Sea the microstructure of fish otoliths. 59-71 p. In D. K. Res. 32: 191-206. Stevenson & S. E. Campana (eds). Otolith micros- tructure examination and analysis. Can. Spec. Publ. Gilliers, C., O. Le Pape, Y. Désaunay, J.P. Bergeron, N. Fish. Aquat. Sci. 117. Schreiber, D. Gueralut & R. Amar. 2006. Growth and condition of juvenile sole (Solea solea L.) as Campana, S. & S. Thorrold. 2001. Otoliths, increments, indicators of habitat quality in coastal and estuari- and elements: keys to a comprehensive understan- ne nurseries in the Bay of Biscay with a focus on ding of fish populations? Can. J. Fish. Aquat. Sci. sites exposed to the Erika oil spill. Sci. Mar. 70S1: 58: 30-38. 183-192.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 161 Grandcourt, E.M., T. Al Abdessalaam, F. Francis & T. Al surgencia. Trabajo Especial de Grado, Dept. Biología, Shamsi. 2006. Fisheries biology of a short-lived tro- Univ. Oriente, Cumaná, Venezuela. 64 pp. pical species: Gerres longirostris (Lacépéde, 1801) in the Arabian Gulf. ICES J. Mar. Sci. 63: 452-459. Neuman, M., D. Wittin & K. Able. 2001. Relationships bet- ween otolith microstructure, otolith growth, somatic Houde, E. 2009. Recruitment Variability. 91-171. In T. growth and ontogenetic transitions in two cohor ts of Jakobsen. M. Fogarty, B. Megrey & E. Mokness windowpane. J. Fish. Biol. 58: 967-984. (eds.). Fish reproductive biology and its implications for assessment and management. Blackwell Science Okuda, T., A. Benítez, J. García & F. Fernández. 1968. Ltd, Oxford, U.K. Condiciones hidrográficas y químicas en la Bahía de Mochima y la Laguna Grande del Obispo, desde 1964 Jones, C. 2002. Age and growth. p. 33-63 In L. Fuiman & a 1966. Bol. Inst. Oceanogr. Univ. Oriente. 7:7-32. R. Werner (ed.) Fishery Science: The unique contri- butions of early life stages. Blackwell Scienc. Okuda, T., Benítez-Alvares, J., Bonilla, J. & Cedeño, G. 1978. Características hidrográficas del golfo de Leslie, I. 1955. The nucleic acid content of tissues and Cariaco, Venezuela. Bol. Inst. Oceanogr. Univ. Orien- cells. p. 1-50. In The nucleic acids, chemistry and te. 17: 69-88. biology. E. Chargaff & J. Davidson (ed.). Academic Press, Inc., Nueva York. USA. Panella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science. 173: 1124-1127. Marín, B., C. Lodeiros, D. Figueroa & B. Márquez. 2004. Peck, M., A. Buckley, E. Caldarone & D. Bengston. 2003. Distribución vertical y abundancias estacional del Effects on food consumption and temperature on microzooplancton y su relación con los factores growth of larval and juvenile red drum (Scianops ambientales en Turpialito, Golfo de Cariaco, Vene- ocellatus). Mar. Ecol. Prog. Ser. 251: 233-243. zuela. Revista Científica, FCV-LUZ. XIV: 133-139. Quintero, A., J. Bonilla, L. Serrano, M. Amaro, B. Rodrí- Marín, B. 2009. Estudios en comunidades ictioplanctóni- guez, G. Terejova & Y. Figueroa. 2004. Caracte- cas del Golfo de Cariaco. Trabajo de Ascenso. Dept. rísticas ambientales de la Bahía de Mochima y Biología, Univ. Oriente, Cumaná, Venezuela. 82 p. adyacencias de la Cuenca de Cariaco, Venezuela. Bol. Inst. Oceanogr. Venezuela, Univ. Oriente. 43: 49-64. Martín, D., E. González & D. Hernández.1995. Prioridades de Conservación de las áreas marinos-costeras de Ramírez, T. & B. Marín. 2006. Edad y crecimiento en Venezuela Fudena.W W F. Caracas. larvas de Sardinella aurita (Pisces: Clupeidae) del nororiente de Venezuela, mediante el análisis de sus Márquez, B., B. Marín, J.R. Díaz-Ramos, L. Troccoli & otolitos. Ciencias Marinas. 32: 559-567. S. Subero-Pino. 2007. Variación estacional y vertical de la biomasa del macrozooplancton en la Bahía de Randall, J. 1967. Food habits of reef fishes of The West Mochima, Estado Sucre-Venezuela, durante 1997- Indies. Stud. Trop. Oceanogr. 5: 665-847. 1998. Revista de Biología Marina y Oceanografía. 42: 241-252. Raventós, N. & E. Macpherson. 2001. Planktonic larval duration and settlementmarks on the otoliths of Medi- Meekan, M., J. Carleton, A. McKinnon, K. Flynn & M. terraneon litoral fishes. Mar. Biol. 138: 1115-1120. Furnas. 2003. What determines the growth of tropical reef fish larvae in the plankton: food or temperature? Richard, P., J. Bergerson, M. Boulhic, R. Galois & J. Leru- Mar. Ecol. Prog. Ser. 256: 193-204. yet. 1991. Effect of starvation on RNA-DNA and pro- tein content of laboratory-reared larvae and juveniles Miloslavich, P., E. Klein, E. Yerena & A. Martín. 2003. of Solea solea. Mar. Ecol. Prog. Ser. 72: 69-77. Marine biodiversity in Venezuela: Status and Perspec- tives. Gayana. 67: 275-301. Rivas, A., E. Méndez, L. Ruiz, A. Torres & L. Martínez. 1999. Hábitos alimenticios de Eucinostomus gula y Montaño, O.2009. Catch dynamics, growth, and repro- E. argenteus (Pices: Gerreidae) en la Bahía de Mochi- duction of striped mojarra Eugerres plumier in Lake ma, Estado Sucre, Venezuela. Bol. Inst. Oceanogr. Maracaibo, Venezuela. Ciencia. 17: 141-150. Venezuela, Univ. Oriente. 38: 91-97.

Narváez, M. 2011. Variación temporal y especial del micro Rubio, E., J. Loaiza & C.J. Moreno. 2004 Crecimiento y y mesozooplancton en la parte interna de la Bahía sobrevivencia de dos especies de mojarras Diapterus de Mochima, Estado Sucre, Venezuela, en época de peruvianus y Eucinostomus currani criadas en jaulas

162 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 flotantes en la Bahia de Buenaventura. Mem. III Con- Sponaugle, S. 2010. Otolith microstructure reveals eco- greso Iberoamericano virtual de acuacultura. CIVA logical and oceanographic processes important to 2004. Zaragoza, España. ecosystem-based management. Environ. Biol. Fish. 89: 221-238. Sadhotomo, B. 1983. The dynamics of trevally, Pentaprion longimanus at Java Sea. Mar. Fish. Res. Report, Sponaugle, S., K. Walter, K. Denit, J.Llopiz & R. Cowen. Research Report, 28: 82 pp. 2010. Variation in pelagic larval growth ofAtlantic billfishes: the role ofprey composition and selective Secor, D. H. & J. M. Dean. 1989. Somatic growth effect on mortality. Mar. Biol. 157: 839-849. the otolith-fish size relationship in young pond-reared striped bass, Morone saxatilis. Can. J. Fish. Aquat. Stevenson, D. & S. Campana. 1992. Otolith microstructure Sci. 46: 113-121. examination and analysis. Can. Spec. Publ. Fish. Aquat. Sci. 117. Secor, D. H. & J. M. Dean. 1992. Comparison of otolith- based back-calculation methods to determine indivi- Swearer, S., J. Caselle, D. Lea & R. Warner. 1999. Larval dual growth histories of larval striped bass, Morone retention and recruitment in an island population of a saxatilis. Can. J. Fish. Aquat. Sci. 49: 1439-1454. coral-reef fish. Nature. 402: 799-802. Secor, D.H., J.M. Dean & E.H. Laban. 1992. Otolith remo- val and preparation for microstructural examination, Thorrold R. & D. Williams. 1989. Analysis of otolith p. 19-57. In: D.K. Stevenson & S.E. Campana (ed.) microstructure to determine growth histories in larval Otolith microstructure examination and analysis. cohorts of a tropical herring (Herklotsichthys castel- Can. Spec. Publ. Fish Aquat. Sci. 117. naui). Can. J. Fish. Aquat. Sci. 46: 1615-1624.

Sokal, R. & F. Rohlf. 1995. Biometry. 3ra Edición. W.H. Tucker, J.W. & D.E. Jory. 1991. Marine fish culture in the Freeman and Company, Nueva York. 887 pp. Caribbean region. World Aquac. 22: 10-27.

Sponaugle, S., J. Llopiz, L. Havel & T. Rankin. 2009. Wilson, D. & M. McCormick. 1999. Microstructure of Spatial variation in larval growth and gut fullness in settlement marks in the otoliths of tropical reef fishes. a coral reef fish. Mar. Ecol. Prog. Ser. 383: 239-249. Mar. Biol. 134: 29-41.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 151-163, March 2012 163

Comparación de la abundancia, estructura de tallas y fecundidad de Voluta musica (Caenogastropoda: Volutidae) en tres sitios de la costa norte de la Península de Araya, Venezuela

Ana Carolina Peralta1, Patricia Miloslavich1 & Gregorio Bigatti2 1. Universidad Simón Bolívar, Departamento de Estudios Ambientales, Centro de Biodiversidad Marina, Laboratorio de Biología Marina, Apdo. 89000 Caracas 1086-A Venezuela, Telef.: 0058-212-9063052; [email protected], [email protected] 2. Centro Nacional Patagónico, Pto. Madryn, Argentina 0054-2965-451024 int. 273; [email protected]

Recibido 20-VII-2011. Corregido 13-XII-2011. Aceptado 20-XII-2011.

Abstract: Abundance, size structure and fecundity of Voluta musica (Caenogastropoda: Volutidae) in three sites of the north coast of Araya Peninsula, Venezuela. Considering the intensive artisanal fishing activity and the consequent carrion discard found at Isla Caribe, in relation to other two sites with no intensive artisanal fishing activity, we expect different effects on some features of V. musica life history (larger egg capsules, larger organisms, higher abundance of adult organisms). In this paper we compare some population parameters of Voluta musica at three localities in the north coast of the Araya Peninsula in Venezuela under different fishing exploitation regimes. The samples were taken monthly during 2008 and 2009 at Isla Caribe, Isla Lobos and Bajo Cuspe. At each site, samples were taken within three areas of 40m2. The abundance of V. musica ranged between 5 ind/120m2 to 30 ind/120m2 with significant differences between sites (F=7.77; p<0,01). Organisms from Isla Caribe were larger in size (p=0,045), than those in the other two sites. There is a significant differences in the number of egg capsules between sites and between months, and there is clear evidence that Isla Caribe has the largest abundance of egg capsules (p<0,01) suggesting that the extra feeding source (carrion) found at Isla Caribe could have a positive effect on the reproductive potential of the V. musica population at this site. Rev. Biol. Trop. 60 (Suppl. 1): 165-172. Epub 2012 March 01.

Key word: Volutidae, artisanal fisheries, egg capsules, fecundity, South Caribbean.

Voluta musica (Linné, 1758) es un gaste- Isla Caribe, Isla Lobos y Bajo Cuspe son rópodo marino endémico del Caribe sur que tres sitios ubicados al noreste de la Península de se encuentra en el Libro Rojo de la Fauna Araya donde se hallan poblaciones de V. musi- Venezolana en la categoría “Insuficientemente ca. Isla Caribe (10°41’19”N; 63°51’05”W), es conocido” (Rodríguez & Rojas-Suárez 2008). un pequeño islote donde existe un asentamien- Es una especie gonocórica, de desarrollo direc- to permanente de pescadores artesanales con to, que adhiere sus ovicápsulas al substrato, un tráfico marino relativamente alto llevado usualmente en la parte interna de conchas a cabo por seis botes de 6m de eslora cada vacías de bivalvos (e.g., Anadara sp., uno, adicionalmente es una zona de paso de sp., Pinna sp.). Las cápsulas son hemi-esféricas otras embarcaciones pesqueras y turísticas. Los y miden aproximadamente 18mm de diámetro mismos diariamente realizan faenas de pesca, basal. Hay de 3 a 5 embriones dentro de cada descartando especies no comerciales de peces, cápsula, los cuales se alimentan del fluido bivalvos y cangrejos en zonas someras de la intracapsular (Gibson-Smith 1973, Penchasza- playa. Cabe destacar que los botes utilizados deh & Miloslavich 2001). están pintados con pinturas antiincrustantes,

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 165 que sumado a los desechos de los motores Caribe, Isla Lobos y Bajo Cuspe. En cada sitio (hidrocarburos) son un factor de contaminación se delimitaron tres transectas de 20m x 2m que afecta a los caracoles produciendo imposex (40m2) paralelas a la línea de costa sobre la en hembras de V. musica (A. C. Peralta, en zona habitada por V. musica, a una profundidad prep.). Isla Lobos (10º41’26”N; 63º52’28”W), de 1,5 m para Isla Caribe e Isla Lobos y a nueve es otro pequeño islote localizado a 2km del metros en Bajo Cuspe. Se contaron todas las primero. El ecosistema marino es semejante al ovicápsulas y los individuos encontrados a lo de Isla Caribe, pero el tráfico marino es de bajo largo de cada transecta y se determinó la talla y a nulo ya que al sitio llega un bote de 6m de el sexo de cada uno. Sabiendo que las hembras eslora por semana y actualmente no hay asenta- comienzan a madurar a los 57mm de longitud mientos, botes permanentes ni descartes diarios de la concha (A.C. Peralta, en prep) se registró de pesca, donde A. C. Peralta (en prep.) encon- la proporción de hembras mayores a 60mm en traron una baja incidencia de imposex de 4%. cada sitio y en cada mes, con el fin de realizar Bajo Cuspe (10º43´53´´N; 63º51´10´´W), es una estimación indirecta de la fecundidad como un sitio que se encuentra a 3km de Isla Caribe una relación entre el número de ovicápsulas e Isla Lobos y no presenta botes permanentes encontradas/hembra en cada mes. Se evaluaron ni descartes diarios de la pesca artesanal y en las diferencias en la abundancia de hembras el cual no se han registrado casos de imposex maduras a lo largo de los meses del año a través (A.C. Peralta, en prep.) (Observ. pers.). de un análisis de la varianza. En Isla Caribe, la presencia de la pesca Se registró mensualmente la temperatura artesanal con frecuencia diaria genera una en los tres sitios de muestreo mediante sonda fuente alóctona de alimento por descarte pes- digital YSI 85 y como complemento se utilizó quero, el cual es aprovechado por las especies la serie de tiempo de la base de datos del Obser- carroñeras (gasterópodos, crustáceos, peces, vatorio Oceanográfico Digital de Venezuela etc.). V. musica tiene tanto hábitos carroñeros (Klein, E. & J.C. Castillo, 2009) para estable- como depredatorios (von Cosel 1976), bajo cer las épocas de surgencia (temperatura del este escenario se pretende estudiar el efecto agua de 23ºC a 26ºC) y relajación (temperatura que tendría una fuente adicional de alimento del agua de 27ºC a 30ºC). sobre algunos rasgos de la historia de vida en Una vez obtenidos los datos del número las poblaciones de esta especie. Esta mayor dis- de ovicápsulas, número de especímenes, tallas posición de alimento podría estar relacionada y sexo se aplicó un análisis de la varianza con una abundancia mayor, hembras de tallas (ANOVA) para cada una de las variables (abun- mas grandes y un mayor numero de cápsulas dancia total, abundancia de hembras mayores a por hembra en relación a Isla Lobos y Bajo del 60mm, fecundidad y estructura de tallas) con la Cuspe donde no existe tal fuente de alimento y finalidad de encontrar diferencias significativas en donde V. musica se alimenta principalmente entre los tres sitios muestreados. En algunos por depredación, con un mayor costo energéti- casos se realizó una prueba a posteriori de co (A.C. Peralta, obs. pers.). Tukey para verificar cuál de los sitios estaría El objetivo del presente trabajo es conocer generando las diferencias. la abundancia, estructura de talla y fecundidad de V. musica en tres sitios de la costa norte de RESULTADOS la Península de Araya en las que existen activi- dades de pesca diferenciales. Las poblaciones de Voluta musica demos- traron tener una densidad de 0,09ind/m2 2 MATERIALES Y MÉTODOS (±7,99) en Isla Caribe; 0,04 ind/m (±3,68) en Isla Lobos y de 0,10 ind/m2 (±10,64) en Bajo Se realizaron muestreos mensuales entre Cuspe. La abundancia varió de 5 a 30ind/120m2 marzo de 2008 y diciembre de 2009 en Isla dependiendo del sitio y de la fecha en que se

166 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 20 IC 40

) Abundancia Temperatura 2 N=169 35 15 30 120 m

Individuos ( 10 25

20 5 15 (ºC) Temperatura Abundancia Abundancia 0 10 20 40

) IL Abundancia Temperatura 2 35 15 N=67 30 120 m

Individuos ( 10 25

20 5 15 (ºC) Temperatura Abundancia Abundancia

0 10 25 40 ) BC

2 35 20 N=144 30

120 m

Individuos 15

( 25 10 20 Temperatura (ºC) Temperatura 5 15

Abundancia 0 10 Jul. 08 Jul. 09 Jul. Set. 08 Set. 09 Dic. 08 Dic. 09 Dic. Abr. 09 Abr. Jun. 08 Jun. 09 Oct. 08 Oct. 09 Feb. 09 Feb. Ene. 09 Ene. Mar. 09 Mar. Nov. 08 Nov. 09 Nov. Ago. 08 Ago. 09 Ago. May. 09 May.

Fig. 1. Comparación de la abundancia de V. musica en los tres sitios de muestreo a lo largo de dos años (2008-2009). IC: Isla Caribe; IL: Isla Lobos; BC: Bajo Cuspe. Fig 1. Comparison of V. musica abundance in three sites during 2008-2009. IC: Isla Caribe; IL: Isla Lobos; BC: Bajo Cuspe.

tomaron las muestras (Fig. 1). De acuerdo diferencias significativas entre los sitios y entre al análisis de la varianza existen diferencias los meses en cuanto al número de ovicápsulas significativas en la abundancia entre los sitios (p<0,001), siendo Isla Caribe el sitio que gene- (F=7.77; p<0.05) y entre los meses del año a ra la diferencia (Tukey, p<0,001) con un mayor excepción de Isla Lobos (p<0.05). numero de ovicápsulas en relación a los otros La prueba a posteriori mostró que la abun- dos sitios (Fig. 3). dancia es igual para Bajo Cuspe e Isla Caribe La fecundidad de V. musica estimada no (Tukey, p=0.39) pero distinta y menor en Isla evidenció diferencias significativas entre sitios Lobos (p=0.008; 0.0149). El análisis de la abundancia de hem- ni entre los meses (p>0,5). Los datos indican bras maduras (mayores a 60mm de largo) que la fecundidad de V. musica varió de 1 a 32 demostró que existen diferencias significati- en Isla Caribe mientras que en Isla Lobos fue vas entre los tres sitios y entre los meses del de 1 a 12 y en Bajo Cuspe de 1 a 8 ovicápsulas/ año (p<0,05) (Fig. 2). Igualmente, existen hembra/mes (Fig. 3).

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 167 10 IL 40

35 8

) n=298 2 30 6 40 m Hembras

( 25 4

20 (ºC) Temperatura Abundancia Abundancia 2 15

0 10 10 IC Número de cápsulas 40 Temperatura 35 8 )

2 30

40 m 6 Hembras

( 25 4

20 (ºC) Temperatura Abundancia Abundancia 2 15

0 10 40 10 BC

35 ) 8 2 30

40 m 6 Hembras

( 25 4 20 Temperatura (ºC) Temperatura

Abundancia Abundancia 2 15

0 10 Jul. 08 Jul. Jul. 09 Jul. Set. 08 Set. 09 Dic. 08 Dic. Dic. 09 Dic. Abr. 08 Abr. Abr. 09 Abr. Jun. 08 Jun. 09 Oct. 08 Oct. 09 Feb. 08 Feb. Feb. 09 Feb. Ene. 08 Ene. Ene. 09 Ene. Mar. 08 Mar. Mar. 09 Mar. Nov. 08 Nov. Nov. 09 Nov. Ago. 08 Ago. Ago. 09 Ago. May. 08 May. May. 09 May.

Fig. 2. Abundancia de hembras maduras en tres sitios a lo largo de dos años. IC: Isla Caribe; IL: Isla Lobos; BC: Bajo Cuspe. Fig. 2. Abundance of mature female specimens in three sites during two years. IC: Isla Caribe; IL: Isla Lobos; BC: Bajo Cuspe.

168 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 Isla Caribe 30

) Abundancia n=298 25 Temperatura 20 Hembra Cápsulas

( 15 10 5 Fecundidad Fecundidad 0 Jul. 09 Jul. Jul. 08 Jul. Set. 09 Set. 08 Dic. 09 Dic. Dic. 08 Dic. Abr. 09 Abr. Abr. 08 Abr. Jun. 09 Jun. 08 Oct. 09 Oct. 08 Feb. 09 Feb. Feb. 08 Feb. Ene. 09 Ene. Ene. 08 Ene. Mar. 09 Mar. Mar. 08 Mar. Nov. 09 Nov. Nov. 08 Nov. Ago. 09 Ago. Ago. 08 Ago. May. 09 May. May. 08 May.

Bajo Cuspe 30 ) Abundancia n=97 25 Temperatura 20 Hembra Cápsulas

( 15 10 5 Fecundidad Fecundidad 0 Jul. 08 Jul. 09 Jul. Set. 08 Set. 09 Dic. 08 Dic. 09 Dic. Abr. 08 Abr. 09 Abr. Jun. 08 Jun. 09 Oct. 08 Oct. 09 Feb. 08 Feb. 09 Feb. Ene. 08 Ene. 09 Ene. Mar. 08 Mar. 09 Mar. Nov. 08 Nov. 09 Nov. Ago. 08 Ago. 09 Ago. May. 08 May. 09 May.

Isla Lobo 30

) Abundancia n=84 25 Temperatura 20 Hembra Cápsulas

( 15 10 5 Fecundidad Fecundidad 0 Jul. 08 Jul. Jul. 09 Jul. Set. 08 Set. 09 Dic. 08 Dic. Dic. 09 Dic. Abr. 08 Abr. Abr. 09 Abr. Jun. 08 Jun. 09 Oct. 08 Oct. 09 Feb. 08 Feb. Feb. 09 Feb. Ene. 08 Ene. Ene. 09 Ene. Mar. 08 Mar. Mar. 09 Mar. Nov. 08 Nov. Nov. 09 Nov. Ago. 08 Ago. Ago. 09 Ago. May. 08 May. May. 09 May.

Fig. 3. Número de ovicápsulas por hembra/mes en tres sitios. Fig. 3. Ovicapsules per female/month in three sites.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 169 La talla de los individuos medida como zonas donde se halla esta especie, sin embargo largo total de la concha varió de 38,7 a 95mm se encuentran agregaciones de individuos en en Isla Caribe, de 34 a 88mm en Isla Lobos, las épocas reproductivas donde la densidad se y de 34,4 a 89mm en Bajo del Cuspe. La calculó en 0,09ind/m2 (18ind/200m2) siendo talla promedio del largo total de la concha de la densidad en épocas no reproductivas de la población, sin distinción de sexos, fue de: 0,015ind/m2 (3indiv/200m2) (Bigatti 2005). 70,6mm en Isla Caribe; 67,25mm en Isla Lobos Por otro lado Carranza et al. (2008) analizaron y de 68,4mm en Bajo del Cuspe. La compa- la distribución y ecología de gasterópodos de ración de tamaño entre los sexos en cada uno la plataforma continental uruguaya y la zona de los sitios indica que los machos son signi- exterior del Río de la Plata, en profundidades ficativamente mas pequeños que las hembras desde 4 a 62m donde el volútido Adelomelon (p<0,05). No se hallaron individuos menores a beckii fue representado por un solo espécimen 30mm de largo total, salvo uno cuya talla fue en todos los casos, sugiriendo bajas densidades de 9mm, encontrado en Isla Caribe (Fig. 4). poblacionales para la zona de estudio. En el Se encontraron diferencias significativas en presente trabajo las poblaciones de V. musica relación al tamaño de los individuos entre los también demostraron tener bajas densidades tres sitios (p<0.05). En una prueba a posteriori de individuos lo que sugiere que las especies se obtuvo que los individuos de Isla Caribe son de la familia Volutidae tienen distribuciones amplias con pocos individuos, pero que tienen 50 Isla Caribe tendencia a agruparse en épocas del año donde Isla Lobos 45 ocurren los eventos de cópula y oviposición. 40 Bajo Cuspe 35 Tal y como se demuestra en el presente trabajo, 30 V. musica presentó diferencias en cuanto a su 25 densidad en función de los meses del año en 20 dos de los sitios. Cuando analizamos la densi- 15 10 dad de las hembras maduras se observa una ten- Frecuencia relativa (%) relativa Frecuencia 5 dencia a incrementar el número de individuos 0 por área en relación a los meses de oviposición: 10 20 30 40 50 60 70 80 90 100 abril, mayo, junio, agosto, septiembre y octubre Longitud total de la concha (mm) (ver Fig. 3). Hay una clara estacionalidad en la ovipo- Fig. 4. Estructura de tallas de V. musica en tres sitios. Fig. 4. V. musica size structure in three sites. sición en los tres sitios muestreados siendo los meses de abril a octubre los meses donde las hembras oviponen, lo que a su vez coincidiría con los meses de aguas más cálidas. El número más grandes en cuanto a la longitud la concha de ovicápsulas totales fue mayor en Isla Cari- (Tukey, IC >BC >IL, p=0.34; 0.39 y 0.045). be. Sin embargo, el número de ovicápsulas por hembra por mes dentro de cada sitio mostró una alta variabilidad, por lo que el resultado DISCUSION del análisis de la varianza no evidencia diferen- cias significativas entres los sitios ni entre los Se conoce poco sobre la densidad y abun- meses. Las diferencias en el número de cápsu- dancia de caracoles de la familia Volutidae, en las entre las áreas muestreadas dentro de cada el caso de Odontocymbiola magellanica, de sitio/mes nos estaría indicando que hay otro las costas norpatagónicas, se ha demostrado factor que determina la ubicación de las ovi- que a pesar de pasar gran parte del tiempo cápsulas y que éstas no se encuentran presentes enterrada tiene cierta capacidad de despla- en toda el área muestreada. Varios autores han zamiento. No existen grandes bancos en las descrito las cápsulas de V. musica las cuales son

170 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 colocadas dentro de conchas vacías de bivalvos son von Cosel (1976) y A.C. Peralta (en prep.), (Clench & Turner 1970, Gibson-Smith 1973, este último determinó que esta especie sea un von Cosel 1976, Penchaszadeh & Miloslavich depredador generalista que presenta hábitos 2001). En algunos casos se encontraron cochas carroñeros, ante la presencia de los descar- vacías de Atrina seminuda con hasta 30 ovicáp- tes de la actividad pesquera. Estos resultados sulas adheridas mientras que otras especies de se asemejan a lo observado en los volútidos bivalvos como , Codakia sp, y Perna Adelomelon ancilla (Bigatti et al. 2009) y O. perna, contenían de dos a cuatro ovicápsulas magellanica de la Patagonia argentina (Bigatti adheridas. Para un próximo estudio, se sugiere et al. 2010), donde se observó que consumen considerar el tipo de sustrato disponible para la principalmente presas vivas y ocasionalmente oviposición en cada uno de los sitios con el fin carroña (Bigatti et al. 2010). de minimizar las diferencias que esto podría generar en las determinaciones de abundancia AGRADECIMIENTOS de ovicápsulas dentro de cada mes/sitio. La estructura de tallas que se obtuvo Centro de Investigaciones Ecológicas de incluye organismos mayores a 34mm lo cual Guayacán (Universidad de Oriente) por el se podría explicar por el hecho de que son apoyo en las salidas de campo. A Eduardo organismos crípticos, viven enterrados en el Klein por su valiosa orientación en el análisis sustrato y solamente exhiben el sifón inhalante de los datos y Emanuel Valero por su colabo- apenas unos milímetros fuera del sedimen- ración en el uso de paquetes estadísticos. Al to. Es sabido que la mayoría de los volúti- Decanato de Investigación y Desarrollo-USB, dos viven enterrados emergiendo en busca de y al Decanato de Postgrado-USB por el finan- alimento o en el momento de reproducirse ciamiento otorgado. (Clench & Turner 1964, Clench & Turner 1970, Poppe & Goto 1992), esto hace que sea muy difícil encontrar individuos pequeños con la RESUMEN metodología aplicada. Teniendo en cuenta la intensa actividad pesquera Morton (2006) describe que en ciertas artesanal y subsecuente fuente adicional de alimento como localidades de Hong Kong en donde exis- carroña en Isla Caribe, se esperaría un efecto sobre algu- te una pesca artesanal intensiva, el murícido nos parámetros poblacionales de V. musica como: mayor Ergalatax contractus es mas abundante que en número de ovicápsulas, individuos de tallas mayores y densidades de caracoles adultos mayores. Con el presente otros lugares en donde no existe tal actividad, trabajo se desea conocer la abundancia, estructura de talla y siendo éste un depredador generalista que oca- fecundidad de Voluta musica en tres sitios de la costa norte sionalmente consume carroña. Los gasterópo- de la Península de Araya en las que existen actividades de dos carroñeros parecen verse favorecidos por pesca diferenciales. Se realizaron muestreos mensuales entre 2008 y 2009 en Isla Caribe, Isla Lobos y Bajo Cuspe, los ambientes perturbados (Britton & Morton en cada uno con 3 áreas de 40m2. La abundancia varió de 1994, Taylor 1994, Morton 1995, Ramsay et al. 5ind/120m2 a 30ind/120m2, con diferencias significativas 1997, 1998, Morton 2006) debido a una mayor entre los sitios (F= .77; p<0,01), siendo igual para Bajo disponibilidad de alimento en forma de carro- Cuspe e Isla Caribe (p=0,39) pero distinta y menor en Isla ña. En el presente trabajo se observan indivi- Lobos, (p=0,008; 0,0149). Los individuos de Isla Caribe demostraron ser más grandes (p=0,045). Existen diferen- duos de V. musica de tallas más grandes en Isla cias significativas entre sitios y entre meses en el número Caribe y con mayor número de oviposturas, de ovicápsulas (p<0,01), siendo Isla Caribe el sitio con probablemente debido a que los individuos mayor abundancia de ovicápsulas (p<0,01). Esto sugiere de esa población aprovechan la energía que que el alimento suplementario en forma de carroña podría provee el material de desecho de la pesca arte- incrementar el potencial reproductivo de la población en Isla Caribe. sanal compuesto principalmente por pescado, moluscos y crustáceos. Otros trabajos que han Palabras claves: Volutidae, pesca artesanal, ovicápsulas, reportado a V. musica como especie carrroñera fecundidad, Caribe Sur.

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 171 REFERENCIAS Morton, B. 2006. Scavenging behaviour by Ergalatax contractus (Gastropoda: ) and intercations Bigatti, G. 2005. Anatomía, Ecología y Reproducción del with Nassarius nodifer (Gastropoda: Nassariidae) in caracol rojo Odontocymbiola magellanica (Gastropo- the Cape d´Aguilar Marine Reserve, Hong Kong. J. da: Volutidae) en golfos norpatagónicos. Tesis de Ph. Mar. Biol. Assoc. UK 86: 141-152. D., Universidad de Buenos Aires, Facultad de Cien- cias Exactas y Naturales, Buenos Aires, Argentina. Penchaszadeh, P. & P. Miloslavich. 2001. Embryonic sta- ges and feeding substances of the South American Bigatti, G., Carlos .J.M. Sánchez Antelo, P. Miloslavich & volutid Voluta musica (Caenogastropoda) during Pablo E. Penchaszadeh. 2009. Adelomelon ancilla: a intracapsular development. Amer. Malacol. Bull. 16: predator neogastropod in Patagonia benthic commu- 21-23. nities. Nautilus 123: 159-165. Poppe, G. T. and Y. Gotto (1992). Volutes. Ancona, Italia. Bigatti, G., Hernán Sacristán, María C. Rodríguez, Car- Ramsay, K., M, Kaiser, P.G. Moore & R.N. Hughes. 1997. los A. Storz & Pablo E. Penchaszadeh. 2010. Diet, Consumption of fisheries discardas by benthic scav- prey narcotization and biochemical composition of engers: utilization of energy subsidies in different salivary glands secretions of the volutid snail Odon- marine habitats. J. Anim. Ecol. 66: 884-896. tocymbiola magellanica. J. Mar. Biol. Assoc. UK 90: 1-9. Ramsay, K., M.J. Kaiser & R.N. Hughes. 1998. Responses of benthic scavengers to fishing disturbance by towed Britton, J.C. & B. Morton. 1994. Marine carrion and sca- gears in different habitats. J. Exp. Mar. Biol. Ecol. vengers. Oceanogr. Mar. Biol. Ann. Rev. 32: 369-434. 224: 73-89.

Carranza, A., F. Scarabino & L. Ortega (2008). “Distribu- Rodríguez, J.P. & F. Rojas-Suárez. 2008. Libro Rojo de la tion of Large Benthic Gastropods in the Uruguayan Fauna Venezolana. Provita, Caracas, Venezuela. Continental Shelf and Río de la Plata Estuary.” Jour- nal of Coastal Research 24: 161-168. Taylor, J.D. 1994. Sublittoral benthic gastropods around southern Hong Kong, p. 479. In B. Morton (ed.). The Clench, W. & R.D. Turner. 1964. The subfamilies Voluti- Malacofauna of Hong Kong and Southern China III. nae, Zidoninae, Odontocymbiolinae and Calliotec- Hong Kong Univ. Press, Hong Kong. tinae in the Western Atlantic. Johnsonia 4: 129-179. von Cosel, R. 1976. Contribución al conocimiento del Clench, W. & R.D. Turner. 1970. The family volutidae in género Voluta Linné, 1758 (Prosobranchia) en la the Western Atlantic. Johnsonia 4: 369-392. costa del Caribe de Colombia. Mitt. Inst. Colombo- Alemán Invest. Cient. 8: 83-104. Gibson-Smith, J. 1973. The genus Voluta (Mollusca, Gas- tropoda) in Venezuela with description of two new species. Geos 20: 65-73. Referencias de internet

Morton, B. 1995. Perturbated soft intertidal and subtidal Klein E. y J.C. Castillo, 2009. Observatorio Oceanográ- marine communities in Hong Kong: the significance fico Digital del Mar Venezolano. Laboratorio de of scavenging gastropods, p. 1-15. In X.G.Z.B. Mor- Sensores Remotos, Centro de Biodiversidad Marina ton, Z. Renlin, P. Jinpei & C. Guoxiong (eds). The INTECMAR-USB. http://ood.cbm.usb.veObservato- Marine Biology of the South China Sea II. Proc. 2nd rio Oceanográfico Digital de Venezuela (http://ood. Int. Conf. Mar. Biol. South China Sea, China. cbm.usb.ve/historial/sst_noaa/)

172 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): 165-172, March 2012 Revis ta de Biología Tropical / International Journal of Tropical Biology and Conservation Authors’ Guide

Journal scope Stages in manuscript processing We consider manuscripts in all theoretical and Manuscripts that follow our scope and format applied fields of tropical biology, with a preference indications are sent to three reviewers who make to in depth studies of general interest based on sig- recommendations to improve them or qualify them nificant samples, a solid experimental design and a as unacceptable. The second draft is corrected by our modern quantitative analysis. staff and returned with instructions to prepare the final version for the printer. Format Text must be clear, brief and without repetitions Legal requirements according to CSE norms (www.cbe.org). Use the When authors submit a manuscript they transfer International System (SI) units and abbreviations printed and electronic reproduction rights to the jour- (m, km, kg, ml, s; details in www.bipm.fr/en/si/). In nal and accept to comply with journal norms regard- citations use commas only, as in this example: (Smith ing procedure, format and other pertinent aspects. 1988, Jones and Burke 2001, Simpson et al. 2006). Ethical requirements When authors submit a manuscript they accept Tables to follow the journal rules, the Helsinki Ethical Avoid very small or very large tables (half a Norms (www.onlineethics.org) and imply that page is usually a good size). Table headings must all coauthors participated in the main aspects of be brief. Do not use bold font, words completely research and agree to publication, that the study is spelled in upper case or separation lines. All symbols scientifically valid, that the study has not been pub- and abbreviations must appear as footnotes. lished before and that it was not sent simultaneously to another journal. Figures Send photographs apart from text in JPG- Other aspects format files, with a resolution of 300 DPI. Size: 14 Follow all format details from a recent issue or cm in breadth. Labels: Helvetica 8-12 points. check examples in http://www.ots.ac.cr/tropiweb/ Manuscripts must be submitted in DOC, RTF or DOCX format to [email protected] (title References message “New manuscript”) attached to a message References must follow exactly this format (for stating that all coauthors submit the manuscript other examples visit http://www.biologiatropical.ucr. for possible publication. Include e-mail addresses ac.cr/): of three possible reviewers. We confirm reception within 72 hours. Article Domínguez R., L.F., F. Zamora & G. Fuentes. 2005. Articles of more than 10 printed pages will be Demography of the parasite Gnathostoma binuclea- charged $50 per additional printed page. There is no tum (Spirurida: Gnathostomatidae) during a ten year compulsory page fee for the first ten printed pages. period. Rev. Biol. Trop. 53: 1235-1246. Book, report or meeting memoir Robinson, J.S. 2005. Icthyology. Winsley, New York, New York, USA. Multiauthored book Peters, W.H. 2005. Sediments, p. 7-41. In R. Smith & J.A. Mead (eds.). Tropical ecosystems. Van der Meet, The Hague, Holland.

Detailed guide in http://www.biologiatropical.ucr.ac.cr/

Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012 173 Revis ta de Biología Tropical / International Journal of Tropical Biology and Conservation CÓMO PREPARAR MANUSCRITOS

Temas aceptados Libro colegiado: Se reciben artículos científicos en todos los Peters, W.H. 2005. Sediments, p. 7-41. In R. Smith & J.A. campos teóricos y aplicados de la biología tropical Mead (eds.). Tropical ecosystems. Van der Meet, La y se dará preferencia a estudios experimentales de Haya, Holanda. interés general basados en muestras significativas, diseño sólido y análisis cuantitativo moderno. Etapas que siguen los manuscritos Formato Los manuscritos que cumplen con los requi- El texto debe ser claro, conciso y sin repeti- sitos temáticos y de formato son enviados a tres ciones, según las normas del CSE (www.cbe.org) especialistas, quienes hacen recomendaciones para y respetar las decisiones de la Real Academia de la mejorarlos o los califican como inaceptables. La Lengua (www.rae.es) si está en español. Use el sis- segunda versión es corregida por nuestro personal tema internacional de medidas y sus abreviaturas (m, y devuelta con indicaciones para preparar la versión km, kg, ml, s, etc.; ver www.bipm.fr/en/si). Utilice que irá al impresor. únicamente comas para separar las citas, como en este ejemplo: (Zamora 1998, Andrade y Pérez 2001, Requisitos legales Gómez et al. 2005). Al presentar un manuscrito a la revista, los autores ceden a ésta los derechos de reproducción Cuadros por medios impresos y electrónicos, y aceptan regir- Evite cuadros muy extensos o muy breves se por las normas de la revista en cuanto a procedi- (media página suele ser un buen tamaño). Deben miento, formato y demás aspectos pertinentes. elaborarse con la función “tabla” del procesador de textos, sin negritas ni mayúsculas absolutas, y sin Requisitos éticos líneas separadoras. Todos los símbolos y abrevia- Al presentar sus manuscritos a la revista, los turas deben aparecer explicados en una nota al pie. autores se comprometen a seguir las reglas de la Incluya traducción inglesa del encabezado. revista, las normas éticas del Acuerdo de Helsinki (www.onlineethics.org) y afirman que todas las per- Figuras sonas que aparecen como coautoras participaron en Envíe las fotografías separadas del texto, en los aspectos principales de la investigación, están de archivos JPG, con una resolución de 300 dpi. acuerdo para la publicación, que esta es científica- Tamaño: 14 cm de ancho. Rotulados: en Helvética mente válida, que no se ha publicado antes y que no 8-12 puntos. Incluya traducción inglesa del pie. está siendo enviada simultáneamente a otra revista.

Referencias Otros aspectos Deben seguir estrictamemente el siguiente for- Guíese por el formato de un fascículo recien- mato (para ver más ejemplos visite nuestra página te o mire ejemplos en http://www.ots.ac.cr/tro- web http://www.biologiatropical.ucr.ac.cr/): piweb/. Una guía más detallada se encuentra en esa misma dirección. Artículo: Los manuscritos deben enviarse únicamente Domínguez R., L.F., F. Zamora & G. Fuentes. 2005. en forma electrónica, formato DOC, RTF o DOCX, Demography of the parasite Gnathostoma binuclea- con un correo firmado por todos los coautores soli- tum (Spirurida: Gnathostomatidae) during a ten year citando que sean considerados para publicación, a period. Rev. Biol. Trop. 53: 1235-1246. [email protected] con el título Manuscrito Nuevo. Incluya correos electrónicos de tres posibles Libro, informe o memoria de congreso: revisores. Acusaremos recibo en 72 horas o menos. Robinson, J.S. 2005. Icthyology. Winsley, Nueva York, Nueva York, EEUU. Los artículos de más de 10 páginas impresas deben pagar $50 por página adicional. No hay pago obligatorio para las primeras diez páginas impresas.

Guía detallada en http://www.biologiatropical.ucr.ac.cr/

174 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 60 (Suppl. 1): March 2012